code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ (_a ): __lowerCamelCase : Dict = """autoformer""" __lowerCamelCase : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , a = None , a = None , a = "student_t" , a = "nll" , a = 1 , a = [1, 2, 3, 4, 5, 6, 7] , a = True , a = 0 , a = 0 , a = 0 , a = 0 , a = None , a = None , a = 64 , a = 2 , a = 2 , a = 2 , a = 2 , a = 32 , a = 32 , a = "gelu" , a = 0.1 , a = 0.1 , a = 0.1 , a = 0.1 , a = 0.1 , a = 100 , a = 0.02 , a = True , a=True , a = 10 , a = 25 , a = 3 , **a , ): # time series specific configuration lowercase__ : str = prediction_length lowercase__ : Tuple = context_length if context_length is not None else prediction_length lowercase__ : Dict = distribution_output lowercase__ : Optional[int] = loss lowercase__ : List[Any] = input_size lowercase__ : Union[str, Any] = num_time_features lowercase__ : Tuple = lags_sequence lowercase__ : Optional[Any] = scaling lowercase__ : Tuple = num_dynamic_real_features lowercase__ : Union[str, Any] = num_static_real_features lowercase__ : str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(a) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') lowercase__ : List[str] = cardinality else: lowercase__ : str = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(a) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') lowercase__ : Any = embedding_dimension else: lowercase__ : Union[str, Any] = [min(50 , (cat + 1) // 2) for cat in self.cardinality] lowercase__ : int = num_parallel_samples # Transformer architecture configuration lowercase__ : Dict = input_size * len(self.lags_sequence) + self._number_of_features lowercase__ : List[Any] = d_model lowercase__ : Optional[Any] = encoder_attention_heads lowercase__ : Optional[Any] = decoder_attention_heads lowercase__ : Optional[Any] = encoder_ffn_dim lowercase__ : List[str] = decoder_ffn_dim lowercase__ : str = encoder_layers lowercase__ : List[str] = decoder_layers lowercase__ : Dict = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : List[str] = encoder_layerdrop lowercase__ : int = decoder_layerdrop lowercase__ : List[str] = activation_function lowercase__ : List[str] = init_std lowercase__ : Union[str, Any] = use_cache # Autoformer lowercase__ : List[str] = label_length lowercase__ : int = moving_average lowercase__ : Optional[int] = autocorrelation_factor super().__init__(is_encoder_decoder=a , **a) @property def snake_case_ ( self): return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
214
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase (snake_case__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
155
0
"""simple docstring""" from math import pow def __lowercase ( snake_case_ : Union[str, Any] ,snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : Union[str, Any] ,snake_case_ : Tuple ,) ->tuple[int, int]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __A : Any = int(pow(__lowerCAmelCase ,__lowerCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __A : Tuple = backtrack( __lowerCAmelCase ,__lowerCAmelCase ,current_number + 1 ,__lowerCAmelCase ,__lowerCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __A : List[str] = backtrack( __lowerCAmelCase ,__lowerCAmelCase ,current_number + 1 ,__lowerCAmelCase ,__lowerCAmelCase ) return current_sum, solutions_count def __lowercase ( snake_case_ : str ,snake_case_ : Any ) ->int: '''simple docstring''' if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__lowerCAmelCase ,__lowerCAmelCase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase ={ """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
287
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase =get_logger(__name__) class A__ : def __init__( self , __magic_name__ = None ): lowerCamelCase : Dict = ( os.path.join(__magic_name__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCamelCase : List[str] = Extractor def UpperCamelCase__ ( self , __magic_name__ ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCamelCase : int = os.path.abspath(__magic_name__ ) return os.path.join(self.extract_dir , hash_url_to_filename(__magic_name__ ) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ ): return force_extract or ( not os.path.isfile(__magic_name__ ) and not (os.path.isdir(__magic_name__ ) and os.listdir(__magic_name__ )) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = False ): lowerCamelCase : Union[str, Any] = self.extractor.infer_extractor_format(__magic_name__ ) if not extractor_format: return input_path lowerCamelCase : int = self._get_output_path(__magic_name__ ) if self._do_extract(__magic_name__ , __magic_name__ ): self.extractor.extract(__magic_name__ , __magic_name__ , __magic_name__ ) return output_path class A__ ( __SCREAMING_SNAKE_CASE): @classmethod @abstractmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): ... @staticmethod @abstractmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): ... class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[bytes] = [] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with open(__magic_name__ , """rb""" ) as f: return f.read(__magic_name__ ) @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = b"" ): if not magic_number: lowerCamelCase : Optional[Any] = max(len(__magic_name__ ) for cls_magic_number in cls.magic_numbers ) try: lowerCamelCase : Tuple = cls.read_magic_number(__magic_name__ , __magic_name__ ) except OSError: return False return any(magic_number.startswith(__magic_name__ ) for cls_magic_number in cls.magic_numbers ) class A__ ( __SCREAMING_SNAKE_CASE): @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): return tarfile.is_tarfile(__magic_name__ ) @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): def resolved(__magic_name__ ) -> str: return os.path.realpath(os.path.abspath(__magic_name__ ) ) def badpath(__magic_name__ , __magic_name__ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__magic_name__ , __magic_name__ ) ).startswith(__magic_name__ ) def badlink(__magic_name__ , __magic_name__ ) -> bool: # Links are interpreted relative to the directory containing the link lowerCamelCase : List[str] = resolved(os.path.join(__magic_name__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__magic_name__ ) lowerCamelCase : Optional[Any] = resolved(__magic_name__ ) for finfo in members: if badpath(finfo.name , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(__magic_name__ , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(__magic_name__ , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase : Dict = tarfile.open(__magic_name__ ) tar_file.extractall(__magic_name__ , members=TarExtractor.safemembers(__magic_name__ , __magic_name__ ) ) tar_file.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = [B"""\x1F\x8B"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with gzip.open(__magic_name__ , """rb""" ) as gzip_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[int] = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = b"" ): if super().is_extractable(__magic_name__ , magic_number=__magic_name__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__magic_name__ , """rb""" ) as fp: lowerCamelCase : List[str] = _EndRecData(__magic_name__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCamelCase : List[Any] = fp.read(__magic_name__ ) # CD is where we expect it to be if len(__magic_name__ ) == sizeCentralDir: lowerCamelCase : str = struct.unpack(__magic_name__ , __magic_name__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with zipfile.ZipFile(__magic_name__ , """r""" ) as zip_file: zip_file.extractall(__magic_name__ ) zip_file.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[str] = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with lzma.open(__magic_name__ ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase : Union[str, Any] = rarfile.RarFile(__magic_name__ ) rf.extractall(__magic_name__ ) rf.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Tuple = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd lowerCamelCase : int = zstd.ZstdDecompressor() with open(__magic_name__ , """rb""" ) as ifh, open(__magic_name__ , """wb""" ) as ofh: dctx.copy_stream(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = [B"""\x42\x5A\x68"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with bza.open(__magic_name__ , """rb""" ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with pyazr.SevenZipFile(__magic_name__ , """r""" ) as archive: archive.extractall(__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = [B"""\x04\x22\x4D\x18"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(__magic_name__ , """rb""" ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _UpperCAmelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCamelCase__ ( cls ): return max( len(__magic_name__ ) for extractor in cls.extractors.values() if issubclass(__magic_name__ , __magic_name__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): try: return MagicNumberBaseExtractor.read_magic_number(__magic_name__ , magic_number_length=__magic_name__ ) except OSError: return b"" @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = False ): warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=__magic_name__ , ) lowerCamelCase : int = cls.infer_extractor_format(__magic_name__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCamelCase__ ( cls , __magic_name__ ): # <Added version="2.4.0"/> lowerCamelCase : Dict = cls._get_magic_number_max_length() lowerCamelCase : Optional[Any] = cls._read_magic_number(__magic_name__ , __magic_name__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__magic_name__ , magic_number=__magic_name__ ): return extractor_format @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = "deprecated" , ): os.makedirs(os.path.dirname(__magic_name__ ) , exist_ok=__magic_name__ ) # Prevent parallel extractions lowerCamelCase : Tuple = str(Path(__magic_name__ ).with_suffix(""".lock""" ) ) with FileLock(__magic_name__ ): shutil.rmtree(__magic_name__ , ignore_errors=__magic_name__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__magic_name__ , __magic_name__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=__magic_name__ , ) lowerCamelCase : int = extractor if extractor != """deprecated""" else extractor_format else: lowerCamelCase : Optional[int] = cls.extractors[extractor_format] return extractor.extract(__magic_name__ , __magic_name__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=__magic_name__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__magic_name__ ): return extractor.extract(__magic_name__ , __magic_name__ )
287
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-t5' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(a) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a) SCREAMING_SNAKE_CASE = tokenizer('This is me' , return_tensors='pt') SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules())) SCREAMING_SNAKE_CASE = model.generate(**a) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules())) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())) SCREAMING_SNAKE_CASE = model_reloaded.generate(**a) self.assertTrue(torch.allclose(a , a)) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-t5' SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(a): model.save_pretrained(a) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(a)
327
from scipy.stats import pearsonr import datasets a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]: if return_pvalue: SCREAMING_SNAKE_CASE = pearsonr(a , a) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a , a)[0])}
327
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __a: Tuple = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __a: List[Any] = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: return FSMTTokenizer.from_pretrained(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Union[str, Any] = FSMTForConditionalGeneration.from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase__ : List[str] = F"""facebook/wmt19-{pair}""" lowercase__ : Optional[Any] = self.get_tokenizer(__lowerCAmelCase ) lowercase__ : List[Any] = self.get_model(__lowerCAmelCase ) lowercase__ : Tuple = bleu_data[pair]['''src'''] lowercase__ : str = bleu_data[pair]['''tgt'''] lowercase__ : List[str] = tokenizer(__lowerCAmelCase , return_tensors='''pt''' , truncation=__lowerCAmelCase , padding='''longest''' ).to(__lowerCAmelCase ) lowercase__ : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase__ : Dict = tokenizer.batch_decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) lowercase__ : List[Any] = calculate_bleu(__lowerCAmelCase , __lowerCAmelCase ) print(__lowerCAmelCase ) self.assertGreaterEqual(scores['''bleu'''] , __lowerCAmelCase )
198
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> None: super().__init__(**__lowerCAmelCase ) lowercase__ : Optional[int] = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Optional[Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : Dict = do_resize lowercase__ : int = size lowercase__ : int = resample lowercase__ : Tuple = do_rescale lowercase__ : int = rescale_factor lowercase__ : int = do_normalize lowercase__ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Tuple = do_convert_rgb def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: lowercase__ : Union[str, Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowercase__ : Any = (size['''height'''], size['''width''']) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> str: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> PIL.Image.Image: lowercase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = resample if resample is not None else self.resample lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Dict = image_mean if image_mean is not None else self.image_mean lowercase__ : Dict = image_std if image_std is not None else self.image_std lowercase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : str = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Optional[Any] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ : Any = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase__ : Tuple = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_rescale: lowercase__ : List[str] = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase__ : Tuple = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase__ : List[str] = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase__ : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowerCAmelCase ) return encoded_outputs
198
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2000 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' A_ : List[Any] = self.unet.config.sample_size A_ : List[str] = (batch_size, 3, img_size, img_size) A_ : int = self.unet A_ : Any = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) * self.scheduler.init_noise_sigma A_ : Any = sample.to(self.device ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) self.scheduler.set_sigmas(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A_ : str = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): A_ : str = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ : int = self.scheduler.step_correct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # prediction step A_ : Dict = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ : str = self.scheduler.step_pred(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) A_ : int = output.prev_sample, output.prev_sample_mean A_ : List[Any] = sample_mean.clamp(0 , 1 ) A_ : Tuple = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : str = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
352
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients A_ , A_ , A_ : Any = equationa A_ , A_ , A_ : Union[str, Any] = equationa # Calculate the determinants of the matrices A_ : Optional[Any] = aa * ba - aa * ba A_ : Optional[int] = ca * ba - ca * ba A_ : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A_ : Optional[int] = determinant_x / determinant A_ : List[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
65
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
313
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
'''simple docstring''' from timeit import timeit def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A ( ) -> None: def do_benchmark(snake_case ) -> None: _lowercase : Optional[int] = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(snake_case ) = }''' ) _lowercase : int = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=snake_case ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }''' ) _lowercase : Optional[int] = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=snake_case , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
366
'''simple docstring''' import os import sys import unittest _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _snake_case = os.path.join(git_repo_path, 'src', 'transformers') _snake_case = '\n{0} = None\n' _snake_case = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' _snake_case = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(_UpperCamelCase ) _lowercase : Dict = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(_UpperCamelCase , "tokenizers" ) _lowercase : str = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(_UpperCamelCase , "tensorflow_text" ) _lowercase : Optional[Any] = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(_UpperCamelCase , "sentencepiece_and_tokenizers" ) _lowercase : List[str] = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(_UpperCamelCase , "sentencepiece_and_tensorflow_text" ) _lowercase : Optional[Any] = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(_UpperCamelCase , "sentencepiece_and_tokenizers_and_vision" ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _UpperCamelCase ) self.assertIn("tensorflow_text" , _UpperCamelCase ) self.assertIn("sentencepiece_and_tokenizers" , _UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(_UpperCamelCase , "\nCONSTANT = None\n" ) _lowercase : Optional[Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( _UpperCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) _lowercase : Union[str, Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" _lowercase : List[str] = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" _lowercase : str = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _UpperCamelCase )
199
0
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
321
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = 0 def SCREAMING_SNAKE_CASE__ (self : Dict): A = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32") self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): with tempfile.TemporaryDirectory() as tmpdirname: A = Path(__SCREAMING_SNAKE_CASE) / "preprocessor_config.json" A = Path(__SCREAMING_SNAKE_CASE) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__SCREAMING_SNAKE_CASE , "w") , ) json.dump({"model_type": "clip"} , open(__SCREAMING_SNAKE_CASE , "w")) A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: A = Path(__SCREAMING_SNAKE_CASE) / "preprocessor_config.json" A = Path(__SCREAMING_SNAKE_CASE) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(__SCREAMING_SNAKE_CASE , "w") , ) json.dump({"model_type": "clip"} , open(__SCREAMING_SNAKE_CASE , "w")) A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): with tempfile.TemporaryDirectory() as tmpdirname: A = CLIPConfig() # Create a dummy config file with image_proceesor_type A = Path(__SCREAMING_SNAKE_CASE) / "preprocessor_config.json" A = Path(__SCREAMING_SNAKE_CASE) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__SCREAMING_SNAKE_CASE , "w") , ) json.dump({"model_type": "clip"} , open(__SCREAMING_SNAKE_CASE , "w")) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE).to_dict() config_dict.pop("image_processor_type") A = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE) config.save_pretrained(__SCREAMING_SNAKE_CASE) A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) # make sure private variable is not incorrectly saved A = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): with tempfile.TemporaryDirectory() as tmpdirname: A = Path(__SCREAMING_SNAKE_CASE) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__SCREAMING_SNAKE_CASE , "w") , ) A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str]): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , "clip-base is not a local folder and is not a valid model identifier"): A = AutoImageProcessor.from_pretrained("clip-base") def SCREAMING_SNAKE_CASE__ (self : Tuple): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision="aaaaaa") def SCREAMING_SNAKE_CASE__ (self : List[Any]): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): A = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__SCREAMING_SNAKE_CASE): A = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE): A = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE) A = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE) A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor") def SCREAMING_SNAKE_CASE__ (self : List[Any]): try: AutoConfig.register("custom" , __SCREAMING_SNAKE_CASE) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tempfile.TemporaryDirectory() as tmpdirname: A = Path(__SCREAMING_SNAKE_CASE) / "preprocessor_config.json" A = Path(__SCREAMING_SNAKE_CASE) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(__SCREAMING_SNAKE_CASE , "w") , ) json.dump({"model_type": "clip"} , open(__SCREAMING_SNAKE_CASE , "w")) A = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE) A = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = True try: AutoConfig.register("custom" , __SCREAMING_SNAKE_CASE) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # If remote code is not set, the default is to use local A = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. A = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub A = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor") self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
57
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizer SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Tuple): super().setUp() A = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" ") A = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) A = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + "\n") def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[Any]=2_0 , __SCREAMING_SNAKE_CASE : Any=5): A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE)) for i in range(len(__SCREAMING_SNAKE_CASE))] A = list(filter(lambda __SCREAMING_SNAKE_CASE: [t[0]] == tokenizer.encode(t[1] , do_phonemize=__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)) if max_length is not None and len(__SCREAMING_SNAKE_CASE) > max_length: A = toks[:max_length] if min_length is not None and len(__SCREAMING_SNAKE_CASE) < min_length and len(__SCREAMING_SNAKE_CASE) > 0: while len(__SCREAMING_SNAKE_CASE) < min_length: A = toks + toks # toks_str = [t[1] for t in toks] A = [t[0] for t in toks] # Ensure consistency A = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) if " " not in output_txt and len(__SCREAMING_SNAKE_CASE) > 1: A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) ) if with_prefix_space: A = " " + output_txt A = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE) return output_txt, output_ids def SCREAMING_SNAKE_CASE__ (self : List[Any] , **__SCREAMING_SNAKE_CASE : Any): kwargs.update(self.special_tokens_map) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") # check adding a single token tokenizer.add_tokens("xxx") A = tokenizer("m xxx ɪ" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_2, 1_7]) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"]) A = tokenizer("m aaa ɪ ccc" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa A = tokenizer("maɪ c" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [3, 2_0_0]) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) # decode with no word_del_token filter A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip() , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__SCREAMING_SNAKE_CASE) A = "Hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us").input_ids A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="fr-fr").input_ids self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") self.assertEqual(__SCREAMING_SNAKE_CASE , "ɛ l o h aʊ a ʁ j u") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how Are you" A = "hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"]) @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_tokenizer(word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on A = tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()) , 2) self.assertTrue("text" in outputs) self.assertTrue("char_offsets" in outputs) self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char")) , outputs.text) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char") , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"]) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset") , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6]) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset") , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7]) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.get_tokenizer(word_delimiter_token="|") def check_list_tuples_equal(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) self.assertTrue(isinstance(outputs_list[0] , __SCREAMING_SNAKE_CASE)) # transform list to ModelOutput A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]}) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"]) def recursive_check(__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): [recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for la, la in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"]) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) A = [tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) for ids in sample_ids] check_list_tuples_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes") def SCREAMING_SNAKE_CASE__ (self : Dict): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency") def SCREAMING_SNAKE_CASE__ (self : str): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A = ["aaaaa bbbbbb", "cccccccccdddddddd"] A = tokenizer.add_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) A = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A = tokenizer.add_special_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size_a + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[str]): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[Any]): pass def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. A = self.get_tokenizers(fast=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] A = tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE) self.assertIsInstance(output["text"] , __SCREAMING_SNAKE_CASE)
57
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def lowercase__ ( *__snake_case : str , **__snake_case : List[Any] ) -> Optional[int]: pass @is_pipeline_test @require_vision class UpperCAmelCase ( unittest.TestCase ): @require_torch def lowercase__ ( self : List[Any] ) -> Any: _lowerCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = image_classifier(__snake_case , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}], [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """c"""}, {"""score""": 0.3_33, """label""": """b"""}], ] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], ] , ) @require_tf def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = image_classifier(__snake_case , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__snake_case ) , [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], [ {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, {"""score""": 0.3_33, """label""": ANY(__snake_case )}, ], ] , ) @slow @require_torch def lowercase__ ( self : List[str] ) -> List[Any]: _lowerCAmelCase = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = image_classifier(__snake_case , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__snake_case ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def lowercase__ ( self : Dict ) -> Tuple: _lowerCAmelCase = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = image_classifier(__snake_case , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__snake_case ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , )
70
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def lowercase__ ( *__UpperCamelCase : Tuple , **__UpperCamelCase : Dict )->List[str]: pass @is_pipeline_test @require_vision class _a ( unittest.TestCase): """simple docstring""" @require_torch def lowercase__ ( self : Dict )->str: _UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__UpperCamelCase ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], ] , ) @require_tf def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )}, ], ] , ) @slow @require_torch def lowercase__ ( self : Optional[Any] )->Dict: _UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def lowercase__ ( self : Tuple )->str: _UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
def UpperCamelCase ( __lowerCamelCase : int ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
59
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
def UpperCamelCase__( UpperCamelCase__ : str )->bool: A__ = [int(UpperCamelCase__ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(UpperCamelCase__ ) == 4 and all(0 <= int(UpperCamelCase__ ) <= 2_54 for octet in octets ) if __name__ == "__main__": a__: str = input().strip() a__: Optional[int] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F"{ip} is a {valid_or_invalid} IP v4 address.")
39
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 1.0,__lowerCamelCase = None,): super().__init__() A__ = initial_learning_rate A__ = warmup_steps A__ = power A__ = decay_schedule_fn A__ = name def __call__( self,__lowerCamelCase ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A__ = tf.cast(__lowerCamelCase,tf.floataa ) A__ = tf.cast(self.warmup_steps,tf.floataa ) A__ = global_step_float / warmup_steps_float A__ = self.initial_learning_rate * tf.math.pow(__lowerCamelCase,self.power ) return tf.cond( global_step_float < warmup_steps_float,lambda: warmup_learning_rate,lambda: self.decay_schedule_fn(step - self.warmup_steps ),name=__lowerCamelCase,) def UpperCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.999 , UpperCamelCase__ : float = 1e-8 , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : Optional[List[str]] = None , )->int: A__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCamelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCamelCase__ , ) if num_warmup_steps: A__ = WarmUp( initial_learning_rate=UpperCamelCase__ , decay_schedule_fn=UpperCamelCase__ , warmup_steps=UpperCamelCase__ , ) if weight_decay_rate > 0.0: A__ = AdamWeightDecay( learning_rate=UpperCamelCase__ , weight_decay_rate=UpperCamelCase__ , beta_a=UpperCamelCase__ , beta_a=UpperCamelCase__ , epsilon=UpperCamelCase__ , clipnorm=UpperCamelCase__ , global_clipnorm=UpperCamelCase__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=UpperCamelCase__ , ) else: A__ = tf.keras.optimizers.Adam( learning_rate=UpperCamelCase__ , beta_a=UpperCamelCase__ , beta_a=UpperCamelCase__ , epsilon=UpperCamelCase__ , clipnorm=UpperCamelCase__ , global_clipnorm=UpperCamelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase = 0.001,__lowerCamelCase = 0.9,__lowerCamelCase = 0.999,__lowerCamelCase = 1E-7,__lowerCamelCase = False,__lowerCamelCase = 0.0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = "AdamWeightDecay",**__lowerCamelCase,): super().__init__(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) A__ = weight_decay_rate A__ = include_in_weight_decay A__ = exclude_from_weight_decay @classmethod def UpperCamelCase ( cls,__lowerCamelCase ): A__ = {'''WarmUp''': WarmUp} return super(__lowerCamelCase,cls ).from_config(__lowerCamelCase,custom_objects=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): super(__lowerCamelCase,self )._prepare_local(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = tf.constant( self.weight_decay_rate,name='''adam_weight_decay_rate''' ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''],use_locking=self._use_locking,) return tf.no_op() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None,**__lowerCamelCase ): A__ , A__ = list(zip(*__lowerCamelCase ) ) return super(__lowerCamelCase,self ).apply_gradients(zip(__lowerCamelCase,__lowerCamelCase ),name=__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A__ = apply_state or {} A__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: A__ = self._fallback_apply_state(__lowerCamelCase,__lowerCamelCase ) A__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): A__ , A__ = self._get_lr(var.device,var.dtype.base_dtype,__lowerCamelCase ) A__ = self._decay_weights_op(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase,self )._resource_apply_dense(__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): A__ , A__ = self._get_lr(var.device,var.dtype.base_dtype,__lowerCamelCase ) A__ = self._decay_weights_op(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase,self )._resource_apply_sparse(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self ): A__ = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def UpperCamelCase ( self,__lowerCamelCase ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCamelCase,__lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCamelCase,__lowerCamelCase ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self ): A__ = [] A__ = None @property def UpperCamelCase ( self ): if self._accum_steps is None: A__ = tf.Variable( tf.constant(0,dtype=tf.intaa ),trainable=__lowerCamelCase,synchronization=tf.VariableSynchronization.ON_READ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,) return self._accum_steps.value() @property def UpperCamelCase ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self,__lowerCamelCase ): if not self._gradients: A__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCamelCase ),trainable=__lowerCamelCase,synchronization=tf.VariableSynchronization.ON_READ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCamelCase ) != len(self._gradients ): raise ValueError(f"Expected {len(self._gradients )} gradients, but got {len(__lowerCamelCase )}" ) for accum_gradient, gradient in zip(self._gradients,__lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCamelCase ) self._accum_steps.assign_add(1 ) def UpperCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCamelCase ) )
39
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _lowerCamelCase : int = logging.getLogger(__name__) class lowercase ( __UpperCAmelCase): def __init__( self : Dict , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=None ): """simple docstring""" super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) A_ : Optional[Any] = None def a_ ( self : Tuple , _lowerCamelCase : int ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually A_ : Dict = self._infer_socket_ifname() # avoid clash with the NCCL port A_ : Dict = str(distributed_port + 1 ) A_ : Dict = dist.new_group(ranks=_lowerCamelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def a_ ( self : List[str] ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def a_ ( self : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=torch.floataa ): """simple docstring""" A_ : str = torch.empty(_lowerCamelCase , dtype=_lowerCamelCase ) dist.scatter(_lowerCamelCase , src=0 , scatter_list=_lowerCamelCase , group=self.process_group ) return target_tensor def a_ ( self : str ): """simple docstring""" A_ : Tuple = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ : Optional[Any] = next((addr for addr in addrs if addr.startswith('''e''' )) , _lowerCamelCase ) return ifname def a_ ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : int ): """simple docstring""" if not dist.is_initialized(): A_ , A_ : List[str] = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) # distributed training A_ : Any = dist.get_world_size(group=self.process_group ) # gather logic A_ : Optional[Any] = None if self._is_main(): A_ : int = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_lowerCamelCase )] dist.gather(torch.tensor(_lowerCamelCase ) , dst=0 , gather_list=_lowerCamelCase , group=self.process_group ) # scatter logic A_ : str = question_hidden_states.shape[0] A_ : Dict = [] A_ : str = [] if self._is_main(): assert len(_lowerCamelCase ) == world_size A_ , A_ : Union[str, Any] = self._main_retrieve(torch.cat(_lowerCamelCase ).numpy() , _lowerCamelCase ) A_ , A_ : Tuple = torch.tensor(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) A_ : Any = self._chunk_tensor(_lowerCamelCase , _lowerCamelCase ) A_ : Any = self._chunk_tensor(_lowerCamelCase , _lowerCamelCase ) A_ : str = self._scattered(_lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) A_ : Optional[int] = self._scattered(_lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_lowerCamelCase )
167
"""simple docstring""" from manim import * class lowercase ( __UpperCAmelCase): def a_ ( self : int ): """simple docstring""" A_ : List[str] = Rectangle(height=0.5 , width=0.5 ) A_ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A_ : Tuple = [mem.copy() for i in range(6 )] A_ : Optional[int] = [mem.copy() for i in range(6 )] A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : List[str] = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Dict = Text('''CPU''' , font_size=24 ) A_ : List[str] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : int = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : List[str] = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.align_to(_lowerCamelCase , _lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCamelCase ) A_ : List[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Any = Text('''Model''' , font_size=24 ) A_ : Optional[int] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) , ) A_ : List[str] = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) A_ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Dict = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=2.5 ) , Write(_lowerCamelCase ) , Write(_lowerCamelCase ) ) self.add(_lowerCamelCase ) A_ : str = [] A_ : Any = [] A_ : Tuple = [] for i, rect in enumerate(_lowerCamelCase ): A_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.7 ) cpu_target.move_to(_lowerCamelCase ) cpu_target.generate_target() A_ : List[str] = 0.46 / 4 A_ : List[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowerCamelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowerCamelCase , buff=0.0 ) cpu_targs.append(_lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCamelCase ) ) second_animations.append(MoveToTarget(_lowerCamelCase , run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
167
1
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase = 100 ): __UpperCAmelCase : int = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
366
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
37
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=3, lowerCAmelCase=30, lowerCAmelCase=400, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=[0.5, 0.5, 0.5], lowerCAmelCase=[0.5, 0.5, 0.5], lowerCAmelCase=True, lowerCAmelCase=1 / 255, lowerCAmelCase=True, ): """simple docstring""" lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean lowerCamelCase_ =image_std lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_pad def lowercase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" if not batched: lowerCamelCase_ =image_inputs[0] if isinstance(lowerCAmelCase, Image.Image ): lowerCamelCase_, lowerCamelCase_ =image.size else: lowerCamelCase_, lowerCamelCase_ =image.shape[1], image.shape[2] if w < h: lowerCamelCase_ =int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase_ =self.size['''shortest_edge'''] elif w > h: lowerCamelCase_ =self.size['''shortest_edge'''] lowerCamelCase_ =int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase_ =self.size['''shortest_edge'''] lowerCamelCase_ =self.size['''shortest_edge'''] else: lowerCamelCase_ =[] for image in image_inputs: lowerCamelCase_, lowerCamelCase_ =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ =max(lowerCAmelCase, key=lambda lowerCAmelCase : item[0] )[0] lowerCamelCase_ =max(lowerCAmelCase, key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : List[str] =DetaImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =DetaImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase, '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''size''' ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase, batched=lowerCAmelCase ) lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, np.ndarray ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase, batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, torch.Tensor ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase, batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: lowerCamelCase_ =json.loads(f.read() ) lowerCamelCase_ ={'''image_id''': 39_769, '''annotations''': target} # encode them lowerCamelCase_ =DetaImageProcessor() lowerCamelCase_ =image_processing(images=lowerCAmelCase, annotations=lowerCAmelCase, return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ =torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], lowerCAmelCase, atol=1e-4 ) ) # verify area lowerCamelCase_ =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], lowerCAmelCase ) ) # verify boxes lowerCamelCase_ =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], lowerCAmelCase, atol=1e-3 ) ) # verify image_id lowerCamelCase_ =torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], lowerCAmelCase ) ) # verify is_crowd lowerCamelCase_ =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], lowerCAmelCase ) ) # verify class_labels lowerCamelCase_ =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], lowerCAmelCase ) ) # verify orig_size lowerCamelCase_ =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], lowerCAmelCase ) ) # verify size lowerCamelCase_ =torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], lowerCAmelCase ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: lowerCamelCase_ =json.loads(f.read() ) lowerCamelCase_ ={'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} lowerCamelCase_ =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCamelCase_ =DetaImageProcessor(format='''coco_panoptic''' ) lowerCamelCase_ =image_processing(images=lowerCAmelCase, annotations=lowerCAmelCase, masks_path=lowerCAmelCase, return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ =torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], lowerCAmelCase, atol=1e-4 ) ) # verify area lowerCamelCase_ =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], lowerCAmelCase ) ) # verify boxes lowerCamelCase_ =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], lowerCAmelCase, atol=1e-3 ) ) # verify image_id lowerCamelCase_ =torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], lowerCAmelCase ) ) # verify is_crowd lowerCamelCase_ =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], lowerCAmelCase ) ) # verify class_labels lowerCamelCase_ =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], lowerCAmelCase ) ) # verify masks lowerCamelCase_ =822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), lowerCAmelCase ) # verify orig_size lowerCamelCase_ =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], lowerCAmelCase ) ) # verify size lowerCamelCase_ =torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], lowerCAmelCase ) )
75
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase : int ={ '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCAmelCase_ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase__ = False elif args.student_type == "gpt2": UpperCAmelCase__ = False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase__ = False def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__lowerCamelCase , required=__lowerCamelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__lowerCamelCase , required=__lowerCamelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__lowerCamelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__lowerCamelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__lowerCamelCase , required=__lowerCamelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__lowerCamelCase , type=__lowerCamelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__lowerCamelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__lowerCamelCase , required=__lowerCamelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__lowerCamelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__lowerCamelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__lowerCamelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__lowerCamelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__lowerCamelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__lowerCamelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__lowerCamelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__lowerCamelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__lowerCamelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__lowerCamelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__lowerCamelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__lowerCamelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__lowerCamelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__lowerCamelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCamelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__lowerCamelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__lowerCamelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=__lowerCamelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=__lowerCamelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__lowerCamelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__lowerCamelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__lowerCamelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__lowerCamelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__lowerCamelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__lowerCamelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__lowerCamelCase , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__lowerCamelCase , default=4000 , help="""Checkpoint interval.""" ) UpperCAmelCase__ = parser.parse_args() sanity_checks(__lowerCamelCase ) # ARGS # init_gpu_params(__lowerCamelCase ) set_seed(__lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__lowerCamelCase ) , __lowerCamelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ = MODEL_CLASSES[args.student_type] UpperCAmelCase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ = tokenizer.all_special_tokens.index(__lowerCamelCase ) UpperCAmelCase__ = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) UpperCAmelCase__ = special_tok_ids UpperCAmelCase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ = pickle.load(__lowerCamelCase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ = pickle.load(__lowerCamelCase ) UpperCAmelCase__ = np.maximum(__lowerCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ = 0.0 # do not predict special tokens UpperCAmelCase__ = torch.from_numpy(__lowerCamelCase ) else: UpperCAmelCase__ = None UpperCAmelCase__ = LmSeqsDataset(params=__lowerCamelCase , data=__lowerCamelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) UpperCAmelCase__ = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) UpperCAmelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCamelCase ) else: UpperCAmelCase__ = student_model_class(__lowerCamelCase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCamelCase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowerCamelCase , __lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowerCamelCase , __lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ = Distiller( params=__lowerCamelCase , dataset=__lowerCamelCase , token_probs=__lowerCamelCase , student=__lowerCamelCase , teacher=__lowerCamelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
351
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
61
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _A ( A__ , A__ ): """simple docstring""" __lowercase = int(A__ ) assert noofclusters < len(A__ ) # Find out the dimensionality __lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors __lowercase = list(range(len(A__ ) ) ) shuffle(A__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __lowercase = tf.placeholder('''float64''' , [dim] ) __lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(A__ , A__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __lowercase = [tf.Variable(0 ) for i in range(len(A__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __lowercase = tf.placeholder('''int32''' ) __lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(A__ , A__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __lowercase = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __lowercase = tf.reduce_mean(A__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __lowercase = tf.placeholder('''float''' , [dim] ) __lowercase = tf.placeholder('''float''' , [dim] ) __lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __lowercase = tf.placeholder('''float''' , [noofclusters] ) __lowercase = tf.argmin(A__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(A__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __lowercase = 100 for _ in range(A__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A__ ) ): __lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __lowercase = [ sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __lowercase = sess.run( A__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A__ ): # Collect all the vectors assigned to this cluster __lowercase = [ vectors[i] for i in range(len(A__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __lowercase = sess.run( A__ , feed_dict={mean_input: array(A__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __lowercase = sess.run(A__ ) __lowercase = sess.run(A__ ) return centroids, assignments
104
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Dict =logging.get_logger(__name__) __snake_case : Optional[int] ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""xlm-roberta-xl""" def __init__(self ,__lowerCamelCase=25_08_80 ,__lowerCamelCase=25_60 ,__lowerCamelCase=36 ,__lowerCamelCase=32 ,__lowerCamelCase=1_02_40 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_14 ,__lowerCamelCase=1 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-05 ,__lowerCamelCase=1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase="absolute" ,__lowerCamelCase=True ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : str = classifier_dropout class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @property def lowerCAmelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
129
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A__ ( __magic_name__ ): lowercase = 'perceiver' def __init__( self : List[Any] , a : Dict=256 , a : List[Any]=1_280 , a : Dict=768 , a : Union[str, Any]=1 , a : Union[str, Any]=26 , a : Tuple=8 , a : str=8 , a : List[str]=None , a : str=None , a : List[Any]="kv" , a : int=1 , a : Any=1 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : List[str]=0.0_2 , a : List[str]=1E-12 , a : List[str]=True , a : Optional[int]=262 , a : Dict=2_048 , a : Optional[Any]=56 , a : Dict=[368, 496] , a : List[str]=16 , a : int=1_920 , a : Any=16 , a : List[Any]=[1, 16, 224, 224] , **a : List[str] , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : Dict = num_latents lowerCAmelCase__ : List[str] = d_latents lowerCAmelCase__ : Optional[int] = d_model lowerCAmelCase__ : List[str] = num_blocks lowerCAmelCase__ : Dict = num_self_attends_per_block lowerCAmelCase__ : Any = num_self_attention_heads lowerCAmelCase__ : Optional[Any] = num_cross_attention_heads lowerCAmelCase__ : Optional[Any] = qk_channels lowerCAmelCase__ : Optional[Any] = v_channels lowerCAmelCase__ : int = cross_attention_shape_for_attention lowerCAmelCase__ : int = self_attention_widening_factor lowerCAmelCase__ : int = cross_attention_widening_factor lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Optional[Any] = use_query_residual # masked language modeling attributes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Optional[int] = max_position_embeddings # image classification attributes lowerCAmelCase__ : Tuple = image_size # flow attributes lowerCAmelCase__ : Dict = train_size # multimodal autoencoding attributes lowerCAmelCase__ : Union[str, Any] = num_frames lowerCAmelCase__ : Optional[Any] = audio_samples_per_frame lowerCAmelCase__ : int = samples_per_patch lowerCAmelCase__ : str = output_shape class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : int ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def _lowerCamelCase ( self : str ): '''simple docstring''' return 1E-4 def _lowerCamelCase ( self : Optional[Any] , a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a : int = -1 , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , a : int = 3 , a : int = 40 , a : int = 40 , ): '''simple docstring''' if isinstance(a , a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Optional[Any] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase__ : List[str] = preprocessor.num_special_tokens_to_add(a ) lowerCAmelCase__ : List[str] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase__ : Dict = [' '.join(['a'] ) * seq_length] * batch_size lowerCAmelCase__ : int = dict(preprocessor(a , return_tensors=a ) ) lowerCAmelCase__ : Any = inputs.pop('input_ids' ) return inputs elif isinstance(a , a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Any = compute_effective_axis_dimension(a , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase__ : str = self._generate_dummy_images(a , a , a , a ) lowerCAmelCase__ : List[Any] = dict(preprocessor(images=a , return_tensors=a ) ) lowerCAmelCase__ : Any = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(SCREAMING_SNAKE_CASE__ , """_dynamo""" ): return False return isinstance(SCREAMING_SNAKE_CASE__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _SCREAMING_SNAKE_CASE : Union[str, Any] = is_compiled_module(SCREAMING_SNAKE_CASE__ ) if is_compiled: _SCREAMING_SNAKE_CASE : Tuple = model _SCREAMING_SNAKE_CASE : Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Tuple = model.module if not keep_fpaa_wrapper: _SCREAMING_SNAKE_CASE : Any = getattr(SCREAMING_SNAKE_CASE__ , """forward""" ) _SCREAMING_SNAKE_CASE : Tuple = model.__dict__.pop("""_original_forward""" , SCREAMING_SNAKE_CASE__ ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE__ , """__wrapped__""" ): _SCREAMING_SNAKE_CASE : str = forward.__wrapped__ if forward == original_forward: break _SCREAMING_SNAKE_CASE : str = forward if getattr(SCREAMING_SNAKE_CASE__ , """_converted_to_transformer_engine""" , SCREAMING_SNAKE_CASE__ ): convert_model(SCREAMING_SNAKE_CASE__ , to_transformer_engine=SCREAMING_SNAKE_CASE__ ) if is_compiled: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Union[str, Any] = compiled_model return model def snake_case_ ( ): """simple docstring""" PartialState().wait_for_everyone() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @contextmanager def snake_case_ ( **SCREAMING_SNAKE_CASE__ ): """simple docstring""" for key, value in kwargs.items(): _SCREAMING_SNAKE_CASE : Any = str(SCREAMING_SNAKE_CASE__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if not hasattr(SCREAMING_SNAKE_CASE__ , """__qualname__""" ) and not hasattr(SCREAMING_SNAKE_CASE__ , """__name__""" ): _SCREAMING_SNAKE_CASE : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """__class__""" , SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """__qualname__""" ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE__ , """__name__""" ): return obj.__name__ return str(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = destination.setdefault(SCREAMING_SNAKE_CASE__ , {} ) merge_dicts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: _SCREAMING_SNAKE_CASE : str = value return destination def snake_case_ ( SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" if port is None: _SCREAMING_SNAKE_CASE : Any = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
200
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[10, 20, 30, 40] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , ): _SCREAMING_SNAKE_CASE : Union[str, Any] = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : Any = num_channels _SCREAMING_SNAKE_CASE : Optional[int] = embeddings_size _SCREAMING_SNAKE_CASE : Tuple = hidden_sizes _SCREAMING_SNAKE_CASE : str = depths _SCREAMING_SNAKE_CASE : str = is_training _SCREAMING_SNAKE_CASE : Any = use_labels _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : int = num_labels _SCREAMING_SNAKE_CASE : str = scope _SCREAMING_SNAKE_CASE : Any = len(__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[str] = FlaxRegNetModel(config=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = model(__snake_case ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.num_labels _SCREAMING_SNAKE_CASE : List[Any] = FlaxRegNetForImageClassification(config=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A_ : Union[str, Any] = False A_ : List[str] = False A_ : str = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = FlaxRegNetModelTester(self ) _SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def UpperCAmelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): return def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCAmelCase_ ( self ): def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Any = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _SCREAMING_SNAKE_CASE : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case , **__snake_case ): return model(pixel_values=__snake_case , **__snake_case ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE : Any = model_jitted(**__snake_case ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Optional[int] = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() _SCREAMING_SNAKE_CASE : Tuple = image_processor(images=__snake_case , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE : str = model(**__snake_case ) # verify the logits _SCREAMING_SNAKE_CASE : Tuple = (1, 1000) self.assertEqual(outputs.logits.shape , __snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
200
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A : Optional[int] = TypeVar('''T''') def lowerCAmelCase__ ( lowerCamelCase : int ): return (position - 1) // 2 def lowerCAmelCase__ ( lowerCamelCase : int ): return (2 * position) + 1 def lowerCAmelCase__ ( lowerCamelCase : int ): return (2 * position) + 2 class __lowerCamelCase ( Generic[T] ): """simple docstring""" def __init__( self : str): _A : list[tuple[T, int]] = [] _A : dict[T, int] = {} _A : int = 0 def __len__( self : Optional[int]): return self.elements def __repr__( self : str): return str(self.heap) def A ( self : Union[str, Any]): # Check if the priority queue is empty return self.elements == 0 def A ( self : List[Any] , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : int): # Add an element with given priority to the queue self.heap.append((elem, weight)) _A : Optional[Any] = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE) def A ( self : str): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1) _A : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A : Optional[Any] = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE) return elem def A ( self : Tuple , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : int): # Update the weight of the given key _A : Tuple = self.position_map[elem] _A : int = (elem, weight) if position > 0: _A : List[Any] = get_parent_position(SCREAMING_SNAKE_CASE) _A : List[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE) else: self._bubble_down(SCREAMING_SNAKE_CASE) else: self._bubble_down(SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : T): # Place a node at the proper position (upward movement) [to be used internally # only] _A : Any = self.position_map[elem] if curr_pos == 0: return None _A : Dict = get_parent_position(SCREAMING_SNAKE_CASE) _A : Tuple = self.heap[curr_pos] _A : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_up(SCREAMING_SNAKE_CASE) return None def A ( self : List[Any] , SCREAMING_SNAKE_CASE : T): # Place a node at the proper position (downward movement) [to be used # internally only] _A : str = self.position_map[elem] _A : int = self.heap[curr_pos] _A : Optional[int] = get_child_left_position(SCREAMING_SNAKE_CASE) _A : int = get_child_right_position(SCREAMING_SNAKE_CASE) if child_left_position < self.elements and child_right_position < self.elements: _A : Tuple = self.heap[child_left_position] _A : str = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_down(SCREAMING_SNAKE_CASE) if child_left_position < self.elements: _A : str = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_down(SCREAMING_SNAKE_CASE) else: return None if child_right_position < self.elements: _A : Dict = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return self._bubble_down(SCREAMING_SNAKE_CASE) return None def A ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): # Swap the nodes at the given positions _A : List[str] = self.heap[nodea_pos][0] _A : List[Any] = self.heap[nodea_pos][0] _A : Optional[int] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A : int = nodea_pos _A : List[str] = nodea_pos class __lowerCamelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[str]): _A : dict[T, dict[T, int]] = {} _A : int = 0 def __repr__( self : Union[str, Any]): return str(self.connections) def __len__( self : List[str]): return self.nodes def A ( self : Dict , SCREAMING_SNAKE_CASE : T): # Add a node in the graph if it is not in the graph if node not in self.connections: _A : List[Any] = {} self.nodes += 1 def A ( self : int , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : T , SCREAMING_SNAKE_CASE : int): # Add an edge between 2 nodes in the graph self.add_node(SCREAMING_SNAKE_CASE) self.add_node(SCREAMING_SNAKE_CASE) _A : List[Any] = weight _A : str = weight def lowerCAmelCase__ ( lowerCamelCase : GraphUndirectedWeighted[T] ,): _A : dict[T, int] = {node: maxsize for node in graph.connections} _A : dict[T, T | None] = {node: None for node in graph.connections} _A : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCamelCase ,lowerCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization _A : Any = priority_queue.extract_min() _A : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A : Union[str, Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase ,dist[neighbour] ) _A : Optional[int] = node # running prim's algorithm while not priority_queue.is_empty(): _A : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A : Optional[int] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase ,dist[neighbour] ) _A : List[str] = node return dist, parent
361
'''simple docstring''' A : Dict = '''Alexander Joslin''' import operator as op from .stack import Stack def lowerCAmelCase__ ( lowerCamelCase : str ): _A : Dict = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A : Stack[int] = Stack() _A : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase ) elif i == ")": # RULE 4 _A : List[str] = operator_stack.peek() operator_stack.pop() _A : Dict = operand_stack.peek() operand_stack.pop() _A : Optional[int] = operand_stack.peek() operand_stack.pop() _A : Dict = operators[opr](lowerCamelCase ,lowerCamelCase ) operand_stack.push(lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A : Dict = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
227
0
'''simple docstring''' def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') UpperCamelCase__ : Tuple = int(input('Enter number: ').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
"""simple docstring""" def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' return 1 if input_a == input_a else 0 def __lowercase ( ) ->None: '''simple docstring''' assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
291
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable a_ = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : int = TypeVar('''DatasetType''', Dataset, IterableDataset) def __SCREAMING_SNAKE_CASE ( A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(A_ ): if not isinstance(A_ , (Dataset, IterableDataset) ): if isinstance(A_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A_ ).__name__}.' ) if i == 0: lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = ( (Dataset, IterableDataset) if isinstance(A_ , A_ ) else (IterableDataset, Dataset) ) elif not isinstance(A_ , A_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A_ , A_ , A_ , info=A_ , split=A_ , stopping_strategy=A_ ) else: return _interleave_iterable_datasets( A_ , A_ , A_ , info=A_ , split=A_ , stopping_strategy=A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_ = None , A_ = None , A_ = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(A_ ): if not isinstance(A_ , (Dataset, IterableDataset) ): if isinstance(A_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A_ ).__name__}.' ) if i == 0: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(A_ , A_ ) else (IterableDataset, Dataset) ) elif not isinstance(A_ , A_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A_ , info=A_ , split=A_ , axis=A_ ) else: return _concatenate_iterable_datasets(A_ , info=A_ , split=A_ , axis=A_ )
106
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : List[str] ,lowercase_ : Any=1_0_0 ,lowercase_ : str=1_3 ,lowercase_ : Any=3_0 ,lowercase_ : Optional[int]=2 ,lowercase_ : Dict=3 ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Optional[Any]=3_2 ,lowercase_ : List[Any]=5 ,lowercase_ : Any=4 ,lowercase_ : Optional[int]=3_7 ,lowercase_ : List[Any]="gelu" ,lowercase_ : Dict=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : int=0.02 ,lowercase_ : List[str]=3 ,): lowerCAmelCase__ : int = parent lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Optional[int] = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Any = (image_size // patch_size) ** 2 lowerCAmelCase__ : str = num_patches + 1 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ,lowercase_ : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Any = FlaxBeitModel(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Any ,lowercase_ : Union[str, Any] ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = FlaxBeitForMaskedImageModeling(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ,lowercase_ : List[str] ,lowercase_ : str ): lowerCAmelCase__ : Dict = self.type_sequence_label_size lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(config=lowercase_ ) lowerCAmelCase__ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(lowercase_ ) lowerCAmelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = model(lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(lowercase_ ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Dict = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Dict ,**lowercase_ : List[Any] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Any = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : int = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __lowerCAmelCase ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : Dict ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCAmelCase__ : str = np.ones((1, 1_9_6) ,dtype=lowercase_ ) # forward pass lowerCAmelCase__ : Dict = model(pixel_values=lowercase_ ,bool_masked_pos=lowercase_ ) lowerCAmelCase__ : str = outputs.logits # verify the logits lowerCAmelCase__ : Any = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : str = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,lowercase_ ,atol=1E-2 ) ) @slow def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : Any = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : List[Any] = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Dict = (1, 1_0_0_0) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ ) @slow def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : Tuple = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Optional[int] = (1, 2_1_8_4_1) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Optional[int] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ )
106
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowercase ( enum.Enum ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 2 @add_end_docstrings(_UpperCamelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __a : List[Any] = None if self.model.config.prefix is not None: __a : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __a : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __a , __a , __a : Optional[int] = self._sanitize_parameters(prefix=_UpperCAmelCase , **self._forward_params ) __a : Dict = {**self._preprocess_params, **preprocess_params} __a : str = {**self._forward_params, **forward_params} def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : str = {} if prefix is not None: __a : Tuple = prefix if prefix: __a : str = self.tokenizer( _UpperCAmelCase , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=self.framework ) __a : List[str] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) __a : str = handle_long_generation preprocess_params.update(_UpperCAmelCase ) __a : int = generate_kwargs __a : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __a : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __a : List[Any] = ReturnType.TENSORS if return_type is not None: __a : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: __a : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: __a : Any = self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __a : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_UpperCAmelCase , **_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase="" , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Tuple = self.tokenizer( prefix + prompt_text , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=self.framework ) __a : int = prompt_text if handle_long_generation == "hole": __a : str = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __a : Tuple = generate_kwargs['''max_new_tokens'''] else: __a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __a : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __a : int = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): __a : str = model_inputs['''input_ids'''] __a : Dict = model_inputs.get('''attention_mask''' , _UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __a : str = None __a : List[Any] = None __a : Any = 1 else: __a : List[Any] = input_ids.shape[0] __a : str = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __a : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __a : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __a : Tuple = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __a : List[str] = self.model.generate(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase ) __a : int = generated_sequence.shape[0] if self.framework == "pt": __a : Union[str, Any] = generated_sequence.reshape(_UpperCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __a : Dict = tf.reshape(_UpperCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=ReturnType.FULL_TEXT , _UpperCAmelCase=True ): __a : Optional[Any] = model_outputs['''generated_sequence'''][0] __a : List[str] = model_outputs['''input_ids'''] __a : Optional[Any] = model_outputs['''prompt_text'''] __a : str = generated_sequence.numpy().tolist() __a : List[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __a : Union[str, Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __a : List[str] = self.tokenizer.decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __a : Dict = 0 else: __a : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: __a : Any = prompt_text + text[prompt_length:] else: __a : Any = text[prompt_length:] __a : Dict = {'''generated_text''': all_text} records.append(_UpperCAmelCase ) return records
188
"""simple docstring""" def __A ( a_ :int , a_ :int) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __a : Union[str, Any] = str(bin(a_))[2:] # remove the leading "0b" __a : Union[str, Any] = str(bin(a_))[2:] # remove the leading "0b" __a : Optional[Any] = max(len(a_) , len(a_)) return "0b" + "".join( str(int(char_a != char_b)) for char_a, char_b in zip(a_binary.zfill(a_) , b_binary.zfill(a_))) if __name__ == "__main__": import doctest doctest.testmod()
188
1
"""simple docstring""" import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase_ (A__ ): __magic_name__ = '''microsoft/speecht5_tts''' __magic_name__ = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) __magic_name__ = '''text_reader''' __magic_name__ = SpeechTaProcessor __magic_name__ = SpeechTaForTextToSpeech __magic_name__ = SpeechTaHifiGan __magic_name__ = ['''text'''] __magic_name__ = ['''audio'''] def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: if self.post_processor is None: UpperCAmelCase_ : List[Any] = "microsoft/speecht5_hifigan" super().setup() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None ) -> Union[str, Any]: UpperCAmelCase_ : str = self.pre_processor(text=snake_case_ , return_tensors="pt" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ : List[Any] = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ : Dict = torch.tensor(embeddings_dataset[7_305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[Any] ) -> Optional[int]: with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int ) -> str: with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> bool: """simple docstring""" if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCAmelCase_ : Dict = 4 lowerCAmelCase_ : str = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase_ : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
289
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : """simple docstring""" pass
289
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"width_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : List[Any] ,A : Optional[int]=13 ,A : Dict=64 ,A : Optional[Any]=2 ,A : Optional[int]=3 ,A : int="swish" ,A : Tuple=3 ,A : Tuple=32 ,A : int=0.1 ,A : Any=0.02 ,A : Any=True ,A : Optional[int]=True ,A : Tuple=10 ,A : Any=None ,A : Any=0.25 ,A : Tuple=0.0 ,A : Optional[int]=0.0 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = make_divisible(5_12 * width_multiplier ,divisor=8 ) __A = hidden_act __A = conv_kernel_size __A = output_stride __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope __A = width_multiplier __A = ffn_dropout __A = attn_dropout def UpperCamelCase_ ( self : Tuple ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[Any] ): return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def UpperCamelCase_ ( self : int ,A : Any ,A : Any ,A : Union[str, Any] ,A : Optional[int] ): __A = MobileViTVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : Tuple ): __A = self.num_labels __A = MobileViTVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : Union[str, Any] ,A : int ): __A = self.num_labels __A = MobileViTVaForSemanticSegmentation(A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __A = model(A ,labels=A ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : Dict ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Union[str, Any] ): __A = MobileViTVaModelTester(self ) __A = MobileViTVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def UpperCamelCase_ ( self : List[str] ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def UpperCamelCase_ ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : Dict ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): def check_hidden_states_output(A : Dict ,A : Optional[int] ,A : Any ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 5 self.assertEqual(len(A ) ,A ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __A = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self : Optional[Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileViTVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : str ): __A = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : int ): __A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = model.to(A ) __A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) __A = outputs.logits # verify the logits __A = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,A ) __A = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] ,device=A ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): __A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = model.to(A ) __A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) __A = outputs.logits.detach().cpu() __A = image_processor.post_process_semantic_segmentation(outputs=A ,target_sizes=[(50, 60)] ) __A = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,A ) __A = image_processor.post_process_semantic_segmentation(outputs=A ) __A = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,A )
15
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=10 ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 * 4 ,__UpperCAmelCase=32 * 6 ,__UpperCAmelCase=4 ,__UpperCAmelCase=32 ,) -> str: lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[int] = is_training lowerCAmelCase__ : Dict = use_auxiliary_loss lowerCAmelCase__ : Union[str, Any] = num_queries lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = min_size lowerCAmelCase__ : int = max_size lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : List[Any] = mask_feature_size def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) lowerCAmelCase__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__UpperCAmelCase ) lowerCAmelCase__ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__UpperCAmelCase ) > 0.5 ).float() lowerCAmelCase__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=__UpperCAmelCase ) > 0.5).long() lowerCAmelCase__ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[str] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = output.encoder_hidden_states lowerCAmelCase__ : Optional[int] = output.pixel_decoder_hidden_states lowerCAmelCase__ : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Optional[Any]: with torch.no_grad(): lowerCAmelCase__ : int = MaskFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : str = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : int = model(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = MaskFormerForInstanceSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model( pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Dict = False __lowercase : Tuple = False __lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : str = MaskFormerModelTester(self ) lowerCAmelCase__ : List[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def UpperCAmelCase_ ( self ) -> str: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Dict = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ : List[str] = MaskFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase__ : Any = { """pixel_values""": torch.randn((2, 3, *size) ,device=__UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) ,device=__UpperCAmelCase ), """class_labels""": torch.zeros(2 ,10 ,device=__UpperCAmelCase ).long(), } lowerCAmelCase__ : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ,output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self ) -> int: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Dict = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Tuple = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : Dict = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1e-4 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Any = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Dict = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Dict = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : str = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : Optional[int] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] lowerCAmelCase__ : Optional[int] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : int = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] lowerCAmelCase__ : List[str] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : Tuple = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = inputs["""pixel_values"""].to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]] lowerCAmelCase__ : Union[str, Any] = [el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase__ : Any = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
37
0
"""simple docstring""" from manim import * class _A ( _a ): """simple docstring""" def __snake_case ( self : Optional[Any]): a : str = Rectangle(height=0.5 , width=0.5) a : Optional[Any] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a : List[Any] = Rectangle(height=0.25 , width=0.25) a : Tuple = [mem.copy() for i in range(6)] a : str = [mem.copy() for i in range(6)] a : List[Any] = VGroup(*__UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : Union[str, Any] = VGroup(*__UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : List[str] = VGroup(__UpperCAmelCase , __UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : str = Text("CPU" , font_size=24) a : str = Group(__UpperCAmelCase , __UpperCAmelCase).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(__UpperCAmelCase) a : List[Any] = [mem.copy() for i in range(4)] a : Union[str, Any] = VGroup(*__UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : int = Text("GPU" , font_size=24) a : Any = Group(__UpperCAmelCase , __UpperCAmelCase).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase) gpu.move_to([-1, -1, 0]) self.add(__UpperCAmelCase) a : Any = [mem.copy() for i in range(6)] a : Dict = VGroup(*__UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : Dict = Text("Model" , font_size=24) a : Optional[int] = Group(__UpperCAmelCase , __UpperCAmelCase).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase) model.move_to([3, -1.0, 0]) self.add(__UpperCAmelCase) a : Dict = [] a : Optional[int] = [] for i, rect in enumerate(__UpperCAmelCase): a : Tuple = fill.copy().set_fill(__UpperCAmelCase , opacity=0.8) target.move_to(__UpperCAmelCase) model_arr.append(__UpperCAmelCase) a : Any = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(__UpperCAmelCase , opacity=0.8) cpu_target.move_to(cpu_left_col_base[i]) model_cpu_arr.append(__UpperCAmelCase) self.add(*__UpperCAmelCase , *__UpperCAmelCase) a : Optional[int] = [meta_mem.copy() for i in range(6)] a : List[Any] = [meta_mem.copy() for i in range(6)] a : int = VGroup(*__UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : Optional[Any] = VGroup(*__UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : List[Any] = VGroup(__UpperCAmelCase , __UpperCAmelCase).arrange(__UpperCAmelCase , buff=0) a : int = Text("Disk" , font_size=24) a : Union[str, Any] = Group(__UpperCAmelCase , __UpperCAmelCase).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase) disk.move_to([-4, -1.25, 0]) self.add(__UpperCAmelCase , __UpperCAmelCase) a : Dict = Square(side_length=2.2) key.move_to([-5, 2, 0]) a : str = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(__UpperCAmelCase , __UpperCAmelCase) a : int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(__UpperCAmelCase) a : Optional[int] = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(__UpperCAmelCase)) a : Any = Square(0.3) input.set_fill(__UpperCAmelCase , opacity=1.0) input.set_stroke(width=0.0) input.next_to(model_base[0] , __UpperCAmelCase , buff=0.5) self.play(Write(__UpperCAmelCase)) input.generate_target() input.target.next_to(model_arr[0] , direction=__UpperCAmelCase , buff=0.02) self.play(MoveToTarget(__UpperCAmelCase)) self.play(FadeOut(__UpperCAmelCase)) a : Optional[int] = Arrow(start=__UpperCAmelCase , end=__UpperCAmelCase , color=__UpperCAmelCase , buff=0.5) a.next_to(model_arr[0].get_left() , __UpperCAmelCase , buff=0.2) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0]) a : Any = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(__UpperCAmelCase , run_time=3)) a : Tuple = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(__UpperCAmelCase) , Circumscribe(model_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase) , Circumscribe(model_cpu_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase) , ) self.play(MoveToTarget(model_cpu_arr[0])) a : List[Any] = a.copy() for i in range(6): a_c.next_to(model_arr[i].get_right() + 0.02 , __UpperCAmelCase , buff=0.2) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02) a : List[str] = AnimationGroup( FadeOut(__UpperCAmelCase , run_time=0.5) , MoveToTarget(__UpperCAmelCase , run_time=0.5) , FadeIn(__UpperCAmelCase , run_time=0.5) , lag_ratio=0.2) self.play(__UpperCAmelCase) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i]) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0]) if i >= 1: a : List[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **__UpperCAmelCase) , Circumscribe(cpu_left_col_base[i] , **__UpperCAmelCase) , Circumscribe(cpu_left_col_base[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase) , Circumscribe(model_arr[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i]) , MoveToTarget(model_cpu_arr[i + 1]) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1]) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2) self.play( Circumscribe(model_arr[-1] , color=__UpperCAmelCase , **__UpperCAmelCase) , Circumscribe(cpu_left_col_base[-1] , color=__UpperCAmelCase , **__UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase) , ) self.play(MoveToTarget(model_cpu_arr[i])) a : str = a_c a : Dict = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5) self.play( FadeOut(__UpperCAmelCase) , FadeOut(__UpperCAmelCase , run_time=0.5) , ) a : List[Any] = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(__UpperCAmelCase , run_time=3) , MoveToTarget(__UpperCAmelCase)) self.wait()
357
"""simple docstring""" import datasets __lowercase = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __lowercase = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __lowercase = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowercase ( A_ , A_ )-> List[str]: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): """simple docstring""" def __snake_case ( self : List[str]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), }) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __snake_case ( self : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple): return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase)}
226
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCAmelCase = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[Any] = "sequence-classification" def __init__( self , __A ) -> Any: if type(__A ) == dict: lowerCAmelCase_ :Tuple = Namespace(**__A ) lowerCAmelCase_ :Any = glue_output_modes[hparams.task] lowerCAmelCase_ :str = glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def __lowerCAmelCase ( self , **__A ) -> Union[str, Any]: return self.model(**__A ) def __lowerCAmelCase ( self , __A , __A ) -> Union[str, Any]: lowerCAmelCase_ :str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase_ :Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase_ :str = self(**__A ) lowerCAmelCase_ :Union[str, Any] = outputs[0] lowerCAmelCase_ :Dict = self.trainer.lr_schedulers[0]["""scheduler"""] lowerCAmelCase_ :Dict = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Union[str, Any] = self.hparams lowerCAmelCase_ :Union[str, Any] = processors[args.task]() lowerCAmelCase_ :str = processor.get_labels() for mode in ["train", "dev"]: lowerCAmelCase_ :List[str] = self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowerCAmelCase_ :Optional[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) lowerCAmelCase_ :Optional[int] = convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , __A ) torch.save(__A , __A ) def __lowerCAmelCase ( self , __A , __A , __A = False ) -> DataLoader: lowerCAmelCase_ :Dict = """dev""" if mode == """test""" else mode lowerCAmelCase_ :Optional[Any] = self._feature_file(__A ) logger.info("""Loading features from cached file %s""" , __A ) lowerCAmelCase_ :Dict = torch.load(__A ) lowerCAmelCase_ :Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase_ :int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowerCAmelCase_ :Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase_ :Dict = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase_ :Tuple = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def __lowerCAmelCase ( self , __A , __A ) -> Optional[int]: lowerCAmelCase_ :Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase_ :Optional[int] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase_ :Union[str, Any] = self(**__A ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = outputs[:2] lowerCAmelCase_ :List[str] = logits.detach().cpu().numpy() lowerCAmelCase_ :Dict = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCAmelCase ( self , __A ) -> tuple: lowerCAmelCase_ :int = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() lowerCAmelCase_ :Optional[int] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase_ :List[str] = np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase_ :Tuple = np.squeeze(__A ) lowerCAmelCase_ :List[str] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowerCAmelCase_ :List[str] = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase_ :Dict = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase_ :Optional[Any] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} lowerCAmelCase_ :Tuple = dict(results.items() ) lowerCAmelCase_ :Optional[Any] = results return ret, preds_list, out_label_list def __lowerCAmelCase ( self , __A ) -> dict: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = self._eval_end(__A ) lowerCAmelCase_ :str = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCAmelCase ( self , __A ) -> dict: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = self._eval_end(__A ) lowerCAmelCase_ :List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCAmelCase ( __A , __A ) -> int: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( """--max_seq_length""" , default=128 , type=__A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=__A , required=__A , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=__A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :List[str] = argparse.ArgumentParser() add_generic_args(lowercase__ , os.getcwd() ) lowerCAmelCase_ :Any = GLUETransformer.add_model_specific_args(lowercase__ , os.getcwd() ) lowerCAmelCase_ :Union[str, Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCAmelCase_ :Tuple = os.path.join( """./results""" , f"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) lowerCAmelCase_ :Optional[int] = GLUETransformer(lowercase__ ) lowerCAmelCase_ :Optional[int] = generic_train(lowercase__ , lowercase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCAmelCase_ :Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowercase__ ) ) lowerCAmelCase_ :Optional[int] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowercase__ ) if __name__ == "__main__": main()
84
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=3 , __UpperCamelCase=1_0 , __UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = embeddings_size UpperCamelCase_ = hidden_sizes UpperCamelCase_ = depths UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_act UpperCamelCase_ = num_labels UpperCamelCase_ = scope UpperCamelCase_ = len(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = self.get_config() return config, pixel_values def lowerCamelCase_ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModel(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = FlaxRegNetForImageClassification(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A__ : Any = False A__ : List[Any] = False A__ : Dict = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ): """simple docstring""" return def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase , **__UpperCamelCase ): return model(pixel_values=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
122
0
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self : str , lowerCamelCase_ : int , lowerCamelCase_ : Tuple=13 , lowerCamelCase_ : Any=32 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Optional[int]=[10, 20, 30, 40] , lowerCamelCase_ : Dict=[2, 2, 3, 2] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : str=10 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : str=["stage2", "stage3", "stage4"] , lowerCamelCase_ : str=3 , lowerCamelCase_ : List[str]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = num_stages SCREAMING_SNAKE_CASE : int = hidden_sizes SCREAMING_SNAKE_CASE : str = depths SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Dict = out_features SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : Optional[int] = num_stages def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Any ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowerCamelCase_ ( self : str ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCamelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCamelCase_ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = UperNetForSemanticSegmentation(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Dict = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Dict = _config_zero_init(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) SCREAMING_SNAKE_CASE : List[str] = Image.open(_UpperCAmelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) SCREAMING_SNAKE_CASE : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) )
323
import os from datetime import datetime as dt from github import Github a_ : Tuple = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Github(os.environ['GITHUB_TOKEN']) SCREAMING_SNAKE_CASE = g.get_repo('huggingface/diffusers') SCREAMING_SNAKE_CASE = repo.get_issues(state='open') for issue in open_issues: SCREAMING_SNAKE_CASE = sorted(issue.get_comments() , key=lambda _UpperCAmelCase: i.created_at , reverse=_UpperCAmelCase) SCREAMING_SNAKE_CASE = comments[0] if len(_UpperCAmelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed') elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open') issue.remove_from_labels('stale') elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.') issue.add_to_labels('stale') if __name__ == "__main__": main()
137
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase = TypeVar("""T""") class _UpperCamelCase ( Generic[T] ): '''simple docstring''' lowerCAmelCase__ = 42 # Cache store of keys lowerCAmelCase__ = 42 # References of the keys in cache lowerCAmelCase__ = 10 # Maximum capacity of cache def __init__( self : Any , _lowerCAmelCase : int): '''simple docstring''' __lowercase =deque() __lowercase =set() if not n: __lowercase =sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.') else: __lowercase =n def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : T): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: __lowercase =self.dq_store.pop() self.key_reference.remove(_lowerCAmelCase) else: self.dq_store.remove(_lowerCAmelCase) self.dq_store.appendleft(_lowerCAmelCase) self.key_reference.add(_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for k in self.dq_store: print(_lowerCAmelCase) def __repr__( self : str): '''simple docstring''' return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
48
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """bart""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Any=4_0_9_6 , _lowerCAmelCase : List[str]=1_6 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Dict=4_0_9_6 , _lowerCAmelCase : Optional[Any]=1_6 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : str=1_0_2_4 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : str=2 , **_lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =classifier_dropout __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowerCAmelCase): __lowercase =self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.') class _UpperCamelCase ( A ): '''simple docstring''' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(_lowerCAmelCase , self).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(_lowerCAmelCase , _lowerCAmelCase) __lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), )) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase))) return common_inputs def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase) ] return common_inputs def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase) __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size __lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase)) return common_inputs def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) return common_inputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: __lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
48
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( __A , __A , __A ): '''simple docstring''' lowerCamelCase_ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , lowercase , lowercase , lowercase = None , lowercase = 5_0_2_5_7 , lowercase = 1_0_2_4 , lowercase = 7_6_8 , lowercase = 1_2 , lowercase = 1_2 , lowercase = None , lowercase = "gelu_new" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 1E-5 , lowercase = 0.02 , lowercase = True , lowercase = True , lowercase = False , lowercase = False , ): """simple docstring""" super().__init__() A_ : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) A_ : List[str] = prefix_inner_dim A_ : Dict = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : int = ( nn.Linear(self.prefix_hidden_dim , __A ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : Union[str, Any] = GPTaConfig( vocab_size=__A , n_positions=__A , n_embd=__A , n_layer=__A , n_head=__A , n_inner=__A , activation_function=__A , resid_pdrop=__A , embd_pdrop=__A , attn_pdrop=__A , layer_norm_epsilon=__A , initializer_range=__A , scale_attn_weights=__A , use_cache=__A , scale_attn_by_inverse_layer_idx=__A , reorder_and_upcast_attn=__A , ) A_ : int = GPTaLMHeadModel(__A ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase = None , lowercase = None , ): """simple docstring""" A_ : Dict = self.transformer.transformer.wte(__A ) A_ : List[Any] = self.encode_prefix(__A ) A_ : str = self.decode_prefix(__A ) A_ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Any = self.transformer(inputs_embeds=__A , labels=__A , attention_mask=__A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return torch.zeros(__A , self.prefix_length , dtype=torch.intaa , device=__A ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.encode_prefix(__A ) @torch.no_grad() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase ): """simple docstring""" A_ : Any = torch.split(__A , 1 , dim=0 ) A_ : List[str] = [] A_ : List[str] = [] for feature in features: A_ : Any = self.decode_prefix(feature.to(__A ) ) # back to the clip feature # Only support beam search for now A_ : Optional[int] = self.generate_beam( input_embeds=__A , device=__A , eos_token_id=__A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : Optional[Any] = torch.stack(__A ) A_ : int = torch.stack(__A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase_ ( self , lowercase=None , lowercase=None , lowercase=None , lowercase = 5 , lowercase = 6_7 , lowercase = 1.0 , lowercase = None , ): """simple docstring""" A_ : Optional[int] = eos_token_id A_ : Optional[int] = None A_ : Optional[int] = None A_ : List[Any] = torch.ones(__A , device=__A , dtype=torch.int ) A_ : int = torch.zeros(__A , device=__A , dtype=torch.bool ) if input_embeds is not None: A_ : Tuple = input_embeds else: A_ : str = self.transformer.transformer.wte(__A ) for i in range(__A ): A_ : Union[str, Any] = self.transformer(inputs_embeds=__A ) A_ : int = outputs.logits A_ : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ : Any = logits.topk(__A , -1 ) A_ : Tuple = generated.expand(__A , *generated.shape[1:] ) A_ : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : Tuple = tokens.expand(__A , *tokens.shape[1:] ) A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : Dict = -float(np.inf ) A_ : Optional[Any] = 0 A_ : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ : Any = scores_sum_average.view(-1 ).topk(__A , -1 ) A_ : Optional[int] = next_tokens // scores_sum.shape[1] A_ : List[str] = seq_lengths[next_tokens_source] A_ : Optional[Any] = next_tokens % scores_sum.shape[1] A_ : Union[str, Any] = next_tokens.unsqueeze(1 ) A_ : Union[str, Any] = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Union[str, Any] = generated[next_tokens_source] A_ : Any = scores_sum_average * seq_lengths A_ : Tuple = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Any = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(__A ).squeeze() if is_stopped.all(): break A_ : str = scores / seq_lengths A_ : Optional[Any] = scores.argsort(descending=__A ) # tokens tensors are already padded to max_seq_length A_ : List[Any] = [tokens[i] for i in order] A_ : Union[str, Any] = torch.stack(__A , dim=0 ) A_ : Tuple = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
140
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase : List[Any] = 1 lowerCamelCase : Union[str, Any] = 1 while repunit: lowerCamelCase : Union[str, Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase_( SCREAMING_SNAKE_CASE_ = 1000000 ): '''simple docstring''' lowerCamelCase : List[str] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
283
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A__ = TypeVar('''T''') class a ( Generic[T] ): __lowerCAmelCase : deque[T] # Cache store of keys __lowerCAmelCase : set[T] # References of the keys in cache __lowerCAmelCase : int = 10 # Maximum capacity of cache def __init__( self :Optional[int] ,__lowercase :int ): snake_case__ : Any = deque() snake_case__ : List[str] = set() if not n: snake_case__ : int = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: snake_case__ : List[str] = n def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case__ : Union[str, Any] = self.dq_store.pop() self.key_reference.remove(__lowercase ) else: self.dq_store.remove(__lowercase ) self.dq_store.appendleft(__lowercase ) self.key_reference.add(__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): for k in self.dq_store: print(__lowercase ) def __repr__( self :int ): return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A__ = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
44
def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case__ : List[str] = 1 snake_case__ : int = 1 while repunit: snake_case__ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( __lowerCAmelCase = 1000000 ) -> int: """simple docstring""" snake_case__ : str = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
44
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __UpperCamelCase : """simple docstring""" def __init__( self : int , _A : int , _A : List[Any]=13 , _A : int=32 , _A : Any=2 , _A : Dict=3 , _A : str=16 , _A : str=[1, 2, 1] , _A : Tuple=[2, 2, 4] , _A : Tuple=2 , _A : int=2.0 , _A : str=True , _A : str=0.0 , _A : Union[str, Any]=0.0 , _A : List[str]=0.1 , _A : Tuple="gelu" , _A : Optional[Any]=False , _A : Optional[Any]=True , _A : int=0.02 , _A : List[str]=1e-5 , _A : Union[str, Any]=True , _A : Union[str, Any]=None , _A : Union[str, Any]=True , _A : Optional[int]=10 , _A : Dict=8 , _A : int=["stage1", "stage2", "stage3"] , _A : str=[1, 2, 3] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : List[str] = patch_size __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : Optional[int] = embed_dim __SCREAMING_SNAKE_CASE : List[Any] = depths __SCREAMING_SNAKE_CASE : Optional[Any] = num_heads __SCREAMING_SNAKE_CASE : Tuple = window_size __SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio __SCREAMING_SNAKE_CASE : Any = qkv_bias __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = use_absolute_embeddings __SCREAMING_SNAKE_CASE : Any = patch_norm __SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : Any = scope __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = encoder_stride __SCREAMING_SNAKE_CASE : str = out_features __SCREAMING_SNAKE_CASE : str = out_indices def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : int = None if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self : List[Any] , _A : Optional[Any] , _A : Union[str, Any] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinModel(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __SCREAMING_SNAKE_CASE : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self : Any , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_A ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''stem'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = config_and_inputs __SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModelTester(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=_A , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Any ): """simple docstring""" return def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) @unittest.skip('''Swin does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[Any] = model_class(_A ) __SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass def UpperCAmelCase__ ( self : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(_A , _A ) ) __SCREAMING_SNAKE_CASE : int = outputs.hidden_states __SCREAMING_SNAKE_CASE : Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_A ) , _A ) # Swin has a different seq_length __SCREAMING_SNAKE_CASE : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_A , _A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[Any] = 3 __SCREAMING_SNAKE_CASE : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __SCREAMING_SNAKE_CASE : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCAmelCase__ ( self : int ): """simple docstring""" pass def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_A : Optional[int] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 return t def check_equivalence(_A : Tuple , _A : Tuple , _A : Tuple , _A : Union[str, Any]={} ): with torch.no_grad(): __SCREAMING_SNAKE_CASE : Tuple = model(**_A , return_dict=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(**_A , return_dict=_A , **_A ).to_tuple() def recursive_check(_A : int , _A : Dict ): if isinstance(_A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A , _A ): recursive_check(_A , _A ) elif isinstance(_A , _A ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_A , _A ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_A ) , set_nan_tensor_to_zero(_A ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}. Dict has''' F''' `nan`: {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}.''' ) , ) recursive_check(_A , _A ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A ) __SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_A , _A , return_labels=_A ) __SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A ) __SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(_A , _A , return_labels=_A ) __SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A , {'''output_hidden_states''': True} ) @require_torch class __UpperCamelCase ( unittest.TestCase , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase_ = MaskFormerSwinConfig def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[int] = backbone_class(_A ) backbone.to(_A ) backbone.eval() __SCREAMING_SNAKE_CASE : Optional[int] = backbone(**_A ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _A ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __SCREAMING_SNAKE_CASE : Optional[Any] = backbone(**_A , output_hidden_states=_A ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __SCREAMING_SNAKE_CASE : List[Any] = backbone(**_A , output_attentions=_A ) self.assertIsNotNone(outputs.attentions )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Any = 0 UpperCAmelCase_: Optional[int] = number while duplicate > 0: UpperCAmelCase_: Any = divmod(__snake_case , 1_0 ) fact_sum += factorial(__snake_case ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') a : Optional[int] = int(input('Enter number: ').strip()) print( F'''{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.''' )
364
from typing import TYPE_CHECKING from ....utils import _LazyModule a : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
82
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowercase_ = logging.get_logger(__name__) def a ( ) -> str: """simple docstring""" _lowercase =os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _lowercase =json.loads(_lowerCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _lowercase =os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _lowercase =json.loads(_lowerCamelCase ) if not mpi_options.get('sagemaker_mpi_enabled' , _lowerCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowerCAmelCase ( __snake_case ): _a = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def A__ ( self ) -> str: '''simple docstring''' super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , __SCREAMING_SNAKE_CASE , ) @cached_property def A__ ( self ) -> "torch.device": '''simple docstring''' logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: _lowercase =torch.device('cpu' ) _lowercase =0 elif is_sagemaker_model_parallel_available(): _lowercase =smp.local_rank() _lowercase =torch.device('cuda' , __SCREAMING_SNAKE_CASE ) _lowercase =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) _lowercase =int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) _lowercase =torch.device('cuda' , self.local_rank ) _lowercase =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _lowercase =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) _lowercase =torch.device('cuda' , self.local_rank ) _lowercase =1 if device.type == "cuda": torch.cuda.set_device(__SCREAMING_SNAKE_CASE ) return device @property def A__ ( self ) -> Any: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> str: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> int: '''simple docstring''' return False
205
"""simple docstring""" from typing import Any class a : def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: lowerCamelCase_ = data lowerCamelCase_ = None class a : def __init__( self : Union[str, Any] ) -> List[Any]: lowerCamelCase_ = None def UpperCamelCase ( self : Dict ) -> Optional[int]: lowerCamelCase_ = self.head while temp is not None: print(temp.data , end=' ' ) lowerCamelCase_ = temp.next print() def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: lowerCamelCase_ = Node(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.head lowerCamelCase_ = new_node def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: if node_data_a == node_data_a: return else: lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next if node_a is None or node_a is None: return lowerCamelCase_ , lowerCamelCase_ = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
183
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
357
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = CLIPTokenizer UpperCamelCase_ : Optional[int] = CLIPTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Optional[Any] = False def UpperCamelCase_ ( self : Union[str, Any] ) -> Dict: super().setUp() # fmt: off _snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _snake_case = dict(zip(A__ , range(len(A__ ) ) ) ) _snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] _snake_case = {'''unk_token''': '''<unk>'''} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def UpperCamelCase_ ( self : List[Any] , **A__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : Any , **A__ : Tuple ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase_ ( self : Optional[Any] , A__ : str ) -> str: _snake_case = '''lower newer''' _snake_case = '''lower newer''' return input_text, output_text def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[int]: _snake_case = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = '''lower newer''' _snake_case = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] _snake_case = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ ) @require_ftfy def UpperCamelCase_ ( self : Any ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _snake_case = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _snake_case = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on unicode of space type _snake_case = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on unicode of line break type _snake_case = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _snake_case = tokenizer_s.tokenize(A__ ) _snake_case = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = f"""{text_of_1_token} {text_of_1_token}""" _snake_case = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , ) _snake_case = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )) , ) _snake_case = f""" {text}""" _snake_case = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , ) _snake_case = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )) , ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(A__ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def UpperCamelCase_ ( self : Dict ) -> Union[str, Any]: super().test_tokenization_python_rust_equals() def UpperCamelCase_ ( self : str ) -> Optional[int]: # CLIP always lower cases letters pass
278
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _A : Any = re.compile(r'''\s+''') def UpperCamelCase_ ( snake_case_ : List[Any] ) -> Dict: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def UpperCamelCase_ ( snake_case_ : List[str] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def UpperCamelCase_ ( snake_case_ : Tuple ) -> Any: '''simple docstring''' __lowerCAmelCase = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> int: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def UpperCamelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : int=5 ) -> Any: '''simple docstring''' __lowerCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] __lowerCAmelCase = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : str=5 , snake_case_ : int=0.0_5 ) -> str: '''simple docstring''' __lowerCAmelCase = ['unit tests', 'test file', 'configuration file'] __lowerCAmelCase = example['content'].splitlines() __lowerCAmelCase = 0 __lowerCAmelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __lowerCAmelCase = example['content'].count("""\n""" ) __lowerCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = ['def ', 'class ', 'for ', 'while '] __lowerCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCamelCase_ ( snake_case_ : Any , snake_case_ : List[Any]=4 ) -> Any: '''simple docstring''' __lowerCAmelCase = example['content'].splitlines() __lowerCAmelCase = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCamelCase_ ( snake_case_ : List[Any] ) -> int: '''simple docstring''' __lowerCAmelCase = tokenizer(example["""content"""] , truncation=_UpperCAmelCase )['input_ids'] __lowerCAmelCase = len(example["""content"""] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def UpperCamelCase_ ( snake_case_ : Any ) -> str: '''simple docstring''' __lowerCAmelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def UpperCamelCase_ ( snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCamelCase_ ( snake_case_ : Tuple ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , """rb""" ) as f_in: with gzip.open(str(_UpperCAmelCase ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings _A : Optional[int] = HfArgumentParser(PreprocessingArguments) _A : Optional[Any] = parser.parse_args() if args.num_workers is None: _A : int = multiprocessing.cpu_count() _A : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _A : Tuple = time.time() _A : Tuple = load_dataset(args.dataset_name, split='''train''') print(f'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _A : List[str] = time.time() _A : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _A : int = set(ds.unique('''hash''')) _A : Union[str, Any] = len(uniques) / len(ds) print(f'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _A : Optional[int] = time.time() _A : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'Time to filter dataset: {time.time()-t_start:.2f}') print(f'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _A : Union[str, Any] = time.time() _A : str = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(f'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _A : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _A : Optional[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) _A : List[str] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _A : Optional[int] = str(data_dir / f'file-{file_number+1:012}.json') _A : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'Time to save dataset: {time.time()-t_start:.2f}')
229
"""simple docstring""" import qiskit def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = half_adder(1, 1) print(F"Half Adder Output Qubit Counts: {counts}")
286
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> str: lowerCamelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } lowerCamelCase : Tuple = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(snake_case_ ) , snake_case_ ) def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case_ ) , x.transpose() ) ) lowerCamelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ) -> Any: lowerCamelCase : List[Any] = np.random.randn(3 , 4 ) lowerCamelCase : str = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) ) lowerCamelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCamelCase : Any = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Any = np.random.randn(3 , 4 ) lowerCamelCase : int = tf.constant(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) ) lowerCamelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCamelCase : Dict = tf.constant(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : Optional[Any] = np.random.randn(3 , 4 ) lowerCamelCase : List[str] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , np.asarray(transpose(snake_case_ ) ) ) ) lowerCamelCase : int = np.random.randn(3 , 4 , 5 ) lowerCamelCase : Optional[int] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case_ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.reshape(snake_case_ , (4, 3) ) ) ) lowerCamelCase : Any = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.reshape(snake_case_ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : Union[str, Any] = np.random.randn(3 , 4 ) lowerCamelCase : str = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) ) lowerCamelCase : List[Any] = np.random.randn(3 , 4 , 5 ) lowerCamelCase : int = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = np.random.randn(3 , 4 ) lowerCamelCase : Dict = tf.constant(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) ) lowerCamelCase : Tuple = np.random.randn(3 , 4 , 5 ) lowerCamelCase : Optional[Any] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = np.random.randn(3 , 4 ) lowerCamelCase : List[Any] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.asarray(reshape(snake_case_ , (4, 3) ) ) ) ) lowerCamelCase : Any = np.random.randn(3 , 4 , 5 ) lowerCamelCase : Optional[Any] = jnp.array(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.asarray(reshape(snake_case_ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : str = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.squeeze(snake_case_ ) ) ) lowerCamelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.squeeze(snake_case_ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ) -> str: lowerCamelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCamelCase : List[Any] = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) ) lowerCamelCase : Tuple = np.random.randn(1 , 4 , 1 , 5 ) lowerCamelCase : Optional[int] = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : str = np.random.randn(1 , 3 , 4 ) lowerCamelCase : int = tf.constant(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) ) lowerCamelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCamelCase : Any = tf.constant(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : Tuple = np.random.randn(1 , 3 , 4 ) lowerCamelCase : str = jnp.array(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.asarray(squeeze(snake_case_ ) ) ) ) lowerCamelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCamelCase : Dict = jnp.array(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.asarray(squeeze(snake_case_ , axis=2 ) ) ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.expand_dims(snake_case_ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : Dict = np.random.randn(3 , 4 ) lowerCamelCase : Any = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> int: lowerCamelCase : Union[str, Any] = np.random.randn(3 , 4 ) lowerCamelCase : Optional[Any] = tf.constant(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Dict = np.random.randn(3 , 4 ) lowerCamelCase : str = jnp.array(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.asarray(expand_dims(snake_case_ , axis=1 ) ) ) )
352
"""simple docstring""" import numpy as np def UpperCAmelCase ( a_, a_, a_ = 1E-12, a_ = 100, ): '''simple docstring''' assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) lowerCamelCase : Optional[int] = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[str] = 0 lowerCamelCase : Any = 0 lowerCamelCase : Dict = 1E12 while not convergence: # Multiple matrix by the vector. lowerCamelCase : Optional[int] = np.dot(a_, a_ ) # Normalize the resulting output vector. lowerCamelCase : Optional[int] = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase : Optional[Any] = vector.conj().T if is_complex else vector.T lowerCamelCase : str = np.dot(a_, np.dot(a_, a_ ) ) # Check convergence. lowerCamelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase : int = True lowerCamelCase : Optional[Any] = lambda_ if is_complex: lowerCamelCase : Any = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : str = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase : str = np.array([41, 4, 20] ) lowerCamelCase : Optional[Any] = real_input_matrix.astype(np.complexaaa ) lowerCamelCase : Dict = np.triu(1j * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase : List[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase : str = real_input_matrix lowerCamelCase : Any = real_vector elif problem_type == "complex": lowerCamelCase : str = complex_input_matrix lowerCamelCase : Dict = complex_vector # Our implementation. lowerCamelCase , lowerCamelCase : List[str] = power_iteration(a_, a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase , lowerCamelCase : Optional[Any] = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. lowerCamelCase : Dict = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase : List[str] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
205
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
247
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() self.register_modules(vqvae=__SCREAMING_SNAKE_CASE , unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Tuple = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase : Tuple = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : Union[str, Any] = {} if accepts_eta: UpperCamelCase : Optional[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase : Dict = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCamelCase : Any = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : int = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VAE UpperCamelCase : str = self.vqvae.decode(__SCREAMING_SNAKE_CASE ).sample UpperCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase : List[Any] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
315
from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ): """simple docstring""" UpperCamelCase : Any = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase : Tuple = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go UpperCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase : str = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
315
1
from __future__ import annotations __a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree lowercase : str = {} lowercase : Tuple = source_vertex def __lowerCamelCase ( self ): lowercase : Any = {self.source_vertex} lowercase : int = None lowercase : Optional[Any] = [self.source_vertex] # first in first out queue while queue: lowercase : Optional[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_UpperCAmelCase ) lowercase : Any = vertex queue.append(_UpperCAmelCase ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if target_vertex == self.source_vertex: return self.source_vertex lowercase : List[str] = self.parent.get(_UpperCAmelCase ) if target_vertex_parent is None: lowercase : List[str] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(_UpperCAmelCase ) return self.shortest_path(_UpperCAmelCase ) + f"""->{target_vertex}""" if __name__ == "__main__": __a = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
337
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) UpperCAmelCase__ = TaConfig( vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(_UpperCAmelCase ): UpperCAmelCase__ = TaBlock(_UpperCAmelCase ) self.encoders.append(_UpperCAmelCase ) UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase ) UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase ) UpperCAmelCase__ = encoder_input_tokens.shape[1] UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_UpperCAmelCase ) UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase ) # inverted the attention mask UpperCAmelCase__ = encoder_input_tokens.size() UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase ) for lyr in self.encoders: UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0] UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase ) return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
346
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> float: A_ : int = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def snake_case__ ( ) -> Optional[Any]: print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __snake_case ( SCREAMING_SNAKE_CASE__ ): def __get__( self , lowercase , lowercase=None) -> str: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') a__: Union[str, Any] = """__cached_""" + self.fget.__name__ a__: Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) if cached is None: a__: Tuple = self.fget(lowerCamelCase__) setattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) return cached def __a ( _SCREAMING_SNAKE_CASE ) ->Dict: a__: Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def __a ( _SCREAMING_SNAKE_CASE ) ->List[Any]: if is_torch_fx_proxy(_lowerCAmelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCAmelCase , np.ndarray ) def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: return isinstance(_lowerCAmelCase , np.ndarray ) def __a ( _SCREAMING_SNAKE_CASE ) ->int: return _is_numpy(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->str: import torch return isinstance(_lowerCAmelCase , torch.Tensor ) def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: return False if not is_torch_available() else _is_torch(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->int: import torch return isinstance(_lowerCAmelCase , torch.device ) def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: return False if not is_torch_available() else _is_torch_device(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if hasattr(_lowerCAmelCase , _lowerCAmelCase ): a__: Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ) else: return False return isinstance(_lowerCAmelCase , torch.dtype ) def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: return False if not is_torch_available() else _is_torch_dtype(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: import tensorflow as tf return isinstance(_lowerCAmelCase , tf.Tensor ) def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCAmelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(_lowerCAmelCase ) return type(_lowerCAmelCase ) == tf.Tensor def __a ( _SCREAMING_SNAKE_CASE ) ->int: return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->str: import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCAmelCase , jnp.ndarray ) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[int]: return False if not is_flax_available() else _is_jax(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: if isinstance(_lowerCAmelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCAmelCase ) for k, v in obj.items()} elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_py_obj(_lowerCAmelCase ) for o in obj] elif is_tf_tensor(_lowerCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCAmelCase ): return np.asarray(_lowerCAmelCase ).tolist() elif isinstance(_lowerCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __a ( _SCREAMING_SNAKE_CASE ) ->str: if isinstance(_lowerCAmelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCAmelCase ) for k, v in obj.items()} elif isinstance(_lowerCAmelCase , (list, tuple) ): return np.array(_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): return obj.numpy() elif is_torch_tensor(_lowerCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCAmelCase ): return np.asarray(_lowerCAmelCase ) else: return obj class __snake_case ( SCREAMING_SNAKE_CASE__ ): def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Tuple = fields(self) # Safety and consistency checks if not len(lowerCamelCase__): raise ValueError(f'{self.__class__.__name__} has no fields.') if not all(field.default is None for field in class_fields[1:]): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.') a__: Dict = getattr(self , class_fields[0].name) a__: Optional[int] = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(lowerCamelCase__): if isinstance(lowerCamelCase__ , lowerCamelCase__): a__: List[Any] = first_field.items() a__: str = True else: try: a__: str = iter(lowerCamelCase__) a__: Union[str, Any] = True except TypeError: a__: Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCamelCase__): if ( not isinstance(lowerCamelCase__ , (list, tuple)) or not len(lowerCamelCase__) == 2 or not isinstance(element[0] , lowerCamelCase__) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute a__: Dict = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).') break setattr(self , element[0] , element[1]) if element[1] is not None: a__: Optional[int] = element[1] elif first_field is not None: a__: Union[str, Any] = first_field else: for field in class_fields: a__: Tuple = getattr(self , field.name) if v is not None: a__: int = v def __delitem__( self , *lowercase , **lowercase) -> List[Any]: '''simple docstring''' raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.') def lowerCamelCase_ ( self , *lowercase , **lowercase) -> Optional[int]: '''simple docstring''' raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.') def lowerCamelCase_ ( self , *lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.') def lowerCamelCase_ ( self , *lowercase , **lowercase) -> List[str]: '''simple docstring''' raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.') def __getitem__( self , lowercase) -> str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__): a__: str = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCamelCase__ , lowerCamelCase__) super().__setattr__(lowerCamelCase__ , lowerCamelCase__) def __setitem__( self , lowercase , lowercase) -> str: '''simple docstring''' super().__setitem__(lowerCamelCase__ , lowerCamelCase__) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCamelCase__ , lowerCamelCase__) def lowerCamelCase_ ( self) -> str: '''simple docstring''' return tuple(self[k] for k in self.keys()) class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @classmethod def lowerCamelCase_ ( cls , lowercase) -> Optional[int]: '''simple docstring''' raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}') class __snake_case ( SCREAMING_SNAKE_CASE__ ): a__ = "longest" a__ = "max_length" a__ = "do_not_pad" class __snake_case ( SCREAMING_SNAKE_CASE__ ): a__ = "pt" a__ = "tf" a__ = "np" a__ = "jax" class __snake_case : def __init__( self , lowercase) -> Optional[int]: '''simple docstring''' a__: Dict = context_managers a__: List[str] = ExitStack() def __enter__( self) -> Tuple: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(lowerCamelCase__) def __exit__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' self.stack.__exit__(*lowerCamelCase__ , **lowerCamelCase__) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: int = infer_framework(_lowerCAmelCase ) if framework == "tf": a__: Optional[int] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": a__: Any = inspect.signature(model_class.forward ) # PyTorch models else: a__: List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: Dict = model_class.__name__ a__: List[Any] = infer_framework(_lowerCAmelCase ) if framework == "tf": a__: Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": a__: Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: a__: int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "" , _SCREAMING_SNAKE_CASE = "." ) ->Dict: def _flatten_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE="." ): for k, v in d.items(): a__: Any = str(_lowerCAmelCase ) + delimiter + str(_lowerCAmelCase ) if parent_key else k if v and isinstance(_lowerCAmelCase , _lowerCAmelCase ): yield from flatten_dict(_lowerCAmelCase , _lowerCAmelCase , delimiter=_lowerCAmelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) @contextmanager def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->Any: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: if is_numpy_array(_lowerCAmelCase ): return np.transpose(_lowerCAmelCase , axes=_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.T if axes is None else array.permute(*_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.transpose(_lowerCAmelCase , perm=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.transpose(_lowerCAmelCase , axes=_lowerCAmelCase ) else: raise ValueError(F'Type not supported for transpose: {type(_lowerCAmelCase )}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: if is_numpy_array(_lowerCAmelCase ): return np.reshape(_lowerCAmelCase , _lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.reshape(*_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.reshape(_lowerCAmelCase , _lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.reshape(_lowerCAmelCase , _lowerCAmelCase ) else: raise ValueError(F'Type not supported for reshape: {type(_lowerCAmelCase )}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->str: if is_numpy_array(_lowerCAmelCase ): return np.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) else: raise ValueError(F'Type not supported for squeeze: {type(_lowerCAmelCase )}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: if is_numpy_array(_lowerCAmelCase ): return np.expand_dims(_lowerCAmelCase , _lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.unsqueeze(dim=_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.expand_dims(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.expand_dims(_lowerCAmelCase , axis=_lowerCAmelCase ) else: raise ValueError(F'Type not supported for expand_dims: {type(_lowerCAmelCase )}.' ) def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: if is_numpy_array(_lowerCAmelCase ): return np.size(_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.numel() elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.size(_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(_lowerCAmelCase )}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: for key, value in auto_map.items(): if isinstance(_lowerCAmelCase , (tuple, list) ): a__: Tuple = [F'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: a__: int = F'{repo_id}--{value}' return auto_map def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: for base_class in inspect.getmro(_lowerCAmelCase ): a__: Dict = base_class.__module__ a__: Optional[Any] = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
290
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = 1.0, lowerCamelCase__ = None, ): super().__init__() A : Union[str, Any] = initial_learning_rate A : List[Any] = warmup_steps A : int = power A : Optional[int] = decay_schedule_fn A : int = name def __call__( self, lowerCamelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A : str = tf.cast(lowerCamelCase__, tf.floataa ) A : List[Any] = tf.cast(self.warmup_steps, tf.floataa ) A : Dict = global_step_float / warmup_steps_float A : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCamelCase__, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=lowerCamelCase__, ) def _lowerCAmelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 0.9 , _lowerCAmelCase = 0.999 , _lowerCAmelCase = 1e-8 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = None , ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCAmelCase , ) if num_warmup_steps: A : Dict = WarmUp( initial_learning_rate=_lowerCAmelCase , decay_schedule_fn=_lowerCAmelCase , warmup_steps=_lowerCAmelCase , ) if weight_decay_rate > 0.0: A : str = AdamWeightDecay( learning_rate=_lowerCAmelCase , weight_decay_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_lowerCAmelCase , ) else: A : Optional[int] = tf.keras.optimizers.Adam( learning_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 0.001, lowerCamelCase__ = 0.9, lowerCamelCase__ = 0.999, lowerCamelCase__ = 1e-7, lowerCamelCase__ = False, lowerCamelCase__ = 0.0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "AdamWeightDecay", **lowerCamelCase__, ): super().__init__(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) A : int = weight_decay_rate A : Any = include_in_weight_decay A : Dict = exclude_from_weight_decay @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): A : Tuple = {"""WarmUp""": WarmUp} return super(lowerCamelCase__, cls ).from_config(lowerCamelCase__, custom_objects=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): super(lowerCamelCase__, self )._prepare_local(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[str] = tf.constant( self.weight_decay_rate, name="""adam_weight_decay_rate""" ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, ) return tf.no_op() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None, **lowerCamelCase__ ): A , A : Dict = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__, self ).apply_gradients(zip(lowerCamelCase__, lowerCamelCase__ ), name=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A : Union[str, Any] = apply_state or {} A : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: A : Dict = self._fallback_apply_state(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : str = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Any = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_dense(lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : Tuple = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Optional[Any] = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_sparse(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Dict = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ): A : List[str] = [] A : List[str] = None @property def _lowerCAmelCase ( self ): if self._accum_steps is None: A : str = tf.Variable( tf.constant(0, dtype=tf.intaa ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def _lowerCAmelCase ( self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self, lowerCamelCase__ ): if not self._gradients: A : int = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients, lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def _lowerCAmelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
116
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
371
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> Any: '''simple docstring''' UpperCAmelCase__ = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } UpperCAmelCase__ = input_paths[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) UpperCAmelCase__ = Extractor.infer_extractor_format(__A ) assert extractor_format is not None UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__A, __A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_dot_dot" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.join("..", text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_sym_link" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=__A ) with tarfile.TarFile(__A, "w" ) as f: f.add(str(directory / "subdir" ), arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } UpperCAmelCase__ = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ = tmp_path / "extracted" TarExtractor.extract(__A, __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
143
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
92
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = (IPNDMScheduler,) lowercase = (('num_inference_steps', 50),) def __lowercase ( self : Optional[Any] , **lowerCamelCase : int ) -> Tuple: lowerCAmelCase_ : Dict = {"""num_train_timesteps""": 10_00} config.update(**lowerCamelCase ) return config def __lowercase ( self : Dict , lowerCamelCase : Tuple=0 , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Dict = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) lowerCAmelCase_ : List[str] = self.dummy_sample lowerCAmelCase_ : Optional[int] = 0.1 * sample lowerCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : List[str] = self.get_scheduler_config(**lowerCamelCase ) lowerCAmelCase_ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : Optional[int] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : str = dummy_past_residuals[:] lowerCAmelCase_ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Dict = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Any = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : str ) -> Tuple: pass def __lowercase ( self : Tuple , lowerCamelCase : int=0 , **lowerCamelCase : Any ) -> int: lowerCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : List[str] = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) lowerCAmelCase_ : Tuple = self.dummy_sample lowerCAmelCase_ : Optional[int] = 0.1 * sample lowerCAmelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : int = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase_ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Optional[Any] = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : str = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] , **lowerCamelCase : Optional[Any] ) -> str: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : List[Any] = self.get_scheduler_config(**lowerCamelCase ) lowerCAmelCase_ : str = scheduler_class(**lowerCamelCase ) lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Optional[int] = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple = self.get_scheduler_config() lowerCAmelCase_ : List[str] = scheduler_class(**lowerCamelCase ) lowerCAmelCase_ : int = self.dummy_sample lowerCAmelCase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase , """set_timesteps""" ): lowerCAmelCase_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase_ : List[str] = dummy_past_residuals[:] lowerCAmelCase_ : List[str] = scheduler.timesteps[5] lowerCAmelCase_ : str = scheduler.timesteps[6] lowerCAmelCase_ : Dict = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase_ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Optional[int] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Any ) -> int: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase , time_step=lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=lowerCamelCase ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : List[Any] = self.full_loop() lowerCAmelCase_ : Any = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
120
0
def A(__a: list[list[int | float]] ): lowerCAmelCase_ = len(lowerCamelCase__ ) lowerCAmelCase_ = len(matrix[0] ) lowerCAmelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): lowerCAmelCase_ = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase_ = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: lowerCAmelCase_ , lowerCAmelCase_ = matrix[i], matrix[row] lowerCAmelCase_ = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): lowerCAmelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Union[str, Any] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
from __future__ import annotations __a = [] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" for i in range(len(_UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, len(_UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" if row >= len(_UpperCamelCase ): solution.append(_UpperCamelCase ) printboard(_UpperCamelCase ) print() return True for i in range(len(_UpperCamelCase ) ): if is_safe(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : int = 1 solve(_UpperCamelCase, row + 1 ) lowercase : Tuple = 0 return False def __lowercase ( _UpperCamelCase ) ->None: """simple docstring""" for i in range(len(_UpperCamelCase ) ): for j in range(len(_UpperCamelCase ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) __a = 8 __a = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
337
0
def lowerCAmelCase_ ( __lowerCAmelCase=2_81_23 )-> str: '''simple docstring''' UpperCAmelCase : Optional[int] =[1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i UpperCAmelCase : List[Any] =set() UpperCAmelCase : Any =0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowerCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
78
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCAmelCase_ ( __lowerCAmelCase = "isbn/0140328726" )-> dict: '''simple docstring''' UpperCAmelCase : Tuple =olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCAmelCase : Any =f'''{olid} is not a valid Open Library olid''' raise ValueError(__lowerCAmelCase ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def lowerCAmelCase_ ( __lowerCAmelCase )-> dict: '''simple docstring''' UpperCAmelCase : int ={ '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCAmelCase : Tuple ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase : Optional[int] =[ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCAmelCase : List[str] =data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : str =''', '''.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: __snake_case = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
78
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : Union[str, Any] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEsmModel(config=UpperCamelCase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCamelCase , encoder_hidden_states=UpperCamelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEsmForMaskedLM(config=UpperCamelCase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=UpperCamelCase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Protein models do not support embedding resizing." ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(UpperCamelCase , UpperCamelCase ) for k, v in name.items(): assert isinstance(UpperCamelCase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(UpperCamelCase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(UpperCamelCase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
55
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""", [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ], ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> Optional[Any]: A_ = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } A_ , A_ = input_paths_and_base_extractors[compression_format] if input_path is None: A_ = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) assert base_extractor.is_extractable(UpperCAmelCase__ ) A_ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCAmelCase__, UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A_ = file_path.read_text(encoding="""utf-8""" ) else: A_ = output_path.read_text(encoding="""utf-8""" ) A_ = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""", [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ], ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> Optional[int]: A_ = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } A_ = input_paths[compression_format] if input_path is None: A_ = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) A_ = Extractor.infer_extractor_format(UpperCAmelCase__ ) assert extractor_format is not None A_ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A_ = file_path.read_text(encoding="""utf-8""" ) else: A_ = output_path.read_text(encoding="""utf-8""" ) A_ = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: import tarfile A_ = tmp_path / """data_dot_dot""" directory.mkdir() A_ = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCAmelCase__, """w""" ) as f: f.add(UpperCAmelCase__, arcname=os.path.join("""..""", text_file.name ) ) return path @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: import tarfile A_ = tmp_path / """data_sym_link""" directory.mkdir() A_ = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""", directory / """subdir""", target_is_directory=UpperCAmelCase__ ) with tarfile.TarFile(UpperCAmelCase__, """w""" ) as f: f.add(str(directory / """subdir""" ), arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""", [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")], ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } A_ = insecure_tar_files[insecure_tar_file] A_ = tmp_path / """extracted""" TarExtractor.extract(UpperCAmelCase__, UpperCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number A_ = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 A_ = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCAmelCase__ ) assert zipfile.is_zipfile(str(UpperCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCAmelCase__ ) # but we're right
101
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( nn.Module ): lowercase = 42 lowercase = (16, 32, 96, 256) lowercase = jnp.floataa def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ = [] for i in range(len(self.block_out_channels ) - 1 ): A_ = self.block_out_channels[i] A_ = self.block_out_channels[i + 1] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = blocks A_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.conv_in(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) for block in self.blocks: A_ = block(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class A__ ( nn.Module , _snake_case , _snake_case ): lowercase = 32 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = "rgb" lowercase = (16, 32, 96, 256) def snake_case_ ( self , UpperCamelCase__ ) -> FrozenDict: '''simple docstring''' # init input tensors A_ = (1, self.in_channels, self.sample_size, self.sample_size) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ = jnp.ones((1,) , dtype=jnp.intaa ) A_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ , A_ = jax.random.split(UpperCamelCase__ ) A_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.block_out_channels A_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ = self.num_attention_heads or self.attention_head_dim # input A_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) A_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (num_attention_heads,) * len(self.down_block_types ) # down A_ = [] A_ = [] A_ = block_out_channels[0] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) A_ = down_blocks A_ = controlnet_down_blocks # mid A_ = block_out_channels[-1] A_ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): A_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ = timesteps.astype(dtype=jnp.floataa ) A_ = jnp.expand_dims(UpperCamelCase__ , 0 ) A_ = self.time_proj(UpperCamelCase__ ) A_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.conv_in(UpperCamelCase__ ) A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down A_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks A_ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): A_ = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ = controlnet_down_block_res_samples A_ = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling A_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
101
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' a__ =Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) return image def UpperCAmelCase__ ( _A : int ): '''simple docstring''' a__ =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def UpperCAmelCase__ ( _A : Dict , _A : Tuple , _A : int ): '''simple docstring''' a__ =dct.pop(_A ) a__ =val def UpperCAmelCase__ ( _A : List[str] , _A : List[str] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ =state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) a__ =state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict a__ =torch.cat((q_bias, torch.zeros_like(_A , requires_grad=_A ), v_bias) ) a__ =qkv_bias def UpperCAmelCase__ ( _A : Optional[Any] ): '''simple docstring''' a__ =3_64 if '''coco''' in model_name else 2_24 a__ =InstructBlipVisionConfig(image_size=_A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ =TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ =TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ =LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: a__ =LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_20_01 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ =InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() a__ =InstructBlipConfig(vision_config=_A , text_config=_A , qformer_config=_A ) return config, image_size @torch.no_grad() def UpperCAmelCase__ ( _A : List[Any] , _A : List[str]=None , _A : Tuple=False ): '''simple docstring''' a__ =AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: a__ =TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ =LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) a__, a__ =get_blipa_config(_A ) a__ =InstructBlipForConditionalGeneration(_A ).eval() a__ ={ '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } a__, a__ =model_name_to_original[model_name] # load original model print('''Loading original model...''' ) a__ ='''cuda:1''' if torch.cuda.is_available() else '''cpu''' a__ ='''cuda:2''' if torch.cuda.is_available() else '''cpu''' a__, a__, a__ =load_model_and_preprocess( name=_A , model_type=_A , is_eval=_A , device=_A ) original_model.eval() print('''Done!''' ) # update state dict keys a__ =original_model.state_dict() a__ =create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ =state_dict.pop(_A ) if key.startswith('''Qformer.bert''' ): a__ =key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: a__ =key.replace('''self''' , '''attention''' ) if "llm_proj" in key: a__ =key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: a__ =key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): a__ =key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): a__ =key.replace('''t5''' , '''language''' ) a__ =val # read in qv biases read_in_q_v_bias(_A , _A ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_A , strict=_A ) a__ =load_demo_image() a__ ='''What is unusual about this image?''' # create processor a__ =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=_A , image_std=_A ) a__ =InstructBlipProcessor( image_processor=_A , tokenizer=_A , qformer_tokenizer=_A , ) a__ =processor(images=_A , text=_A , return_tensors='''pt''' ).to(_A ) # make sure processor creates exact same pixel values a__ =vis_processors['''eval'''](_A ).unsqueeze(0 ).to(_A ) a__ =inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _A ) original_model.to(_A ) hf_model.to(_A ) with torch.no_grad(): if "vicuna" in model_name: a__ =original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits a__ =hf_model(**_A ).logits else: a__ =original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits a__ =tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(_A ) a__ =label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 ) a__ =hf_model(**_A , labels=_A ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ =1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , _A , atol=_A ) print('''Looks ok!''' ) print('''Generating with original model...''' ) a__ =original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) a__ =hf_model.generate( **_A , do_sample=_A , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ =2 print('''Original generation:''' , _A ) a__ =processor.batch_decode(_A , skip_special_tokens=_A ) a__ =[text.strip() for text in output_text] print('''HF generation:''' , _A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_A ) hf_model.save_pretrained(_A ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() lowerCamelCase = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCamelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
188
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( _A : List[Any] ): '''simple docstring''' if "resnet-50" in model_name: a__ =ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: a__ =ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) a__ =DetrConfig(use_timm_backbone=_A , backbone_config=_A ) # set label attributes a__ ='''panoptic''' in model_name if is_panoptic: a__ =2_50 else: a__ =91 a__ ='''huggingface/label-files''' a__ ='''coco-detection-id2label.json''' a__ =json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) a__ ={int(_A ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase__ ( _A : Optional[int] ): '''simple docstring''' a__ =[] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def UpperCAmelCase__ ( _A : str , _A : Union[str, Any] , _A : int ): '''simple docstring''' a__ =state_dict.pop(_A ) a__ =val def UpperCAmelCase__ ( _A : Dict , _A : str=False ): '''simple docstring''' a__ ='''''' if is_panoptic: a__ ='''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[:2_56, :] a__ =in_proj_bias[:2_56] a__ =in_proj_weight[2_56:5_12, :] a__ =in_proj_bias[2_56:5_12] a__ =in_proj_weight[-2_56:, :] a__ =in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[:2_56, :] a__ =in_proj_bias[:2_56] a__ =in_proj_weight[2_56:5_12, :] a__ =in_proj_bias[2_56:5_12] a__ =in_proj_weight[-2_56:, :] a__ =in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention a__ =state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ =in_proj_weight_cross_attn[:2_56, :] a__ =in_proj_bias_cross_attn[:2_56] a__ =in_proj_weight_cross_attn[2_56:5_12, :] a__ =in_proj_bias_cross_attn[2_56:5_12] a__ =in_proj_weight_cross_attn[-2_56:, :] a__ =in_proj_bias_cross_attn[-2_56:] def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ =Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _A : Dict , _A : Optional[Any]=None , _A : List[str]=False ): '''simple docstring''' a__, a__ =get_detr_config(_A ) # load original model from torch hub a__ ={ '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) a__ =torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=_A ).eval() a__ =detr.state_dict() # rename keys for src, dest in create_rename_keys(_A ): if is_panoptic: a__ ='''detr.''' + src rename_key(_A , _A , _A ) # query, key and value matrices need special treatment read_in_q_k_v(_A , is_panoptic=_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ ='''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): a__ =state_dict.pop(_A ) a__ =val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ =state_dict.pop(_A ) a__ =val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: a__ =state_dict.pop(_A ) a__ =val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a__ =state_dict.pop(_A ) a__ =val # finally, create HuggingFace model and load state dict a__ =DetrForSegmentation(_A ) if is_panoptic else DetrForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() # verify our conversion on an image a__ ='''coco_panoptic''' if is_panoptic else '''coco_detection''' a__ =DetrImageProcessor(format=_A ) a__ =processor(images=prepare_img() , return_tensors='''pt''' ) a__ =encoding['''pixel_values'''] a__ =detr(_A ) a__ =model(_A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
188
1
from __future__ import annotations class lowercase__ : def __init__( self : Dict , UpperCamelCase__ : list[list[int]] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(UpperCamelCase__ ) != 0: SCREAMING_SNAKE_CASE : Union[str, Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCamelCase__ ) != cols: raise error for value in row: if not isinstance(UpperCamelCase__ , (int, float) ): raise error SCREAMING_SNAKE_CASE : int = rows else: SCREAMING_SNAKE_CASE : List[str] = [] def __A ( self : Optional[Any] ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __A ( self : Any ): '''simple docstring''' return len(self.rows ) @property def __A ( self : Any ): '''simple docstring''' return len(self.rows[0] ) @property def __A ( self : List[str] ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def __A ( self : int ): '''simple docstring''' return self.order[0] == self.order[1] def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCamelCase__ ) def __A ( self : Optional[Any] ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __A ( self : Tuple ): '''simple docstring''' return bool(self.determinant() ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCamelCase__ ).determinant() def __A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(UpperCamelCase__ , UpperCamelCase__ ) return -1 * self.get_minor(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : List[str] ): '''simple docstring''' return Matrix( [ [self.get_minor(UpperCamelCase__ , UpperCamelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __A ( self : Union[str, Any] ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : List[Any] ): '''simple docstring''' return str(self.rows ) def __str__( self : Optional[int] ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(UpperCamelCase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def __A ( self : Any , UpperCamelCase__ : list[int] , UpperCamelCase__ : int | None = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise type_error for value in row: if not isinstance(UpperCamelCase__ , (int, float) ): raise type_error if len(UpperCamelCase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __A ( self : str , UpperCamelCase__ : list[int] , UpperCamelCase__ : int | None = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise type_error for value in column: if not isinstance(UpperCamelCase__ , (int, float) ): raise type_error if len(UpperCamelCase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: SCREAMING_SNAKE_CASE : Optional[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: SCREAMING_SNAKE_CASE : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Dict , UpperCamelCase__ : object ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self : Dict , UpperCamelCase__ : object ): '''simple docstring''' return not self == other def __neg__( self : Optional[Any] ): '''simple docstring''' return self * -1 def __add__( self : List[str] , UpperCamelCase__ : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[Any] , UpperCamelCase__ : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Tuple , UpperCamelCase__ : Matrix | int | float ): '''simple docstring''' if isinstance(UpperCamelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(UpperCamelCase__ , UpperCamelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def __A ( cls : Union[str, Any] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
258
import copy import random from transformers import CLIPTokenizer class lowercase__ ( UpperCamelCase_): def __init__( self : str , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : str ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = {} def __A ( self : List[str] , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = super().add_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def __A ( self : Any , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=1 , **UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) SCREAMING_SNAKE_CASE : Optional[int] = output def __A ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=1.0 ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(UpperCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE : Dict = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE : Tuple = tokens[: 1 + int(len(UpperCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE : List[Any] = copy.copy(UpperCamelCase__ ) random.shuffle(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = text.replace(UpperCamelCase__ , ''' '''.join(UpperCamelCase__ ) ) return text def __call__( self : List[Any] , UpperCamelCase__ : Any , *UpperCamelCase__ : int , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Optional[Any]=1.0 , **UpperCamelCase__ : Any ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , ) def __A ( self : Any , UpperCamelCase__ : Optional[int] , *UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[Any]=1.0 , **UpperCamelCase__ : str ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , )
258
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger() @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :nn.Module UpperCAmelCase_ :List[nn.Module] = field(default_factory=A__ ) UpperCAmelCase_ :list = field(default_factory=A__ ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[Any]: lowerCAmelCase_ :Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(__A , nn.Convad ) or isinstance(__A , nn.BatchNormad ) if has_not_submodules: self.traced.append(__A ) def __call__( self , __A ) -> Union[str, Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__A ) [x.remove() for x in self.handles] return self @property def __lowerCAmelCase ( self ) -> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :nn.Module UpperCAmelCase_ :nn.Module UpperCAmelCase_ :int = 0 UpperCAmelCase_ :List = field(default_factory=A__ ) UpperCAmelCase_ :List = field(default_factory=A__ ) def __call__( self , __A ) -> List[str]: lowerCAmelCase_ :Tuple = Tracker(self.dest )(__A ).parametrized lowerCAmelCase_ :Optional[Any] = Tracker(self.src )(__A ).parametrized lowerCAmelCase_ :Optional[Any] = list(filter(lambda __A : type(__A ) not in self.src_skip , __A ) ) lowerCAmelCase_ :Dict = list(filter(lambda __A : type(__A ) not in self.dest_skip , __A ) ) if len(__A ) != len(__A ): raise Exception( f"""Numbers of operations are different. Source module has {len(__A )} operations while""" f""" destination module has {len(__A )}.""" ) for dest_m, src_m in zip(__A , __A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def _snake_case ( lowercase__ : str , lowercase__ : ResNetConfig , lowercase__ : Path , lowercase__ : bool = True ) -> Union[str, Any]: '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): lowerCAmelCase_ :int = timm.create_model(lowercase__ , pretrained=lowercase__ ).eval() lowerCAmelCase_ :Tuple = ResNetForImageClassification(lowercase__ ).eval() lowerCAmelCase_ :List[Any] = ModuleTransfer(src=lowercase__ , dest=lowercase__ ) lowerCAmelCase_ :str = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowercase__ ) assert torch.allclose(from_model(lowercase__ ) , our_model(lowercase__ ).logits ), "The model logits don't match the original one." lowerCAmelCase_ :Optional[Any] = f"""resnet{"-".join(name.split("resnet" ) )}""" print(lowercase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=lowercase__ , ) # we can use the convnext one lowerCAmelCase_ :Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=lowercase__ , ) print(f"""Pushed {checkpoint_name}""" ) def _snake_case ( lowercase__ : Path , lowercase__ : str = None , lowercase__ : bool = True ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = """imagenet-1k-id2label.json""" lowerCAmelCase_ :Optional[Any] = 1_0_0_0 lowerCAmelCase_ :Union[str, Any] = (1, num_labels) lowerCAmelCase_ :str = """huggingface/label-files""" lowerCAmelCase_ :Optional[Any] = num_labels lowerCAmelCase_ :Dict = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ :int = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ :Dict = idalabel lowerCAmelCase_ :Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase_ :Any = partial(lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) lowerCAmelCase_ :str = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(lowercase__ , names_to_config[model_name] , lowercase__ , lowercase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return config, expected_shape if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
84
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = "data2vec-text" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.0_2 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> Tuple: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCAmelCase_ :Dict = vocab_size lowerCAmelCase_ :Dict = hidden_size lowerCAmelCase_ :int = num_hidden_layers lowerCAmelCase_ :List[Any] = num_attention_heads lowerCAmelCase_ :Any = hidden_act lowerCAmelCase_ :Optional[int] = intermediate_size lowerCAmelCase_ :str = hidden_dropout_prob lowerCAmelCase_ :Any = attention_probs_dropout_prob lowerCAmelCase_ :str = max_position_embeddings lowerCAmelCase_ :int = type_vocab_size lowerCAmelCase_ :Tuple = initializer_range lowerCAmelCase_ :List[Any] = layer_norm_eps lowerCAmelCase_ :List[Any] = position_embedding_type lowerCAmelCase_ :List[Any] = use_cache lowerCAmelCase_ :List[Any] = classifier_dropout class _SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ :List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ :List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
84
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort SCREAMING_SNAKE_CASE__:List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[str] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class snake_case__ : def __init__( self , lowerCamelCase=None , **lowerCamelCase ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __a = model __a = kwargs.get("model_save_dir" , lowerCamelCase ) __a = kwargs.get("latest_model_name" , lowerCamelCase ) def __call__( self , **lowerCamelCase ): __a = {k: np.array(lowerCamelCase ) for k, v in kwargs.items()} return self.model.run(lowerCamelCase , lowerCamelCase ) @staticmethod def a__ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __a = "CPUExecutionProvider" return ort.InferenceSession(lowerCamelCase , providers=[provider] , sess_options=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ): __a = file_name if file_name is not None else ONNX_WEIGHTS_NAME __a = self.model_save_dir.joinpath(self.latest_model_name ) __a = Path(lowerCamelCase ).joinpath(lowerCamelCase ) try: shutil.copyfile(lowerCamelCase , lowerCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __a = self.model_save_dir.joinpath(lowerCamelCase ) if src_path.exists(): __a = Path(lowerCamelCase ).joinpath(lowerCamelCase ) try: shutil.copyfile(lowerCamelCase , lowerCamelCase ) except shutil.SameFileError: pass def a__ ( self , lowerCamelCase , **lowerCamelCase , ): if os.path.isfile(lowerCamelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) # saving model weights/files self._save_pretrained(lowerCamelCase , **lowerCamelCase ) @classmethod def a__ ( cls , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): __a = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCamelCase ): __a = OnnxRuntimeModel.load_model( os.path.join(lowerCamelCase , lowerCamelCase ) , provider=lowerCamelCase , sess_options=lowerCamelCase ) __a = Path(lowerCamelCase ) # load model from hub else: # download model __a = hf_hub_download( repo_id=lowerCamelCase , filename=lowerCamelCase , use_auth_token=lowerCamelCase , revision=lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , ) __a = Path(lowerCamelCase ).parent __a = Path(lowerCamelCase ).name __a = OnnxRuntimeModel.load_model(lowerCamelCase , provider=lowerCamelCase , sess_options=lowerCamelCase ) return cls(model=lowerCamelCase , **lowerCamelCase ) @classmethod def a__ ( cls , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): __a = None if len(str(lowerCamelCase ).split("@" ) ) == 2: __a , __a = model_id.split("@" ) return cls._from_pretrained( model_id=lowerCamelCase , revision=lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , use_auth_token=lowerCamelCase , **lowerCamelCase , )
268
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case__ ( snake_case_ ): _snake_case : List[str] = """WhisperFeatureExtractor""" _snake_case : Any = """WhisperTokenizer""" def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.feature_extractor __a = False def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self , *lowerCamelCase , **lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __a = kwargs.pop("audio" , lowerCamelCase ) __a = kwargs.pop("sampling_rate" , lowerCamelCase ) __a = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __a = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __a = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase="np" ): return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
268
1
import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " UpperCAmelCase : Union[str, Any] = "huggingface-tools/default-prompts" UpperCAmelCase : str = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any]="run" ): '''simple docstring''' if prompt_or_repo_id is None: lowerCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCamelCase__ ) is not None: return prompt_or_repo_id lowerCamelCase = cached_file( lowerCamelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
252
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase_ ( _a : Any , _a : int , _a : Tuple , _a : List[Any]=1024 ): '''simple docstring''' UpperCAmelCase_ : int = [], [] UpperCAmelCase_ : Optional[Any] = list(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase_ : Dict = sorted_examples[0] def is_too_big(_a : str ): return tok(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase_ : Optional[Any] = new_src + ''' ''' + src UpperCAmelCase_ : List[Any] = new_tgt + ''' ''' + tgt if is_too_big(lowerCAmelCase__ ) or is_too_big(lowerCAmelCase__ ): # cant fit, finalize example finished_src.append(lowerCAmelCase__ ) finished_tgt.append(lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = src, tgt else: # can fit, keep adding UpperCAmelCase_ : Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase__ ) finished_tgt.append(lowerCAmelCase__ ) return finished_src, finished_tgt def lowerCamelCase_ ( _a : Union[str, Any] , _a : Path , _a : List[Any] , _a : str ): '''simple docstring''' UpperCAmelCase_ : str = Path(lowerCAmelCase__ ) save_path.mkdir(exist_ok=lowerCAmelCase__ ) for split in ["train"]: UpperCAmelCase_ : Tuple = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' UpperCAmelCase_ : Union[str, Any] = [x.rstrip() for x in Path(lowerCAmelCase__ ).open().readlines()] UpperCAmelCase_ : Dict = [x.rstrip() for x in Path(lowerCAmelCase__ ).open().readlines()] UpperCAmelCase_ : int = pack_examples(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(F'''packed {split} split from {len(lowerCAmelCase__ )} examples -> {len(lowerCAmelCase__ )}.''' ) Path(save_path / F'''{split}.source''' ).open("""w""" ).write("""\n""".join(lowerCAmelCase__ ) ) Path(save_path / F'''{split}.target''' ).open("""w""" ).write("""\n""".join(lowerCAmelCase__ ) ) for split in ["val", "test"]: UpperCAmelCase_ : Optional[Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(lowerCAmelCase__ , save_path / F'''{split}.source''' ) shutil.copyfile(lowerCAmelCase__ , save_path / F'''{split}.target''' ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=lowerCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=lowerCAmelCase__ , default=128 ) parser.add_argument("""--data_dir""" , type=lowerCAmelCase__ ) parser.add_argument("""--save_path""" , type=lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCAmelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
351
from scipy.stats import spearmanr import datasets UpperCamelCase_ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' UpperCamelCase_ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' UpperCamelCase_ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: int ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) ,reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] ,) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str]=False ) -> Dict: UpperCAmelCase_ : List[str] = spearmanr(lowerCamelCase_ ,lowerCamelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
59
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCAmelCase , add_final_layer_norm=_lowerCAmelCase , ) return encoder_config, decoder_config def a ( lowerCamelCase_ ): '''simple docstring''' if "encoder.model" in name: lowercase__ = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: lowercase__ = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: lowercase__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def a ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False ): '''simple docstring''' # load original model lowercase__ = DonutModel.from_pretrained(_lowerCAmelCase ).eval() # load HuggingFace model lowercase__ = get_configs(_lowerCAmelCase ) lowercase__ = DonutSwinModel(_lowerCAmelCase ) lowercase__ = MBartForCausalLM(_lowerCAmelCase ) lowercase__ = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify results on scanned document lowercase__ = load_dataset('''hf-internal-testing/example-documents''' ) lowercase__ = dataset["""test"""][0]["""image"""].convert('''RGB''' ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(_lowerCAmelCase , from_slow=_lowerCAmelCase ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ = processor(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace('''{user_input}''' , _lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError('''Model name not supported''' ) lowercase__ = original_model.decoder.tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='''pt''' )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(_lowerCAmelCase ) lowercase__ = model.encoder.embeddings(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(_lowerCAmelCase ) lowercase__ = model.encoder(_lowerCAmelCase ).last_hidden_state assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) # verify decoder hidden states lowercase__ = original_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).logits lowercase__ = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A__ : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
207
"""simple docstring""" import math lowerCamelCase__ : List[Any] = 10 lowerCamelCase__ : Optional[int] = 7 lowerCamelCase__ : Dict = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( _lowerCAmelCase : int = 20 ) -> str: _UpperCAmelCase : List[str] = math.comb(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, _lowerCAmelCase ) _UpperCAmelCase : List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
246
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __a ( UpperCAmelCase ) ->List[Any]: """simple docstring""" random.seed(UpperCAmelCase ) np.random.seed(UpperCAmelCase ) torch.manual_seed(UpperCAmelCase ) torch.cuda.manual_seed_all(UpperCAmelCase ) # ^^ safe to call this function even if cuda is not available class __UpperCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Iterable[torch.nn.Parameter] , _lowerCAmelCase : float = 0.9_999 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Union[float, int] = 1.0 , _lowerCAmelCase : Union[float, int] = 2 / 3 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Dict[str, Any] = None , **_lowerCAmelCase : Union[str, Any] , ): if isinstance(_lowerCAmelCase , torch.nn.Module ): A = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase , ) A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A = True if kwargs.get("""max_value""" , _lowerCAmelCase ) is not None: A = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) A = kwargs["""max_value"""] if kwargs.get("""min_value""" , _lowerCAmelCase ) is not None: A = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) A = kwargs["""min_value"""] A = list(_lowerCAmelCase ) A = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , _lowerCAmelCase ) is not None: A = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) self.to(device=kwargs["""device"""] ) A = None A = decay A = min_decay A = update_after_step A = use_ema_warmup A = inv_gamma A = power A = 0 A = None # set in `step()` A = model_cls A = model_config @classmethod def A (cls : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): A , A = model_cls.load_config(_lowerCAmelCase , return_unused_kwargs=_lowerCAmelCase ) A = model_cls.from_pretrained(_lowerCAmelCase ) A = cls(model.parameters() , model_cls=_lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(_lowerCAmelCase ) return ema_model def A (self : Any , _lowerCAmelCase : List[str] ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A = self.model_cls.from_config(self.model_config ) A = self.state_dict() state_dict.pop("""shadow_params""" , _lowerCAmelCase ) model.register_to_config(**_lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_lowerCAmelCase ) def A (self : Union[str, Any] , _lowerCAmelCase : int ): A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A = 1 - (1 + step / self.inv_gamma) ** -self.power else: A = (1 + step) / (10 + step) A = min(_lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay A = max(_lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def A (self : List[str] , _lowerCAmelCase : Iterable[torch.nn.Parameter] ): if isinstance(_lowerCAmelCase , torch.nn.Module ): A = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase , ) A = parameters.parameters() A = list(_lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A = self.get_decay(self.optimization_step ) A = decay A = 1 - decay A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A = deepspeed.zero.GatheredParameters(_lowerCAmelCase , modifier_rank=_lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_lowerCAmelCase ) def A (self : Dict , _lowerCAmelCase : Iterable[torch.nn.Parameter] ): A = list(_lowerCAmelCase ) for s_param, param in zip(self.shadow_params , _lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def A (self : Dict , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None ): A = [ p.to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) if p.is_floating_point() else p.to(device=_lowerCAmelCase ) for p in self.shadow_params ] def A (self : Union[str, Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def A (self : Optional[Any] , _lowerCAmelCase : Iterable[torch.nn.Parameter] ): A = [param.detach().cpu().clone() for param in parameters] def A (self : Dict , _lowerCAmelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , _lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. A = None def A (self : Union[str, Any] , _lowerCAmelCase : dict ): A = copy.deepcopy(_lowerCAmelCase ) A = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , _lowerCAmelCase ): raise ValueError("""Invalid min_decay""" ) A = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , _lowerCAmelCase ): raise ValueError("""Invalid optimization_step""" ) A = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , _lowerCAmelCase ): raise ValueError("""Invalid update_after_step""" ) A = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _lowerCAmelCase ): raise ValueError("""Invalid use_ema_warmup""" ) A = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A = state_dict.get("""shadow_params""" , _lowerCAmelCase ) if shadow_params is not None: A = shadow_params if not isinstance(self.shadow_params , _lowerCAmelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(_lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } UpperCamelCase__ = { 'bert-base-uncased': 5_1_2, 'bert-large-uncased': 5_1_2, 'bert-base-cased': 5_1_2, 'bert-large-cased': 5_1_2, 'bert-base-multilingual-uncased': 5_1_2, 'bert-base-multilingual-cased': 5_1_2, 'bert-base-chinese': 5_1_2, 'bert-base-german-cased': 5_1_2, 'bert-large-uncased-whole-word-masking': 5_1_2, 'bert-large-cased-whole-word-masking': 5_1_2, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-base-cased-finetuned-mrpc': 5_1_2, 'bert-base-german-dbmdz-cased': 5_1_2, 'bert-base-german-dbmdz-uncased': 5_1_2, 'TurkuNLP/bert-base-finnish-cased-v1': 5_1_2, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_1_2, 'wietsedv/bert-base-dutch-cased': 5_1_2, } UpperCamelCase__ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = BertTokenizer def __init__(self : Any , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Dict=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : List[str]="[SEP]" , __UpperCAmelCase : int="[PAD]" , __UpperCAmelCase : List[Any]="[CLS]" , __UpperCAmelCase : str="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : int , ) -> List[Any]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = strip_accents UpperCAmelCase__ = tokenize_chinese_chars UpperCAmelCase__ = normalizer_class(**__UpperCAmelCase ) UpperCAmelCase__ = do_lower_case def lowercase_ (self : int , __UpperCAmelCase : str , __UpperCAmelCase : List[str]=None ) -> Dict: """simple docstring""" UpperCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ (self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
65
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __SCREAMING_SNAKE_CASE :Optional[int] = '''▁''' class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = AlbertTokenizer def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : str="<unk>" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : List[Any]="<pad>" , snake_case_ : List[str]="[CLS]" , snake_case_ : int="[MASK]" , **snake_case_ : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
22
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Optional[int] = 'transfo-xl' _SCREAMING_SNAKE_CASE : Any = ['mems'] _SCREAMING_SNAKE_CASE : List[Any] = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _UpperCamelCase=267735 , _UpperCamelCase=[20000, 40000, 200000] , _UpperCamelCase=1024 , _UpperCamelCase=1024 , _UpperCamelCase=16 , _UpperCamelCase=64 , _UpperCamelCase=4096 , _UpperCamelCase=4 , _UpperCamelCase=False , _UpperCamelCase=18 , _UpperCamelCase=1600 , _UpperCamelCase=1000 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=-1 , _UpperCamelCase=True , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase="normal" , _UpperCamelCase=0.0_1 , _UpperCamelCase=0.0_1 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-5 , _UpperCamelCase=0 , **_UpperCamelCase , ): """simple docstring""" _lowercase : Optional[int] = vocab_size _lowercase : str = [] self.cutoffs.extend(_UpperCamelCase ) if proj_share_all_but_first: _lowercase : str = [False] + [True] * len(self.cutoffs ) else: _lowercase : Optional[int] = [False] + [False] * len(self.cutoffs ) _lowercase : Union[str, Any] = d_model _lowercase : str = d_embed _lowercase : Any = d_head _lowercase : Union[str, Any] = d_inner _lowercase : str = div_val _lowercase : int = pre_lnorm _lowercase : Optional[Any] = n_layer _lowercase : Optional[Any] = n_head _lowercase : Tuple = mem_len _lowercase : str = same_length _lowercase : Dict = attn_type _lowercase : Any = clamp_len _lowercase : List[Any] = sample_softmax _lowercase : List[str] = adaptive _lowercase : Optional[Any] = dropout _lowercase : int = dropatt _lowercase : List[Any] = untie_r _lowercase : List[Any] = init _lowercase : Optional[Any] = init_range _lowercase : str = proj_init_std _lowercase : int = init_std _lowercase : Dict = layer_norm_epsilon super().__init__(eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
199
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _snake_case = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _snake_case = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _snake_case = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _A ( snake_case , snake_case ) -> int: return float((preds == labels).mean() ) def _A ( snake_case , snake_case ) -> Union[str, Any]: _lowercase : Any = simple_accuracy(snake_case , snake_case ) _lowercase : List[Any] = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def _A ( snake_case , snake_case ) -> List[str]: _lowercase : Any = np.array(snake_case ) _lowercase : Any = np.array(snake_case ) _lowercase : str = en_sentvecs.shape[0] # mean centering _lowercase : List[Any] = en_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Tuple = in_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Any = cdist(snake_case , snake_case , "cosine" ) _lowercase : Any = np.array(range(snake_case ) ) _lowercase : Dict = sim.argsort(axis=1 )[:, :10] _lowercase : List[str] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_UpperCamelCase , _UpperCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_UpperCamelCase , _UpperCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_UpperCamelCase , _UpperCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
199
1
def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = int(A_ ) # Initialize Result __magic_name__ = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : List[Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __lowerCAmelCase : Any = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __lowerCAmelCase : Union[str, Any] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __lowerCAmelCase : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __lowerCAmelCase : Optional[Any] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'''Following is minimal change for {value}: ''') __lowerCAmelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
88
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ): '''simple docstring''' __magic_name__ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""", type=A_, default=1, help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""", type=A_, help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ), ) # rest from the training program parser.add_argument("""training_script_args""", nargs=A_ ) return parser.parse_args() def a__ ( ): '''simple docstring''' __magic_name__ = parse_args() # Import training_script as a module. __magic_name__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __magic_name__ = script_fpath.stem __magic_name__ = importlib.import_module(A_ ) # Patch sys.argv __magic_name__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
88
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _UpperCAmelCase = MaskFormerConfig(backbone_config=__lowercase ) _UpperCAmelCase = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _UpperCAmelCase = 847 _UpperCAmelCase = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _UpperCAmelCase = 150 _UpperCAmelCase = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _UpperCAmelCase = 171 _UpperCAmelCase = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _UpperCAmelCase = 133 _UpperCAmelCase = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _UpperCAmelCase = 19 _UpperCAmelCase = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _UpperCAmelCase = 65 _UpperCAmelCase = "mapillary-vistas-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight') ) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = dct.pop(__lowercase ) _UpperCAmelCase = val def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) _UpperCAmelCase = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:dim, :] _UpperCAmelCase = in_proj_bias[: dim] _UpperCAmelCase = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase = in_proj_weight[ -dim :, : ] _UpperCAmelCase = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[: hidden_size, :] _UpperCAmelCase = in_proj_bias[:config.hidden_size] _UpperCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase = in_proj_weight[-hidden_size :, :] _UpperCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[: hidden_size, :] _UpperCAmelCase = in_proj_bias[:config.hidden_size] _UpperCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase = in_proj_weight[-hidden_size :, :] _UpperCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase_ ( ) -> torch.Tensor: '''simple docstring''' _UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : bool = False ) -> List[str]: '''simple docstring''' _UpperCAmelCase = get_maskformer_config(__lowercase ) # load original state_dict with open(__lowercase , "rb" ) as f: _UpperCAmelCase = pickle.load(__lowercase ) _UpperCAmelCase = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _UpperCAmelCase = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # update to torch tensors for key, value in state_dict.items(): _UpperCAmelCase = torch.from_numpy(__lowercase ) # load 🤗 model _UpperCAmelCase = MaskFormerForInstanceSegmentation(__lowercase ) model.eval() for name, param in model.named_parameters(): print(__lowercase , param.shape ) _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowercase ) == 0, f'Unexpected keys: {unexpected_keys}' # verify results _UpperCAmelCase = prepare_img() if "vistas" in model_name: _UpperCAmelCase = 65 elif "cityscapes" in model_name: _UpperCAmelCase = 6_5535 else: _UpperCAmelCase = 255 _UpperCAmelCase = True if "ade" in model_name else False _UpperCAmelCase = MaskFormerImageProcessor(ignore_index=__lowercase , reduce_labels=__lowercase ) _UpperCAmelCase = image_processor(__lowercase , return_tensors="pt" ) _UpperCAmelCase = model(**__lowercase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _UpperCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) image_processor.save_pretrained(__lowercase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f'nielsr/{model_name}' ) image_processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
156
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''spiece.model'''} __SCREAMING_SNAKE_CASE :Any = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __SCREAMING_SNAKE_CASE :int = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , snake_case_ : Any , snake_case_ : Optional[Any]=False , snake_case_ : int=False , snake_case_ : Any=False , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Any , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _UpperCAmelCase = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _UpperCAmelCase = "<|endoftext|>" if eos_token is None else eos_token _UpperCAmelCase = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _UpperCAmelCase = unk_token if pad_token is None else pad_token _UpperCAmelCase = eos_token if bos_token is None else bos_token else: _UpperCAmelCase = "<pad>" if pad_token is None else pad_token _UpperCAmelCase = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) # Used for whitespace normalization in input texts # fmt : off _UpperCAmelCase = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _UpperCAmelCase = re.compile( f'[{"".join(map(snake_case_ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Optional[Any] ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Any , snake_case_ : Union[str, Any] ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowercase ( self : Dict ): return len(self.sp_model ) def lowercase ( self : Optional[Any] , snake_case_ : str ): _UpperCAmelCase = self.non_printing_characters_re.sub("" , snake_case_ ) # Normalize whitespaces _UpperCAmelCase = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _UpperCAmelCase = unicodedata.normalize("NFC" , snake_case_ ) return text def lowercase ( self : List[str] , snake_case_ : str , **snake_case_ : List[str] ): _UpperCAmelCase = self.preprocess_text(snake_case_ ) return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : str , snake_case_ : str ): return self.sp_model.PieceToId(snake_case_ ) def lowercase ( self : int , snake_case_ : int ): return self.sp_model.IdToPiece(snake_case_ ) @staticmethod def lowercase ( snake_case_ : str ): return out_string def lowercase ( self : Any , snake_case_ : List[str] ): _UpperCAmelCase = [] _UpperCAmelCase = "" _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(snake_case_ ) _UpperCAmelCase = False out_string += self.sp_model.decode(snake_case_ ) return out_string def lowercase ( self : Optional[Any] ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : Optional[int] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def lowercase ( self : Any , snake_case_ : Union[str, List[str]] , snake_case_ : Union[str, bool] = False ): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = self.preprocess_text(snake_case_ ) _UpperCAmelCase = self.sp_model.encode(snake_case_ ) else: _UpperCAmelCase = [self.preprocess_text(snake_case_ ) for t in text] _UpperCAmelCase = self.sp_model.encode(snake_case_ ) if return_tensors is True or return_tensors == "pt": _UpperCAmelCase = torch.tensor(snake_case_ ) return token_ids def lowercase ( self : Optional[Any] , snake_case_ : Union[int, List[int]] ): return self.sp_model.decode(snake_case_ ) def lowercase ( self : List[str] , snake_case_ : "Conversation" ): _UpperCAmelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _UpperCAmelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(snake_case_ ) + f'{self.bos_token}Bot:' ) return self.encode(text=snake_case_ )
156
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A : Union[str, Any] = 500000 A, A : Union[str, Any] = os.path.split(__file__) A : Union[str, Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowercase_ ( _A : datasets.Dataset , **_A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[str] = dataset.map(**_lowerCamelCase ) @get_duration def lowercase_ ( _A : datasets.Dataset , **_A : int ): """simple docstring""" lowerCamelCase__ : Tuple = dataset.filter(**_lowerCamelCase ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Dict = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) lowerCamelCase__ : Any = generate_example_dataset( os.path.join(_lowerCamelCase , "dataset.arrow" ) , _lowerCamelCase , num_examples=_lowerCamelCase ) lowerCamelCase__ : Tuple = transformers.AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=_lowerCamelCase ) def tokenize(_A : Optional[Any] ): return tokenizer(examples["text"] ) lowerCamelCase__ : int = map(_lowerCamelCase ) lowerCamelCase__ : Dict = map(_lowerCamelCase , batched=_lowerCamelCase ) lowerCamelCase__ : Optional[int] = map(_lowerCamelCase , function=lambda _A : None , batched=_lowerCamelCase ) with dataset.formatted_as(type="numpy" ): lowerCamelCase__ : str = map(_lowerCamelCase , function=lambda _A : None , batched=_lowerCamelCase ) with dataset.formatted_as(type="pandas" ): lowerCamelCase__ : Optional[Any] = map(_lowerCamelCase , function=lambda _A : None , batched=_lowerCamelCase ) with dataset.formatted_as(type="torch" , columns="numbers" ): lowerCamelCase__ : Tuple = map(_lowerCamelCase , function=lambda _A : None , batched=_lowerCamelCase ) with dataset.formatted_as(type="tensorflow" , columns="numbers" ): lowerCamelCase__ : Any = map(_lowerCamelCase , function=lambda _A : None , batched=_lowerCamelCase ) lowerCamelCase__ : int = map(_lowerCamelCase , function=_lowerCamelCase , batched=_lowerCamelCase ) lowerCamelCase__ : Any = filter(_lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_lowerCamelCase , "wb" ) as f: f.write(json.dumps(_lowerCamelCase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
184
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
135
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] ) -> int: '''simple docstring''' _snake_case = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): _snake_case = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): _snake_case = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _snake_case = key[key.find('patch_embed' ) + len('patch_embed' )] _snake_case = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(UpperCamelCase__ )-1}''' ) if "norm" in key: _snake_case = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _snake_case = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] _snake_case = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(UpperCamelCase__ )-1}''' ) if "layer_norm1" in key: _snake_case = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _snake_case = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _snake_case = key[key.find('block' ) + len('block' )] _snake_case = key.replace(F'''block{idx}''' , F'''block.{int(UpperCamelCase__ )-1}''' ) if "attn.q" in key: _snake_case = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _snake_case = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _snake_case = key.replace('attn' , 'attention.self' ) if "fc1" in key: _snake_case = key.replace('fc1' , 'dense1' ) if "fc2" in key: _snake_case = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _snake_case = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _snake_case = key.replace('linear_fuse.conv' , 'linear_fuse' ) _snake_case = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _snake_case = key[key.find('linear_c' ) + len('linear_c' )] _snake_case = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(UpperCamelCase__ )-1}''' ) if "bot_conv" in key: _snake_case = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: _snake_case = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: _snake_case = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: _snake_case = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: _snake_case = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: _snake_case = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: _snake_case = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): _snake_case = key.replace('module.last_layer_depth' , 'head.head' ) _snake_case = value return new_state_dict def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _snake_case = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _snake_case = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _snake_case = kv_weight[ : config.hidden_sizes[i], : ] _snake_case = kv_bias[: config.hidden_sizes[i]] _snake_case = kv_weight[ config.hidden_sizes[i] :, : ] _snake_case = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase__ ( ) -> int: '''simple docstring''' _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=False , UpperCamelCase__ : int=None ) -> Optional[int]: '''simple docstring''' _snake_case = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _snake_case = GLPNImageProcessor() # prepare image _snake_case = prepare_img() _snake_case = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict _snake_case = torch.load(UpperCamelCase__ , map_location=torch.device('cpu' ) ) # rename keys _snake_case = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict _snake_case = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass _snake_case = model(UpperCamelCase__ ) _snake_case = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _snake_case = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: _snake_case = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _snake_case = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) UpperCAmelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
355
def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool: '''simple docstring''' if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _snake_case = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _snake_case = -1 return False def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int = 0 ) -> list[int]: '''simple docstring''' _snake_case = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _snake_case = _snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
295
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCAmelCase_ ( A_): UpperCamelCase__: Optional[int] = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A_ ,A_) def lowerCAmelCase_ ( A_): UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = emb.weight.shape UpperCamelCase__: str = nn.Linear(A_ ,A_ ,bias=A_) UpperCamelCase__: List[Any] = emb.weight.data return lin_layer def lowerCAmelCase_ ( A_): UpperCamelCase__: Optional[int] = torch.load(A_ ,map_location="cpu") UpperCamelCase__: Optional[int] = Namespace(**checkpoint["cfg"]["model"]) UpperCamelCase__: List[str] = checkpoint["model"] remove_ignore_keys_(A_) UpperCamelCase__: int = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCamelCase__: Any = {key.replace("decoder" ,"model"): val for key, val in state_dict.items()} UpperCamelCase__: Optional[int] = XGLMConfig( vocab_size=A_ ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="gelu" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) UpperCamelCase__: Union[str, Any] = XGLMForCausalLM(A_) UpperCamelCase__: List[str] = model.load_state_dict(A_ ,strict=A_) print(A_) UpperCamelCase__: int = make_linear_from_emb(model.model.embed_tokens) return model if __name__ == "__main__": A__: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A__: List[str] = parser.parse_args() A__: Any = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
149
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """pegasus""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[str] , __lowerCamelCase: Dict=5_0265 , __lowerCamelCase: int=1024 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Dict=4096 , __lowerCamelCase: str=16 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=4096 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: List[Any]=1024 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Optional[int]=1 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[Any] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: int = decoder_layers UpperCamelCase__: List[str] = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: Tuple = activation_dropout UpperCamelCase__: Optional[int] = activation_function UpperCamelCase__: Dict = init_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: Any = decoder_layerdrop UpperCamelCase__: Optional[int] = use_cache UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model
149
1
'''simple docstring''' import torch from torch import nn class a ( nn.Module ): """simple docstring""" def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=1 , __magic_name__=False ) -> str: super().__init__() _a = n_token _a = d_embed _a = d_proj _a = cutoffs + [n_token] _a = [0] + self.cutoffs _a = div_val _a = self.cutoffs[0] _a = len(self.cutoffs ) - 1 _a = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _a = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _a = nn.Parameter(torch.zeros(self.n_clusters ) ) _a = nn.ModuleList() _a = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__magic_name__ , __magic_name__ ) ) ) else: self.out_projs.append(__magic_name__ ) self.out_layers.append(nn.Linear(__magic_name__ , __magic_name__ ) ) else: for i in range(len(self.cutoffs ) ): _a , _a = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__magic_name__ , __magic_name__ ) ) ) self.out_layers.append(nn.Linear(__magic_name__ , r_idx - l_idx ) ) _a = keep_order def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: if proj is None: _a = nn.functional.linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _a = nn.functional.linear(__magic_name__ , proj.t().contiguous() ) _a = nn.functional.linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None , __magic_name__=False ) -> List[Any]: if labels is not None: # Shift so that tokens < n predict n _a = hidden[..., :-1, :].contiguous() _a = labels[..., 1:].contiguous() _a = hidden.view(-1 , hidden.size(-1 ) ) _a = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: _a = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _a = self._compute_logit(__magic_name__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _a = labels != -1_00 _a = torch.zeros_like(__magic_name__ , dtype=hidden.dtype , device=hidden.device ) _a = ( -nn.functional.log_softmax(__magic_name__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _a = nn.functional.log_softmax(__magic_name__ , dim=-1 ) else: # construct weights and biases _a , _a = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a = self.out_layers[0].weight[l_idx:r_idx] _a = self.out_layers[0].bias[l_idx:r_idx] else: _a = self.out_layers[i].weight _a = self.out_layers[i].bias if i == 0: _a = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__magic_name__ ) biases.append(__magic_name__ ) _a , _a , _a = weights[0], biases[0], self.out_projs[0] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) if labels is None: _a = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _a = torch.zeros_like(__magic_name__ , dtype=hidden.dtype , device=hidden.device ) _a = 0 _a = [0] + self.cutoffs for i in range(len(__magic_name__ ) - 1 ): _a , _a = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _a = (labels >= l_idx) & (labels < r_idx) _a = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _a = labels.index_select(0 , __magic_name__ ) - l_idx _a = head_logprob.index_select(0 , __magic_name__ ) _a = hidden.index_select(0 , __magic_name__ ) else: _a = hidden if i == 0: if labels is not None: _a = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _a = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a = weights[i], biases[i], self.out_projs[i] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) _a = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _a = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _a = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _a = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , __magic_name__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __UpperCAmelCase ( self , __magic_name__ ) -> Tuple: if self.n_clusters == 0: _a = self._compute_logit(__magic_name__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__magic_name__ , dim=-1 ) else: # construct weights and biases _a , _a = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a = self.out_layers[0].weight[l_idx:r_idx] _a = self.out_layers[0].bias[l_idx:r_idx] else: _a = self.out_layers[i].weight _a = self.out_layers[i].bias if i == 0: _a = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__magic_name__ ) biases.append(__magic_name__ ) _a , _a , _a = weights[0], biases[0], self.out_projs[0] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) _a = [0] + self.cutoffs for i in range(len(__magic_name__ ) - 1 ): _a , _a = cutoff_values[i], cutoff_values[i + 1] if i == 0: _a = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a = weights[i], biases[i], self.out_projs[i] _a = self._compute_logit(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = nn.functional.log_softmax(__magic_name__ , dim=1 ) _a = head_logprob[:, -i] + tail_logprob_i _a = logprob_i return out
353
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a_ : Optional[Any] = logging.get_logger(__name__) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , *__magic_name__ , **__magic_name__ ) -> None: warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
104
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCAmelCase = logging.getLogger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''token-classification''' def __init__( self: int , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" if type(UpperCamelCase_ ) == dict: lowercase__ = Namespace(**UpperCamelCase_ ) lowercase__ = import_module('''tasks''' ) try: lowercase__ = getattr(UpperCamelCase_ , hparams.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) lowercase__ = self.token_classification_task.get_labels(hparams.labels ) lowercase__ = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def lowerCamelCase_ ( self: Tuple , **UpperCamelCase_: Optional[int] ) -> str: """simple docstring""" return self.model(**UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: int ) -> int: """simple docstring""" lowercase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowercase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ = self(**UpperCamelCase_ ) lowercase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.hparams for mode in ["train", "dev", "test"]: lowercase__ = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowercase__ = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase__ = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) lowercase__ = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: bool = False ) -> DataLoader: """simple docstring""" lowercase__ = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowercase__ = torch.load(UpperCamelCase_ ) lowercase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: List[Any] ) -> Union[str, Any]: """simple docstring""" """Compute validation""" "" lowercase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowercase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ = self(**UpperCamelCase_ ) lowercase__ , lowercase__ = outputs[:2] lowercase__ = logits.detach().cpu().numpy() lowercase__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] ) -> int: """simple docstring""" lowercase__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean() lowercase__ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) lowercase__ = np.argmax(UpperCamelCase_ , axis=2 ) lowercase__ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase__ = dict(enumerate(self.labels ) ) lowercase__ = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } lowercase__ = dict(results.items() ) lowercase__ = results return ret, preds_list, out_label_list def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._eval_end(UpperCamelCase_ ) lowercase__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Dict ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase_ ( UpperCamelCase_: Optional[Any] , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase = parser.parse_args() lowerCAmelCase = NERTransformer(args) lowerCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
110
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __snake_case =logging.get_logger(__name__) # General docstring __snake_case ='''MobileNetV1Config''' # Base docstring __snake_case ='''google/mobilenet_v1_1.0_224''' __snake_case =[1, 1024, 7, 7] # Image classification docstring __snake_case ='''google/mobilenet_v1_1.0_224''' __snake_case ='''tabby, tabby cat''' __snake_case =[ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def a ( __a , __a , __a=None ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[int] = {} if isinstance(a__ , a__ ): UpperCamelCase__ :List[str] = model.mobilenet_va else: UpperCamelCase__ :Tuple = model UpperCamelCase__ :Optional[Any] = '''MobilenetV1/Conv2d_0/''' UpperCamelCase__ :Any = backbone.conv_stem.convolution.weight UpperCamelCase__ :List[str] = backbone.conv_stem.normalization.bias UpperCamelCase__ :Dict = backbone.conv_stem.normalization.weight UpperCamelCase__ :Any = backbone.conv_stem.normalization.running_mean UpperCamelCase__ :str = backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCamelCase__ :Any = i + 1 UpperCamelCase__ :Any = i * 2 UpperCamelCase__ :int = backbone.layer[pt_index] UpperCamelCase__ :Union[str, Any] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCamelCase__ :Dict = pointer.convolution.weight UpperCamelCase__ :str = pointer.normalization.bias UpperCamelCase__ :Any = pointer.normalization.weight UpperCamelCase__ :Optional[int] = pointer.normalization.running_mean UpperCamelCase__ :int = pointer.normalization.running_var UpperCamelCase__ :Dict = backbone.layer[pt_index + 1] UpperCamelCase__ :Dict = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCamelCase__ :List[str] = pointer.convolution.weight UpperCamelCase__ :Optional[int] = pointer.normalization.bias UpperCamelCase__ :Optional[int] = pointer.normalization.weight UpperCamelCase__ :Any = pointer.normalization.running_mean UpperCamelCase__ :Union[str, Any] = pointer.normalization.running_var if isinstance(a__ , a__ ): UpperCamelCase__ :int = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' UpperCamelCase__ :List[str] = model.classifier.weight UpperCamelCase__ :Tuple = model.classifier.bias return tf_to_pt_map def a ( __a , __a , __a ) -> Any: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model UpperCamelCase__ :Optional[Any] = tf.train.list_variables(a__ ) UpperCamelCase__ :List[str] = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) UpperCamelCase__ :int = tf.train.load_variable(a__ , a__ ) UpperCamelCase__ :Optional[Any] = array # Build TF to PyTorch weights loading map UpperCamelCase__ :List[Any] = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue UpperCamelCase__ :Optional[int] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) UpperCamelCase__ :int = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer UpperCamelCase__ :int = array.squeeze().transpose() else: UpperCamelCase__ :str = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) UpperCamelCase__ :List[str] = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def a ( __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Dict = features.shape[-2:] UpperCamelCase__ , UpperCamelCase__ :List[str] = conv_layer.stride UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase__ :str = max(kernel_height - stride_height , 0 ) else: UpperCamelCase__ :Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCamelCase__ :Any = max(kernel_width - stride_width , 0 ) else: UpperCamelCase__ :Optional[Any] = max(kernel_width - (in_width % stride_width) , 0 ) UpperCamelCase__ :Any = pad_along_width // 2 UpperCamelCase__ :int = pad_along_width - pad_left UpperCamelCase__ :Dict = pad_along_height // 2 UpperCamelCase__ :List[str] = pad_along_height - pad_top UpperCamelCase__ :Tuple = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 1 , UpperCamelCase_ = 1 , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = True , ): '''simple docstring''' super().__init__() UpperCamelCase__ :int = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCamelCase__ :Dict = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase__ :Any = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , stride=__lowerCAmelCase , padding=__lowerCAmelCase , groups=__lowerCAmelCase , bias=__lowerCAmelCase , padding_mode='''zeros''' , ) if use_normalization: UpperCamelCase__ :Optional[Any] = nn.BatchNormad( num_features=__lowerCAmelCase , eps=config.layer_norm_eps , momentum=0.9997 , affine=__lowerCAmelCase , track_running_stats=__lowerCAmelCase , ) else: UpperCamelCase__ :Optional[int] = None if use_activation: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ :Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCAmelCase ): UpperCamelCase__ :List[Any] = ACTaFN[config.hidden_act] else: UpperCamelCase__ :Optional[Any] = config.hidden_act else: UpperCamelCase__ :Optional[int] = None def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.config.tf_padding: UpperCamelCase__ :int = apply_tf_padding(__lowerCAmelCase , self.convolution ) UpperCamelCase__ :Tuple = self.convolution(__lowerCAmelCase ) if self.normalization is not None: UpperCamelCase__ :Any = self.normalization(__lowerCAmelCase ) if self.activation is not None: UpperCamelCase__ :List[str] = self.activation(__lowerCAmelCase ) return features class lowercase ( _a ): """simple docstring""" _a = MobileNetVaConfig _a = load_tf_weights_in_mobilenet_va _a = """mobilenet_v1""" _a = """pixel_values""" _a = False def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(__lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __snake_case =R'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' __snake_case =R'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , _a , ) class lowercase ( _a ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = True ): '''simple docstring''' super().__init__(__lowerCAmelCase ) UpperCamelCase__ :List[str] = config UpperCamelCase__ :Optional[int] = 32 UpperCamelCase__ :List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase__ :int = MobileNetVaConvLayer( __lowerCAmelCase , in_channels=config.num_channels , out_channels=__lowerCAmelCase , kernel_size=3 , stride=2 , ) UpperCamelCase__ :List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase__ :Dict = nn.ModuleList() for i in range(13 ): UpperCamelCase__ :Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase__ :Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( __lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=1 , ) ) UpperCamelCase__ :Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ :List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) UpperCamelCase__ :Any = self.conv_stem(__lowerCAmelCase ) UpperCamelCase__ :Any = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase__ :Any = layer_module(__lowerCAmelCase ) if output_hidden_states: UpperCamelCase__ :Any = all_hidden_states + (hidden_states,) UpperCamelCase__ :Dict = hidden_states if self.pooler is not None: UpperCamelCase__ :List[str] = torch.flatten(self.pooler(__lowerCAmelCase ) , start_dim=1 ) else: UpperCamelCase__ :Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCAmelCase , pooler_output=__lowerCAmelCase , hidden_states=__lowerCAmelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _a , ) class lowercase ( _a ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__(__lowerCAmelCase ) UpperCamelCase__ :List[str] = config.num_labels UpperCamelCase__ :Tuple = MobileNetVaModel(__lowerCAmelCase ) UpperCamelCase__ :int = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase__ :str = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCAmelCase ) UpperCamelCase__ :Optional[int] = nn.Linear(__lowerCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :List[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ :Any = self.mobilenet_va(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase ) UpperCamelCase__ :List[str] = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ :int = self.classifier(self.dropout(__lowerCAmelCase ) ) UpperCamelCase__ :int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ :int = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ :Optional[int] = '''single_label_classification''' else: UpperCamelCase__ :Tuple = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ :Optional[int] = MSELoss() if self.num_labels == 1: UpperCamelCase__ :Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ :int = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ :List[Any] = CrossEntropyLoss() UpperCamelCase__ :Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ :str = BCEWithLogitsLoss() UpperCamelCase__ :Tuple = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: UpperCamelCase__ :Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , )
371
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" _a = AltDiffusionPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ :List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCamelCase__ :int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase__ :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase__ :Optional[Any] = CLIPTextModel(UpperCamelCase_ ) UpperCamelCase__ :int = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCamelCase__ :Dict = 77 UpperCamelCase__ :Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): '''simple docstring''' if str(UpperCamelCase_ ).startswith('''mps''' ): UpperCamelCase__ :Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCamelCase__ :List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :Tuple = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase__ :Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ :Union[str, Any] = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = text_encoder UpperCamelCase__ :Any = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCamelCase__ :List[Any] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Dict = '''A photo of an astronaut''' UpperCamelCase__ :Union[str, Any] = alt_pipe(**UpperCamelCase_ ) UpperCamelCase__ :Any = output.images UpperCamelCase__ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :int = self.get_dummy_components() UpperCamelCase__ :Union[str, Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) UpperCamelCase__ :Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ :str = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = text_encoder UpperCamelCase__ :Union[str, Any] = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = alt_pipe(**UpperCamelCase_ ) UpperCamelCase__ :str = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCamelCase_ ) UpperCamelCase__ :str = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = '''A painting of a squirrel eating a burger''' UpperCamelCase__ :int = torch.manual_seed(0 ) UpperCamelCase__ :Optional[Any] = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCamelCase__ :Union[str, Any] = output.images UpperCamelCase__ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCamelCase__ :List[str] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) UpperCamelCase__ :Dict = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = '''A painting of a squirrel eating a burger''' UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) UpperCamelCase__ :Any = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :int = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
219
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: Tuple ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_: Any =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_: Dict =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: str =_LazyModule(__name__, globals()['__file__'], _import_structure)
1
'''simple docstring''' def _A ( lowercase__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
164
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _A ( _a ): """simple docstring""" def __init__( self : List[Any] , *__UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Optional[Any]): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) a : List[Any] = eval_examples a : Optional[Any] = post_process_function def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[str] = None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : List[str] = None , __UpperCAmelCase : Tuple = "eval" , **__UpperCAmelCase : int , ): a : Union[str, Any] = gen_kwargs.copy() a : Tuple = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else self.args.generation_max_length ) a : Any = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams ) a : Dict = gen_kwargs a : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset a : int = self.get_eval_dataloader(__lowerCAmelCase) a : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a : Tuple = self.compute_metrics a : Optional[int] = None a : int = time.time() a : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a : Union[str, Any] = eval_loop( __lowerCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: a : Optional[int] = compute_metrics a : str = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a : Optional[int] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) a : Tuple = self.compute_metrics(__lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): a : Optional[int] = metrics.pop(__lowerCAmelCase) metrics.update(output.metrics) else: a : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCAmelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) a : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase) return metrics def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str = "test" , **__UpperCAmelCase : Optional[int]): a : Optional[Any] = gen_kwargs.copy() a : Any = self.get_test_dataloader(__lowerCAmelCase) # Temporarily disable metric computation, we will do it in the loop here. a : Optional[int] = self.compute_metrics a : Any = None a : Tuple = time.time() a : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a : Optional[int] = eval_loop( __lowerCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: a : List[Any] = compute_metrics a : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output a : Dict = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , "predict") a : List[Any] = self.compute_metrics(__lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): a : str = metrics.pop(__lowerCAmelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase)
371
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __lowercase = logging.get_logger(__name__) @add_end_docstrings(_a ) class _A ( _a ): """simple docstring""" def __init__( self : List[Any] , **__UpperCAmelCase : List[Any]): super().__init__(**__UpperCAmelCase) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , "vision") self.check_model_type(__UpperCAmelCase) def __call__( self : str , __UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , __UpperCAmelCase : Union[str, List[str]] = None , **__UpperCAmelCase : List[Any] , ): if "text_queries" in kwargs: a : List[Any] = kwargs.pop("text_queries") if isinstance(__UpperCAmelCase , (str, Image.Image)): a : Any = {"image": image, "candidate_labels": candidate_labels} else: a : Optional[int] = image a : Optional[int] = super().__call__(__UpperCAmelCase , **__UpperCAmelCase) return results def __snake_case ( self : Optional[int] , **__UpperCAmelCase : List[Any]): a : str = {} if "threshold" in kwargs: a : Dict = kwargs["threshold"] if "top_k" in kwargs: a : str = kwargs["top_k"] return {}, {}, postprocess_params def __snake_case ( self : List[Any] , __UpperCAmelCase : Optional[Any]): a : Union[str, Any] = load_image(inputs["image"]) a : Any = inputs["candidate_labels"] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Optional[Any] = candidate_labels.split(",") a : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(__UpperCAmelCase): a : int = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework) a : int = self.image_processor(__UpperCAmelCase , return_tensors=self.framework) yield { "is_last": i == len(__UpperCAmelCase) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __snake_case ( self : Dict , __UpperCAmelCase : Optional[int]): a : List[Any] = model_inputs.pop("target_size") a : Optional[int] = model_inputs.pop("candidate_label") a : List[Any] = model_inputs.pop("is_last") a : List[Any] = self.model(**__UpperCAmelCase) a : Union[str, Any] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __snake_case ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[str]=None): a : Dict = [] for model_output in model_outputs: a : int = model_output["candidate_label"] a : Any = BaseModelOutput(__UpperCAmelCase) a : Optional[Any] = self.image_processor.post_process_object_detection( outputs=__UpperCAmelCase , threshold=__UpperCAmelCase , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): a : Any = outputs["scores"][index].item() a : str = self._get_bounding_box(outputs["boxes"][index][0]) a : Optional[Any] = {"score": score, "label": label, "box": box} results.append(__UpperCAmelCase) a : str = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase: x["score"] , reverse=__UpperCAmelCase) if top_k: a : Union[str, Any] = results[:top_k] return results def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : "torch.Tensor"): if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") a , a , a , a : List[Any] = box.int().tolist() a : str = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
226
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowerCamelCase : List[Any] = logging.get_logger(__name__) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """upernet""" def __init__( self : Any, __A : Any=None, __A : int=5_1_2, __A : List[str]=0.0_2, __A : Union[str, Any]=[1, 2, 3, 6], __A : Tuple=True, __A : Union[str, Any]=0.4, __A : List[str]=3_8_4, __A : str=2_5_6, __A : Union[str, Any]=1, __A : Tuple=False, __A : int=2_5_5, **__A : Any, ): super().__init__(**__A ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCAmelCase : List[str] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(__A, __A ): UpperCAmelCase : List[Any] = backbone_config.get('''model_type''' ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[str] = config_class.from_dict(__A ) UpperCAmelCase : Dict = backbone_config UpperCAmelCase : str = hidden_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : List[str] = pool_scales UpperCAmelCase : Optional[int] = use_auxiliary_head UpperCAmelCase : str = auxiliary_loss_weight UpperCAmelCase : Any = auxiliary_in_channels UpperCAmelCase : List[str] = auxiliary_channels UpperCAmelCase : Tuple = auxiliary_num_convs UpperCAmelCase : int = auxiliary_concat_input UpperCAmelCase : Optional[int] = loss_ignore_index def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Tuple = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
336
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __snake_case : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : str=7 , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[Any]=99 , lowerCamelCase : Tuple=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : Dict=4 , lowerCamelCase : List[Any]=37 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Any=5_12 , lowerCamelCase : int=16 , lowerCamelCase : str=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : Tuple=False , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[Any]="None" , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : List[str]=4 , lowerCamelCase : Tuple=None , ) -> int: lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Tuple = batch_size lowerCAmelCase_ : Any = seq_length lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : List[str] = use_input_mask lowerCAmelCase_ : Dict = use_token_type_ids lowerCAmelCase_ : Union[str, Any] = use_labels lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : Dict = num_choices lowerCAmelCase_ : Union[str, Any] = relative_attention lowerCAmelCase_ : Any = position_biased_input lowerCAmelCase_ : Optional[int] = pos_att_type lowerCAmelCase_ : List[str] = scope def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : int = None if self.use_token_type_ids: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : str ) -> Optional[Any]: lowerCAmelCase_ : Any = TFDebertaVaModel(config=lowerCamelCase ) lowerCAmelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase_ : str = [input_ids, input_mask] lowerCAmelCase_ : Dict = model(lowerCamelCase ) lowerCAmelCase_ : str = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] ) -> List[str]: lowerCAmelCase_ : List[Any] = TFDebertaVaForMaskedLM(config=lowerCamelCase ) lowerCAmelCase_ : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : int , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Any ) -> List[str]: lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : Dict = TFDebertaVaForSequenceClassification(config=lowerCamelCase ) lowerCAmelCase_ : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : int , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : str ) -> Optional[int]: lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[str] = TFDebertaVaForTokenClassification(config=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ : List[str] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : int = TFDebertaVaForQuestionAnswering(config=lowerCamelCase ) lowerCAmelCase_ : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ : Union[str, Any] = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : str ) -> Optional[int]: lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ) : Dict = config_and_inputs lowerCAmelCase_ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def __lowercase ( self : Dict ) -> Optional[Any]: lowerCAmelCase_ : Tuple = TFDebertaVaModelTester(self ) lowerCAmelCase_ : Any = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() def __lowercase ( self : List[Any] ) -> List[str]: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : str ) -> Dict: lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def __lowercase ( self : str ) -> Optional[Any]: lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def __lowercase ( self : Tuple ) -> Tuple: lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def __lowercase ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase_ : List[str] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(lowerCamelCase ) @require_tf class __snake_case ( unittest.TestCase): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def __lowercase ( self : int ) -> Optional[int]: pass @slow def __lowercase ( self : List[str] ) -> Optional[int]: lowerCAmelCase_ : str = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) lowerCAmelCase_ : Union[str, Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCAmelCase_ : int = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase_ : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] lowerCAmelCase_ : str = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCamelCase , atol=1E-4 )
89
'''simple docstring''' from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['note_seq'] def __init__( self : Tuple , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> Any: requires_backends(self , ["""note_seq"""] ) @classmethod def __lowercase ( cls : Optional[Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : Dict ) -> List[Any]: requires_backends(cls , ["""note_seq"""] ) @classmethod def __lowercase ( cls : Union[str, Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(cls , ["""note_seq"""] )
89
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase : Optional[int] ="""\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ UpperCAmelCase : int ="""\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ UpperCAmelCase : List[str] =""" Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ UpperCAmelCase : List[Any] =""" ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ UpperCAmelCase : Dict ="""The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase (datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__=[1, 10, 100] , snake_case__=4 , snake_case__=3.0 ): '''simple docstring''' if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=snake_case__ ) as executor: UpperCamelCase_ = [] UpperCamelCase_ = Counter() UpperCamelCase_ = 0 UpperCamelCase_ = defaultdict(snake_case__ ) for task_id, (candidates, test_case) in enumerate(zip(snake_case__ , snake_case__ ) ): for candidate in candidates: UpperCamelCase_ = candidate + "\n" + test_case UpperCamelCase_ = (test_program, timeout, task_id, completion_id[task_id]) UpperCamelCase_ = executor.submit(snake_case__ , *snake_case__ ) futures.append(snake_case__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case__ ): UpperCamelCase_ = future.result() results[result["task_id"]].append((result["completion_id"], result) ) UpperCamelCase_ , UpperCamelCase_ = [], [] for result in results.values(): result.sort() UpperCamelCase_ = [r[1]["passed"] for r in result] total.append(len(snake_case__ ) ) correct.append(sum(snake_case__ ) ) UpperCamelCase_ = np.array(snake_case__ ) UpperCamelCase_ = np.array(snake_case__ ) UpperCamelCase_ = k UpperCamelCase_ = {F"""pass@{k}""": estimate_pass_at_k(snake_case__ , snake_case__ , snake_case__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): def estimator(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1)) if isinstance(_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = itertools.repeat(_lowerCAmelCase , len(_lowerCAmelCase)) else: assert len(_lowerCAmelCase) == len(_lowerCAmelCase) UpperCamelCase_ = iter(_lowerCAmelCase) return np.array([estimator(int(_lowerCAmelCase) , int(_lowerCAmelCase) , _lowerCAmelCase) for n, c in zip(_lowerCAmelCase , _lowerCAmelCase)])
128
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase : Tuple =2_9979_2458 # Symbols UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =symbols("""ct x y z""") def _lowerCAmelCase (_lowerCAmelCase): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!") elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!") return velocity / c def _lowerCAmelCase (_lowerCAmelCase): return 1 / sqrt(1 - beta(_lowerCAmelCase) ** 2) def _lowerCAmelCase (_lowerCAmelCase): return np.array( [ [gamma(_lowerCAmelCase), -gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), 0, 0], [-gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), gamma(_lowerCAmelCase), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase = None): # Ensure event is not empty if event is None: UpperCamelCase_ = np.array([ct, x, y, z]) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCAmelCase) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase : Optional[Any] =transform(2997_9245) print("""Example of four vector: """) print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values UpperCAmelCase : List[Any] ={ct: c, x: 1, y: 1, z: 1} UpperCAmelCase : Optional[Any] =[four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
128
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __lowerCamelCase ( __lowerCAmelCase : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(__lowerCAmelCase ) snake_case = """""".join(bin(__lowerCAmelCase )[2:].zfill(8 ) for byte in data ) snake_case = len(__lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later snake_case = B"""=""" * ((6 - len(__lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__lowerCAmelCase ) % 6) else: snake_case = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__lowerCAmelCase ) , 6 ) ).encode() + padding ) def __lowerCamelCase ( __lowerCAmelCase : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( """argument should be a bytes-like object or ASCII string, """ F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(__lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one snake_case = encoded_data[:-padding] snake_case = """""".join( bin(B64_CHARSET.index(__lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: snake_case = """""".join( bin(B64_CHARSET.index(__lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__lowerCAmelCase ) , 8 ) ] return bytes(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __UpperCAmelCase ( a_: Tuple, a_: List[Any], a_: Dict=[] ): _UpperCAmelCase : Optional[int] = size[0] - overlap_pixels * 2 _UpperCAmelCase : Optional[int] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCAmelCase : List[Any] = np.ones((size_y, size_x), dtype=np.uinta ) * 255 _UpperCAmelCase : Optional[int] = np.pad(a_, mode="linear_ramp", pad_width=a_, end_values=0 ) if "l" in remove_borders: _UpperCAmelCase : int = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCAmelCase : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCAmelCase : Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCAmelCase : int = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Dict ): return max(a_, min(a_, a_ ) ) def __UpperCAmelCase ( a_: [int], a_: [int], a_: [int] ): return ( clamp(rect[0], min[0], max[0] ), clamp(rect[1], min[1], max[1] ), clamp(rect[2], min[0], max[0] ), clamp(rect[3], min[1], max[1] ), ) def __UpperCAmelCase ( a_: [int], a_: int, a_: [int] ): _UpperCAmelCase : Optional[Any] = list(a_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCAmelCase : Optional[Any] = clamp_rect(a_, [0, 0], [image_size[0], image_size[1]] ) return rect def __UpperCAmelCase ( a_: Union[str, Any], a_: Union[str, Any], a_: Union[str, Any], a_: Optional[Any] ): _UpperCAmelCase : Optional[Any] = Image.new("RGB", (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ), (0, 0), ) result.paste(a_, (original_slice, 0) ) return result def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[int] ): _UpperCAmelCase : Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCAmelCase : Any = tile.crop(a_ ) return tile def __UpperCAmelCase ( a_: Optional[Any], a_: str ): _UpperCAmelCase : List[str] = n % d return n - divisor class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : DDPMScheduler , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : int = 3_5_0 , ) -> Union[str, Any]: """simple docstring""" super().__init__( vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , max_noise_level=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _UpperCAmelCase : Optional[Any] = add_overlap_rect(lowerCAmelCase__ , lowerCAmelCase__ , image.size ) _UpperCAmelCase : Optional[Any] = image.crop(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCAmelCase : Union[str, Any] = translated_slice_x - (original_image_slice / 2) _UpperCAmelCase : int = max(0 , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = squeeze_tile(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = to_input.size _UpperCAmelCase : List[str] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _UpperCAmelCase : Dict = super(lowerCAmelCase__ , self ).__call__(image=lowerCAmelCase__ , **lowerCAmelCase__ ).images[0] _UpperCAmelCase : Union[str, Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase : Any = unsqueeze_tile(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase : Tuple = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) _UpperCAmelCase : Union[str, Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCAmelCase__ ) , mode="L" , ) final_image.paste( lowerCAmelCase__ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCAmelCase__ ) @torch.no_grad() def __call__( self : int , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCAmelCase__ : int = 7_5 , lowerCAmelCase__ : float = 9.0 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 1_2_8 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , ) -> Any: """simple docstring""" _UpperCAmelCase : List[str] = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) _UpperCAmelCase : List[str] = math.ceil(image.size[0] / tile_size ) _UpperCAmelCase : List[str] = math.ceil(image.size[1] / tile_size ) _UpperCAmelCase : Any = tcx * tcy _UpperCAmelCase : Dict = 0 for y in range(lowerCAmelCase__ ): for x in range(lowerCAmelCase__ ): self._process_tile( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , prompt=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , noise_level=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def __UpperCAmelCase ( ): # Run a demo _UpperCAmelCase : List[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : List[str] = StableDiffusionTiledUpscalePipeline.from_pretrained(a_, revision="fp16", torch_dtype=torch.floataa ) _UpperCAmelCase : Tuple = pipe.to("cuda" ) _UpperCAmelCase : Dict = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(a_: str ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) _UpperCAmelCase : Optional[Any] = pipe(image=a_, prompt="Black font, white background, vector", noise_level=40, callback=a_ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
145
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''vit_msn''' def __init__( self : Optional[int] , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Optional[Any]=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=1e-06 , lowerCAmelCase__ : Union[str, Any]=2_2_4 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : str=True , **lowerCAmelCase__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Optional[int] = qkv_bias
145
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } _a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : Optional[int], UpperCamelCase_ : Tuple, UpperCamelCase_ : int, UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' for attribute in key.split("."): __lowercase = getattr(UpperCamelCase_, UpperCamelCase_) if weight_type is not None: __lowercase = getattr(UpperCamelCase_, UpperCamelCase_).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""") def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : str) -> Dict: '''simple docstring''' __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor __lowercase = hf_model.adapter for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, hf_model.config.feat_extract_norm == "group", ) __lowercase = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."]): load_adapter(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(UpperCamelCase_)[0].split(".")[-2] __lowercase = mapped_key.replace("*", UpperCamelCase_) if "weight_g" in name: __lowercase = "weight_g" elif "weight_v" in name: __lowercase = "weight_v" elif "bias" in name: __lowercase = "bias" elif "weight" in name: __lowercase = "weight" else: __lowercase = None set_recursively(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) continue if not is_used: unused_weights.append(UpperCamelCase_) logger.warning(F"""Unused weights: {unused_weights}""") def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Tuple, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : str, UpperCamelCase_ : str) -> Optional[Any]: '''simple docstring''' __lowercase = full_name.split("conv_layers.")[-1] __lowercase = name.split(".") __lowercase = int(items[0]) __lowercase = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") else: unused_weights.append(UpperCamelCase_) def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : List[str], UpperCamelCase_ : Tuple, UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = full_name.split("adaptor.")[-1] __lowercase = name.split(".") if items[1].isdigit(): __lowercase = int(items[1]) else: __lowercase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowercase = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""") if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowercase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowercase = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""") if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowercase = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""") elif isinstance(UpperCamelCase_, UpperCamelCase_): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowercase = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""") elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowercase = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""") else: unused_weights.append(UpperCamelCase_) def _A ( UpperCamelCase_ : Tuple) -> Optional[int]: '''simple docstring''' __lowercase ,__lowercase = emb.weight.shape __lowercase = nn.Linear(UpperCamelCase_, UpperCamelCase_, bias=UpperCamelCase_) __lowercase = emb.weight.data return lin_layer @torch.no_grad() def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Any, UpperCamelCase_ : str, UpperCamelCase_ : int, UpperCamelCase_ : List[Any], UpperCamelCase_ : List[str], UpperCamelCase_ : int, UpperCamelCase_ : Dict, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : str, ) -> Any: '''simple docstring''' __lowercase = WavaVecaConfig.from_pretrained( UpperCamelCase_, add_adapter=UpperCamelCase_, adapter_stride=UpperCamelCase_, adapter_kernel_size=UpperCamelCase_, use_auth_token=UpperCamelCase_, output_hidden_size=UpperCamelCase_, ) __lowercase = MBartConfig.from_pretrained(UpperCamelCase_) # load model __lowercase ,__lowercase ,__lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/")[:-1]), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, }, ) __lowercase = model[0].eval() # load feature extractor __lowercase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_, use_auth_token=UpperCamelCase_) # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(UpperCamelCase_) recursively_load_weights_wavaveca(model.encoder, UpperCamelCase_) # load decoder weights __lowercase = MBartForCausalLM(UpperCamelCase_) __lowercase ,__lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=UpperCamelCase_) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""") logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""") __lowercase = SpeechEncoderDecoderModel(encoder=UpperCamelCase_, decoder=UpperCamelCase_) __lowercase = False __lowercase = MBartaaTokenizer(UpperCamelCase_) tokenizer.save_pretrained(UpperCamelCase_) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = "mbart50" __lowercase = "wav2vec2" __lowercase = tokenizer.eos_token_id __lowercase = 250004 __lowercase = tokenizer.eos_token_id __lowercase = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_) hf_wavavec.save_pretrained(UpperCamelCase_) feature_extractor.save_pretrained(UpperCamelCase_) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=10_24, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_00_04, type=int, help='`decoder_start_token_id` of model config') _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
367
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, **UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = AutoConfig.from_pretrained(UpperCamelCase_, **UpperCamelCase_) __lowercase = AutoModelForSeqaSeqLM.from_config(UpperCamelCase_) model.save_pretrained(UpperCamelCase_) AutoTokenizer.from_pretrained(UpperCamelCase_).save_pretrained(UpperCamelCase_) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
144
0
from ...configuration_utils import PretrainedConfig UpperCAmelCase : List[Any] ={ """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class _lowercase (a_ ): '''simple docstring''' lowercase__ = """tapas""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1024 , snake_case__=[3, 256, 256, 2, 256, 256, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_sizes UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps # Fine-tuning task hyperparameters UpperCamelCase_ = positive_label_weight UpperCamelCase_ = num_aggregation_labels UpperCamelCase_ = aggregation_loss_weight UpperCamelCase_ = use_answer_as_supervision UpperCamelCase_ = answer_loss_importance UpperCamelCase_ = use_normalized_answer_loss UpperCamelCase_ = huber_loss_delta UpperCamelCase_ = temperature UpperCamelCase_ = aggregation_temperature UpperCamelCase_ = use_gumbel_for_cells UpperCamelCase_ = use_gumbel_for_aggregation UpperCamelCase_ = average_approximation_function UpperCamelCase_ = cell_selection_preference UpperCamelCase_ = answer_loss_cutoff UpperCamelCase_ = max_num_rows UpperCamelCase_ = max_num_columns UpperCamelCase_ = average_logits_per_cell UpperCamelCase_ = select_one_column UpperCamelCase_ = allow_empty_column_selection UpperCamelCase_ = init_cell_selection_weights_to_zero UpperCamelCase_ = reset_position_index_per_cell UpperCamelCase_ = disable_per_token_loss # Aggregation hyperparameters UpperCamelCase_ = aggregation_labels UpperCamelCase_ = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): UpperCamelCase_ = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
128
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : Tuple =_symbol_database.Default() UpperCAmelCase : List[Any] =_descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) UpperCAmelCase : Optional[int] =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : str =None UpperCAmelCase : List[Any] =b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : str =45 UpperCAmelCase : Optional[Any] =1581 UpperCAmelCase : Dict =1517 UpperCAmelCase : str =1570 UpperCAmelCase : Optional[int] =1584 UpperCAmelCase : str =1793 UpperCAmelCase : Any =1795 UpperCAmelCase : Dict =1916 UpperCAmelCase : str =1864 UpperCAmelCase : Dict =1905 UpperCAmelCase : Union[str, Any] =1919 UpperCAmelCase : Any =2429 UpperCAmelCase : Dict =2208 UpperCAmelCase : int =2418 UpperCAmelCase : str =2323 UpperCAmelCase : Any =2407 # @@protoc_insertion_point(module_scope)
128
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowercase ( snake_case_ : int ) ->int: '''simple docstring''' __A : str = filter(lambda snake_case_ : p.requires_grad ,model.parameters() ) __A : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params a_ = logging.getLogger(__name__) def __lowercase ( snake_case_ : Any ,snake_case_ : List[Any] ) ->List[Any]: '''simple docstring''' if metric == "rouge2": __A : Union[str, Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __A : int = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __A : Dict = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __A : int = ModelCheckpoint( dirpath=snake_case_ ,filename=snake_case_ ,monitor=F"""val_{metric}""" ,mode='''max''' ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def __lowercase ( snake_case_ : Optional[Any] ,snake_case_ : int ) ->List[str]: '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""" ,mode='''min''' if '''loss''' in metric else '''max''' ,patience=snake_case_ ,verbose=snake_case_ ,) class __snake_case ( pl.Callback ): """simple docstring""" def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : str = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCamelCase ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True ): '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __A : List[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __A : str = Path(pl_module.hparams.output_dir ) if type_path == "test": __A : str = od / '''test_results.txt''' __A : Optional[Any] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __A : List[str] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __A : List[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCamelCase ) generations_file.parent.mkdir(exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , '''a+''' ) as writer: for key in sorted(__lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue __A : int = metrics[key] if isinstance(__lowerCamelCase , torch.Tensor ): __A : Dict = val.item() __A : int = F"""{key}: {val:.6f}\n""" writer.write(__lowerCamelCase ) if not save_generations: return if "preds" in metrics: __A : str = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__lowerCamelCase ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' try: __A : Optional[int] = pl_module.model.model.num_parameters() except AttributeError: __A : str = pl_module.model.num_parameters() __A : Optional[Any] = count_trainable_parameters(__lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCamelCase , __lowerCamelCase , '''test''' ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
291
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BarthezTokenizer _lowerCamelCase = BarthezTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setUp() __A : List[Any] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) __A : Any = tokenizer def UpperCamelCase__( self ): '''simple docstring''' __A : Any = '''<pad>''' __A : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCamelCase ) , 10_1122 ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __A : Any = [0, 57, 3018, 7_0307, 91, 2] __A : List[Any] = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __A : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __A : Tuple = self.get_tokenizer() __A : Dict = self.get_rust_tokenizer() __A : Union[str, Any] = '''I was born in 92000, and this is falsé.''' __A : List[Any] = tokenizer.tokenize(__lowerCamelCase ) __A : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __A : Union[str, Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = self.get_rust_tokenizer() __A : Optional[int] = tokenizer.encode(__lowerCamelCase ) __A : Any = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __A : Union[str, Any] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__lowerCamelCase , )
291
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): def _A ( self : Union[str, Any] ): UpperCamelCase :Union[str, Any] = load_tool("""text-classification""" ) self.tool.setup() UpperCamelCase :str = load_tool("""text-classification""" , remote=__lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" ) def _A ( self : List[str] ): UpperCamelCase :int = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" ) def _A ( self : int ): UpperCamelCase :str = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" ) def _A ( self : Dict ): UpperCamelCase :Optional[int] = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" )
38
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'ctrl' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __snake_case=24_6534 , __snake_case=256 , __snake_case=1280 , __snake_case=8192 , __snake_case=48 , __snake_case=16 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1e-6 , __snake_case=0.02 , __snake_case=True , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' __a =vocab_size __a =n_positions __a =n_embd __a =n_layer __a =n_head __a =dff __a =resid_pdrop __a =embd_pdrop __a =layer_norm_epsilon __a =initializer_range __a =use_cache super().__init__(**__snake_case )
218
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = torch.nn.Linear(1_0 , 1_0 ) UpperCAmelCase__ : Any = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase__ : Union[str, Any] = Accelerator() UpperCAmelCase__ : Any = accelerator.prepare(_snake_case ) try: pickle.loads(pickle.dumps(_snake_case ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
357
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''mgp-str''' def __init__( self : Any , __UpperCamelCase : Optional[Any]=[32, 128] , __UpperCamelCase : Dict=4 , __UpperCamelCase : int=3 , __UpperCamelCase : Union[str, Any]=27 , __UpperCamelCase : Tuple=38 , __UpperCamelCase : str=5_0257 , __UpperCamelCase : Union[str, Any]=3_0522 , __UpperCamelCase : Optional[Any]=768 , __UpperCamelCase : Any=12 , __UpperCamelCase : Tuple=12 , __UpperCamelCase : List[Any]=4.0 , __UpperCamelCase : str=True , __UpperCamelCase : Any=False , __UpperCamelCase : List[str]=1E-5 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Union[str, Any]=0.0_2 , **__UpperCamelCase : Optional[Any] , ) -> int: super().__init__(**__UpperCamelCase ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = max_token_length _UpperCamelCase = num_character_labels _UpperCamelCase = num_bpe_labels _UpperCamelCase = num_wordpiece_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = mlp_ratio _UpperCamelCase = distilled _UpperCamelCase = layer_norm_eps _UpperCamelCase = drop_rate _UpperCamelCase = qkv_bias _UpperCamelCase = attn_drop_rate _UpperCamelCase = drop_path_rate _UpperCamelCase = output_aa_attentions _UpperCamelCase = initializer_range
256
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase = 13 , UpperCamelCase = 64 , UpperCamelCase = 2 , UpperCamelCase = 3 , UpperCamelCase = 3 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 128 , UpperCamelCase=[16, 32, 64, 128] , UpperCamelCase = 7 , UpperCamelCase = 4 , UpperCamelCase = 37 , UpperCamelCase = "gelu" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 10 , UpperCamelCase = 0.02 , UpperCamelCase = 2 , UpperCamelCase = 1 , UpperCamelCase = 128 , UpperCamelCase = [2, 2, 2, 2] , UpperCamelCase = 2 , UpperCamelCase = 2 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = encoder_stride lowerCamelCase_ = num_attention_outputs lowerCamelCase_ = embed_dim lowerCamelCase_ = embed_dim + 1 lowerCamelCase_ = resolution lowerCamelCase_ = depths lowerCamelCase_ = hidden_sizes lowerCamelCase_ = dim lowerCamelCase_ = mlp_expansion_ratio def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModel(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCamelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCamelCase_ = seq_length * self.model_tester.chunk_length else: lowerCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEfficientFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "chunk_length" , UpperCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCamelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case ( self ): """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase_ = model_class(UpperCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase_ = model(UpperCamelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
55
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Dict ) -> Optional[int]: debug_launcher(test_script.main ) def UpperCAmelCase__ ( self :Optional[int] ) -> Tuple: debug_launcher(test_ops.main )
181
"""simple docstring""" def _lowerCAmelCase ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCAmelCase ( ): return next(i for i in triangle_number_generator() if count_divisors(lowercase_ ) > 500 ) if __name__ == "__main__": print(solution())
181
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Optional[int] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''gpt_neo''' UpperCamelCase__ = ['''past_key_values'''] UpperCamelCase__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : List[str] , lowercase_ : Optional[int]=50257 , lowercase_ : int=2048 , lowercase_ : Union[str, Any]=2048 , lowercase_ : List[Any]=24 , lowercase_ : Dict=[[["global", "local"], 12]] , lowercase_ : Any=16 , lowercase_ : Optional[int]=None , lowercase_ : List[Any]=256 , lowercase_ : Dict="gelu_new" , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=1E-5 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=True , lowercase_ : int=50256 , lowercase_ : List[Any]=50256 , **lowercase_ : Optional[Any] , ): lowercase_ : Union[str, Any] = vocab_size lowercase_ : List[str] = max_position_embeddings lowercase_ : Optional[int] = hidden_size lowercase_ : Optional[int] = num_layers lowercase_ : Optional[Any] = num_heads lowercase_ : str = intermediate_size lowercase_ : Tuple = window_size lowercase_ : Any = activation_function lowercase_ : Any = resid_dropout lowercase_ : str = embed_dropout lowercase_ : Optional[int] = attention_dropout lowercase_ : Optional[int] = classifier_dropout lowercase_ : Optional[int] = layer_norm_epsilon lowercase_ : Any = initializer_range lowercase_ : List[Any] = use_cache lowercase_ : List[Any] = bos_token_id lowercase_ : Optional[int] = eos_token_id lowercase_ : Optional[int] = attention_types lowercase_ : Dict = self.expand_attention_types_params(lowercase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) @staticmethod def SCREAMING_SNAKE_CASE_ ( lowercase_ : Optional[int] ): lowercase_ : str = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ) -> Tuple: import torch lowercase_ : List[Any] = input.size() lowercase_ : Any = len(UpperCAmelCase__ ) lowercase_ : Dict = shape[dimension] lowercase_ : Optional[int] = torch.arange(0 , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Optional[int] = torch.div(sizedim - size , UpperCAmelCase__ , rounding_mode="""floor""" ) + 1 lowercase_ : Tuple = torch.arange(UpperCAmelCase__ ) + low_indices[:min_length][:, None] lowercase_ : Dict = [slice(UpperCAmelCase__ )] * rank lowercase_ : Union[str, Any] = indices lowercase_ : str = input[s] lowercase_ : Any = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) -> List[Any]: import torch lowercase_ : int = torch.arange(1 , UpperCAmelCase__ ) lowercase_ : Dict = torch.remainder(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Any = remainders == 0 lowercase_ : Union[str, Any] = candidates[divisor_indices] lowercase_ : Dict = torch.max(UpperCAmelCase__ ) return largest_divisor, torch.div(UpperCAmelCase__ , UpperCAmelCase__ , rounding_mode="""floor""" ) class __magic_name__ ( _UpperCAmelCase): @property def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="""inputs""" ) lowercase_ : Union[str, Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return self._config.num_heads def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : PreTrainedTokenizer , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): lowercase_ : int = super(lowercase_ , self ).generate_dummy_inputs( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) # We need to order the input in the way they appears in the forward() lowercase_ : Optional[int] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase_ , lowercase_ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase_ : Tuple = seqlen + 2 lowercase_ : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase_ : List[str] = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] lowercase_ : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase_ : List[Any] = ordered_inputs["""attention_mask"""].dtype lowercase_ : Dict = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return 13
239
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase, _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[str] = load_tool("""text-to-speech""" ) self.tool.setup() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowercase_ : List[str] = self.tool("""hey""" ) lowercase_ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowercase_ : Union[str, Any] = self.tool("""hey""" ) lowercase_ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
239
1
"""simple docstring""" from math import factorial def UpperCamelCase ( lowerCAmelCase__ : int = 100 ) -> Dict: """simple docstring""" return sum(map(a_ , str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
367
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int: """simple docstring""" if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('String lengths must match!' ) lowerCAmelCase_ : List[Any] = 0 for chara, chara in zip(lowerCAmelCase__ , lowerCAmelCase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
289
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
1
import qiskit def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Union[str, Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
355
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->Union[Tuple, ImagePipelineOutput]: '''simple docstring''' A_ : List[Any] = self.unet.config.sample_size A_ : List[Any] = (batch_size, 3, img_size, img_size) A_ : List[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A_ : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A_ : str = self.scheduler.schedule[t] A_ : List[str] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A_ , A_ : List[str] = self.scheduler.add_noise_to_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A_ : Dict = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : int = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A_ : Optional[Any] = self.scheduler.step_correct( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step_output.prev_sample , step_output['''derivative'''] , ) A_ : List[Any] = step_output.prev_sample A_ : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) A_ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
65
0
'''simple docstring''' lowercase : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): A : Union[str, Any] = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(snake_case__ ) A : Union[str, Any] = ''''''.join(bin(snake_case__ )[2:].zfill(8 ) for byte in data ) A : List[str] = len(snake_case__ ) % 6 != 0 if padding_needed: # The padding that will be added later A : Union[str, Any] = B'''=''' * ((6 - len(snake_case__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case__ ) % 6) else: A : Optional[Any] = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(snake_case__ ) , 6 ) ).encode() + padding ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ): A : int = ( '''argument should be a bytes-like object or ASCII string, ''' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(snake_case__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case__ , snake_case__ ): try: A : List[str] = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) A : Any = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one A : int = encoded_data[:-padding] A : List[str] = ''''''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: A : int = ''''''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data ) A : List[str] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(snake_case__ ) , 8 ) ] return bytes(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Optional[Any] = logging.get_logger(__name__) class A ( __snake_case ): __magic_name__ = ['''pixel_values'''] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : str = size if size is not None else {'''shortest_edge''': 384} A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : str = do_resize A : List[Any] = size # Default value set here for backwards compatibility where the value in config is None A : List[Any] = crop_pct if crop_pct is not None else 224 / 256 A : Optional[int] = resample A : Union[str, Any] = do_rescale A : List[str] = rescale_factor A : Union[str, Any] = do_normalize A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) A : Any = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : Dict = int(shortest_edge / crop_pct ) A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" A : int = do_resize if do_resize is not None else self.do_resize A : Tuple = crop_pct if crop_pct is not None else self.crop_pct A : Optional[Any] = resample if resample is not None else self.resample A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean A : List[str] = image_std if image_std is not None else self.image_std A : Union[str, Any] = size if size is not None else self.size A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : Any = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
3
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: # Initialise PyTorch model a__: List[str] = LxmertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) a__: Tuple = LxmertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
203
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if n == 0: return 0 a__: List[Any] = float('-inf' ) for i in range(1 , n + 1 ): a__: Optional[Any] = max( _SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , _SCREAMING_SNAKE_CASE ) ) return max_revue def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: str = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: a__: Dict = float('-inf' ) for i in range(1 , n + 1 ): a__: Optional[Any] = max( _SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) a__: Optional[int] = max_revenue return max_rev[n] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. a__: str = [float('-inf' ) for _ in range(n + 1 )] a__: Tuple = 0 for i in range(1 , n + 1 ): a__: List[str] = max_rev[i] for j in range(1 , i + 1 ): a__: Tuple = max(_SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) a__: Union[str, Any] = max_revenue_i return max_rev[n] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: if n < 0: a__: Optional[int] = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(_SCREAMING_SNAKE_CASE ) if n > len(_SCREAMING_SNAKE_CASE ): a__: List[str] = ( 'Each integral piece of rod must have a corresponding price. ' F'Got n = {n} but length of prices = {len(_SCREAMING_SNAKE_CASE )}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) def __a ( ) ->str: a__: int = [6, 10, 12, 15, 20, 23] a__: Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. a__: Any = 36 a__: Optional[int] = top_down_cut_rod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: List[Any] = bottom_up_cut_rod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: int = naive_cut_rod_recursive(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
203
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Any =get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase__ : Dict =50003 lowerCAmelCase__ : Any =50002 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : str = PLBartTokenizer UpperCamelCase__ : Tuple = None UpperCamelCase__ : Dict = False def _A ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = PLBartTokenizer(_A , language_codes='base' , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PLBartTokenizer(_A , language_codes='base' , keep_accents=_A ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.vocab_size __SCREAMING_SNAKE_CASE = [tokenizer.convert_ids_to_tokens(_A ) for x in range(end - 4 , _A )] self.assertListEqual(_A , ['__java__', '__python__', '__en_XX__', '<mask>'] ) __SCREAMING_SNAKE_CASE = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' __SCREAMING_SNAKE_CASE = tokenizer(_A ).input_ids self.assertEqual( tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) , _A , ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PLBartTokenizer(_A , language_codes='multi' , keep_accents=_A ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.vocab_size __SCREAMING_SNAKE_CASE = [tokenizer.convert_ids_to_tokens(_A ) for x in range(end - 7 , _A )] self.assertListEqual( _A , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) __SCREAMING_SNAKE_CASE = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' __SCREAMING_SNAKE_CASE = tokenizer(_A ).input_ids self.assertEqual( tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) , _A , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = '''uclanlp/plbart-python-en_XX''' UpperCamelCase__ : Dict = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase__ : int = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase__ : Union[str, Any] = [ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def _A ( cls ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) __SCREAMING_SNAKE_CASE = 1 return cls def _A ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 50_003 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def _A ( self ): '''simple docstring''' self.assertIn(_A , self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] __SCREAMING_SNAKE_CASE = self.tokenizer.decode(_A , skip_special_tokens=_A ) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , _A ) __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def _A ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [50_004, 50_001] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = PLBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _A ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __SCREAMING_SNAKE_CASE = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = targets['input_ids'] __SCREAMING_SNAKE_CASE = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 50_003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 50_001, } , )
257
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _A = 16 , _A = 88 , _A = None , _A = 1 , _A = 0.0 , _A = 32 , _A = None , _A = False , _A = None , _A = None , _A = "geglu" , _A = None , ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_A , attention_head_dim=_A , in_channels=_A , num_layers=_A , dropout=_A , norm_num_groups=_A , cross_attention_dim=_A , attention_bias=_A , sample_size=_A , num_vector_embeds=_A , activation_fn=_A , num_embeds_ada_norm=_A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __SCREAMING_SNAKE_CASE = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __SCREAMING_SNAKE_CASE = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __SCREAMING_SNAKE_CASE = [1, 0] def _A ( self , _A , _A , _A=None , _A=None , _A=None , _A = True , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __SCREAMING_SNAKE_CASE = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __SCREAMING_SNAKE_CASE = self.transformer_index_for_condition[i] __SCREAMING_SNAKE_CASE = self.transformers[transformer_index]( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , return_dict=_A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __SCREAMING_SNAKE_CASE = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __SCREAMING_SNAKE_CASE = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_A )
257
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Dict = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , *_lowerCamelCase , **_lowerCamelCase ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) if config is None: assert isinstance(self.model , _lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) a :Dict = self.model.config else: a :Union[str, Any] = config a :Any = data_args a :Dict = self.config.tgt_vocab_size if isinstance(self.config , _lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: a :Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a :Union[str, Any] = label_smoothed_nll_loss def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if self.optimizer is None: a :int = ['''bias''', '''LayerNorm.weight'''] a :List[Any] = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] a :Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a :Optional[int] = Adafactor a :Union[str, Any] = {'''scale_parameter''': False, '''relative_step''': False} else: a :Union[str, Any] = AdamW a :Any = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } a :str = self.args.learning_rate if self.sharded_ddp: a :Optional[Any] = OSS( params=_lowerCamelCase , optim=_lowerCamelCase , **_lowerCamelCase , ) else: a :Any = optimizer_cls(_lowerCamelCase , **_lowerCamelCase ) if self.lr_scheduler is None: a :Optional[Any] = self._get_lr_scheduler(_lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a :Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a :Dict = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: a :Tuple = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_lowerCamelCase ) return scheduler def SCREAMING_SNAKE_CASE__ ( self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a :Dict = model(**_lowerCamelCase , use_cache=_lowerCamelCase )[0] a :Optional[int] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models a , a :Tuple = model(**_lowerCamelCase , labels=_lowerCamelCase , use_cache=_lowerCamelCase )[:2] else: # compute label smoothed loss a :int = model(**_lowerCamelCase , use_cache=_lowerCamelCase )[0] a :List[Any] = torch.nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) a , a :Optional[Any] = self.loss_fn(_lowerCamelCase , _lowerCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = inputs.pop('''labels''' ) a , a :Optional[Any] = self._compute_loss(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return loss def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ): a :Tuple = self._prepare_inputs(_lowerCamelCase ) a :str = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a :str = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **_lowerCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a :Union[str, Any] = self._pad_tensors_to_max_len(_lowerCamelCase , gen_kwargs['''max_length'''] ) a :Tuple = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data a , a :List[str] = self._compute_loss(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a :Optional[int] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a :Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a :Optional[int] = self._pad_tensors_to_max_len(_lowerCamelCase , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): # If PAD token is not defined at least EOS token has to be defined a :int = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F''' padded to `max_length`={max_length}''' ) a :Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) a :int = tensor return padded_tensor
281
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _snake_case : def __init__( self , _lowerCamelCase , ): a :List[str] = parent a :Dict = 13 a :Optional[int] = 7 a :Optional[Any] = 30 a :Optional[Any] = self.seq_length + self.mem_len a :Tuple = 15 a :List[str] = True a :List[Any] = True a :List[Any] = 99 a :Optional[Any] = [10, 50, 80] a :Optional[int] = 32 a :List[Any] = 32 a :Dict = 4 a :List[Any] = 8 a :Optional[Any] = 128 a :Dict = 2 a :List[Any] = 2 a :str = None a :str = 1 a :List[Any] = 0 a :List[str] = 3 a :str = self.vocab_size - 1 a :Optional[Any] = 0.01 def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Tuple = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def SCREAMING_SNAKE_CASE__ ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = TFTransfoXLModel(_lowerCamelCase ) a , a :List[Any] = model(_lowerCamelCase ).to_tuple() a :List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a} a , a :Optional[int] = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = TFTransfoXLLMHeadModel(_lowerCamelCase ) a , a :Tuple = model(_lowerCamelCase ).to_tuple() a :Any = {'''input_ids''': input_ids_a, '''labels''': lm_labels} a , a :Dict = model(_lowerCamelCase ).to_tuple() a , a :Dict = model([input_ids_a, mems_a] ).to_tuple() a :str = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} a , a :Any = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = TFTransfoXLForSequenceClassification(_lowerCamelCase ) a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a)) :Optional[int] = config_and_inputs a :Union[str, Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = () if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self ): a :str = TFTransfoXLModelTester(self ) a :str = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :Any = self.model_tester.prepare_config_and_inputs_for_common() a :int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a :Any = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a :Dict = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) a :Dict = model.get_bias() assert name is None else: a :int = model.get_output_embeddings() assert x is None a :Optional[int] = model.get_bias() assert name is None def SCREAMING_SNAKE_CASE__ ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :List[Any] = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off a :Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a :Optional[Any] = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
281
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __A = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, Iterable[int]] , UpperCamelCase__ : bool , UpperCamelCase__ : int ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : str=None ): __lowerCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: __lowerCamelCase = math.floor(val / multiple ) * multiple if x < min_val: __lowerCamelCase = math.ceil(val / multiple ) * multiple return x __lowerCamelCase = (output_size, output_size) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else output_size __lowerCamelCase , __lowerCamelCase = get_image_size(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = output_size # determine new height and width __lowerCamelCase = output_height / input_height __lowerCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __lowerCamelCase = scale_width else: # fit height __lowerCamelCase = scale_height __lowerCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=UpperCamelCase__ ) __lowerCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=UpperCamelCase__ ) return (new_height, new_width) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = False , lowerCamelCase__ = 1 , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = size if size is not None else {'height': 384, 'width': 384} __lowerCamelCase = get_size_dict(lowerCamelCase__ ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = keep_aspect_ratio __lowerCamelCase = ensure_multiple_of __lowerCamelCase = resample __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = 1 , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size( lowerCamelCase__ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowerCamelCase__ , multiple=lowerCamelCase__ , ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(lowerCamelCase__ ) __lowerCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __lowerCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __lowerCamelCase = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[str]: '''simple docstring''' __lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowerCamelCase__ ): __lowerCamelCase = target_sizes.numpy() __lowerCamelCase = [] for idx in range(len(lowerCamelCase__ ) ): __lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: __lowerCamelCase = logits.argmax(dim=1 ) __lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
90
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """bridgetower_vision_model""" def __init__( self: Union[str, Any] , a: int=768 , a: List[Any]=12 , a: Tuple=3 , a: str=16 , a: Optional[Any]=288 , a: int=1 , a: List[str]=1e-05 , a: Dict=False , a: Any=True , a: Union[str, Any]=False , **a: Any , ): super().__init__(**a ) __lowerCamelCase : int = hidden_size __lowerCamelCase : Dict = num_hidden_layers __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = patch_size __lowerCamelCase : Tuple = image_size __lowerCamelCase : Tuple = initializer_factor __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : Optional[Any] = stop_gradient __lowerCamelCase : Dict = share_layernorm __lowerCamelCase : List[str] = remove_last_layer @classmethod def _snake_case ( cls: List[Any] , a: Union[str, os.PathLike] , **a: Dict ): __lowerCamelCase , __lowerCamelCase : str = cls.get_config_dict(a , **a ) if config_dict.get('model_type' ) == "bridgetower": __lowerCamelCase : int = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """bridgetower_text_model""" def __init__( self: Optional[Any] , a: Tuple=5_0265 , a: Union[str, Any]=768 , a: Dict=12 , a: Any=12 , a: int=1 , a: Tuple=3072 , a: Any="gelu" , a: str=0.1 , a: Tuple=0.1 , a: Dict=514 , a: List[str]=1 , a: str=1e-05 , a: List[str]=1 , a: int=0 , a: Dict=2 , a: Optional[int]="absolute" , a: Tuple=True , **a: Union[str, Any] , ): super().__init__(**a ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : Dict = hidden_dropout_prob __lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Optional[Any] = type_vocab_size __lowerCamelCase : List[str] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Dict = pad_token_id __lowerCamelCase : Any = bos_token_id __lowerCamelCase : str = eos_token_id @classmethod def _snake_case ( cls: str , a: Union[str, os.PathLike] , **a: Any ): __lowerCamelCase , __lowerCamelCase : Any = cls.get_config_dict(a , **a ) if config_dict.get('model_type' ) == "bridgetower": __lowerCamelCase : Tuple = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """bridgetower""" def __init__( self: str , a: Optional[int]=True , a: str="gelu" , a: Optional[int]=768 , a: List[Any]=1 , a: List[Any]=1e-05 , a: Dict=False , a: Any="add" , a: Any=12 , a: str=6 , a: List[Any]=False , a: Any=False , a: int=None , a: int=None , **a: Tuple , ): # TODO: remove this once the Hub files are updated. __lowerCamelCase : Tuple = kwargs.pop('text_config_dict' , a ) __lowerCamelCase : Union[str, Any] = kwargs.pop('vision_config_dict' , a ) super().__init__(**a ) __lowerCamelCase : int = share_cross_modal_transformer_layers __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : Tuple = hidden_size __lowerCamelCase : Optional[Any] = initializer_factor __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : List[Any] = share_link_tower_layers __lowerCamelCase : Dict = link_tower_type __lowerCamelCase : str = num_attention_heads __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : Optional[Any] = tie_word_embeddings __lowerCamelCase : Dict = init_layernorm_from_vision_encoder if text_config is None: __lowerCamelCase : str = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: __lowerCamelCase : List[Any] = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) __lowerCamelCase : Dict = BridgeTowerTextConfig(**a ) __lowerCamelCase : Tuple = BridgeTowerVisionConfig(**a ) @classmethod def _snake_case ( cls: Optional[Any] , a: BridgeTowerTextConfig , a: BridgeTowerVisionConfig , **a: str ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) __lowerCamelCase : str = self.text_config.to_dict() __lowerCamelCase : Optional[Any] = self.vision_config.to_dict() __lowerCamelCase : Tuple = self.__class__.model_type return output
194
from math import pow def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __lowerCamelCase : Optional[Any] = int(pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __lowerCamelCase , __lowerCamelCase : Optional[Any] = backtrack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , current_number + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __lowerCamelCase , __lowerCamelCase : Dict = backtrack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , current_number + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_sum, solutions_count def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
194
1
from __future__ import annotations from collections.abc import Callable snake_case : List[Any] = list[list[float | int]] def __lowerCamelCase ( UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ): """simple docstring""" a :int = len(UpperCAmelCase_ ) a :Matrix = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase_ )] a :int a :int a :int a :int a :int a :float for row in range(UpperCAmelCase_ ): for col in range(UpperCAmelCase_ ): a :Union[str, Any] = matrix[row][col] a :Optional[int] = vector[row][0] a :Optional[Any] = 0 a :List[Any] = 0 while row < size and col < size: # pivoting a :List[str] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase_ , UpperCAmelCase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: a , a :Dict = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase_ ): a :Tuple = augmented[rowa][col] / augmented[row][col] a :List[str] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase_ ): for row in range(UpperCAmelCase_ ): a :Optional[Any] = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase_ ) ] def __lowerCamelCase ( UpperCAmelCase_ : list[int] ): """simple docstring""" a :int = len(UpperCAmelCase_ ) a :Matrix = [[0 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] a :Matrix = [[0] for _ in range(UpperCAmelCase_ )] a :Matrix a :int a :int a :int for x_val, y_val in enumerate(UpperCAmelCase_ ): for col in range(UpperCAmelCase_ ): a :List[str] = (x_val + 1) ** (size - col - 1) a :Any = y_val a :Optional[int] = solve(UpperCAmelCase_ , UpperCAmelCase_ ) def interpolated_func(UpperCAmelCase_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase_ ) ) return interpolated_func def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCamelCase ( UpperCAmelCase_ : Callable[[int], int] = question_function , UpperCAmelCase_ : int = 10 ): """simple docstring""" a :list[int] = [func(UpperCAmelCase_ ) for x_val in range(1 , order + 1 )] a :list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] a :int = 0 a :Callable[[int], int] a :int for poly in polynomials: a :Union[str, Any] = 1 while func(UpperCAmelCase_ ) == poly(UpperCAmelCase_ ): x_val += 1 ret += poly(UpperCAmelCase_ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
94
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a , a :int = 1, 1 a :Any = 2 while True: a :Optional[int] = 0 a :str = fa + fa a , a :List[Any] = fa, f index += 1 for _ in str(UpperCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> Optional[int]: __lowerCAmelCase : Optional[int] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase : int = emb.weight.shape __lowerCAmelCase : str = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :str=None ) -> List[str]: __lowerCAmelCase : Optional[Any] = {} for old_key in state_dict.keys(): __lowerCAmelCase : List[str] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __lowerCAmelCase : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __lowerCAmelCase : Optional[Any] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __lowerCAmelCase : int = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __lowerCAmelCase : str = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __lowerCAmelCase : List[Any] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __lowerCAmelCase : List[Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __lowerCAmelCase : Optional[int] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __lowerCAmelCase : Optional[int] = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __lowerCAmelCase : Any = state_dict[old_key] return new_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :str = WEIGHTS_NAME ) -> Tuple: __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) for expert in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = torch.load(SCREAMING_SNAKE_CASE )["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , F'''-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block __lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , F'''-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) __lowerCAmelCase : Dict = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE ) == 1: __lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index __lowerCAmelCase : List[Any] = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin''' ) __lowerCAmelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for key in shard: __lowerCAmelCase : Any = shard_file # Add the metadata __lowerCAmelCase : Optional[Any] = {"""total_size""": total_size} __lowerCAmelCase : Dict = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , """w""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : Optional[Any] = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + """\n""" f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase , _UpperCAmelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _UpperCAmelCase = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _UpperCAmelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
232
from datetime import datetime import requests def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> bytes: __lowerCAmelCase : List[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowerCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": _UpperCAmelCase = input('Enter Video/IGTV url: ').strip() _UpperCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
232
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Any=2 , __lowerCamelCase : int=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Any="None" , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Any=None , ): UpperCamelCase :List[Any] = parent UpperCamelCase :Tuple = batch_size UpperCamelCase :Union[str, Any] = seq_length UpperCamelCase :Dict = is_training UpperCamelCase :Dict = use_input_mask UpperCamelCase :Union[str, Any] = use_token_type_ids UpperCamelCase :Any = use_labels UpperCamelCase :int = vocab_size UpperCamelCase :Tuple = hidden_size UpperCamelCase :int = num_hidden_layers UpperCamelCase :List[Any] = num_attention_heads UpperCamelCase :List[str] = intermediate_size UpperCamelCase :List[Any] = hidden_act UpperCamelCase :Any = hidden_dropout_prob UpperCamelCase :str = attention_probs_dropout_prob UpperCamelCase :Union[str, Any] = max_position_embeddings UpperCamelCase :Any = type_vocab_size UpperCamelCase :Tuple = type_sequence_label_size UpperCamelCase :str = initializer_range UpperCamelCase :Tuple = num_labels UpperCamelCase :int = num_choices UpperCamelCase :Optional[int] = relative_attention UpperCamelCase :List[Any] = position_biased_input UpperCamelCase :Optional[Any] = pos_att_type UpperCamelCase :Dict = scope def _A ( self : Dict ): UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Optional[int] = None if self.use_input_mask: UpperCamelCase :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :List[Any] = None if self.use_token_type_ids: UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :Dict = None UpperCamelCase :Dict = None UpperCamelCase :Any = None if self.use_labels: UpperCamelCase :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :Tuple = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): UpperCamelCase :Optional[int] = TFDebertaVaModel(config=__lowerCamelCase ) UpperCamelCase :List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase :Optional[int] = [input_ids, input_mask] UpperCamelCase :str = model(__lowerCamelCase ) UpperCamelCase :Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): UpperCamelCase :Optional[Any] = TFDebertaVaForMaskedLM(config=__lowerCamelCase ) UpperCamelCase :Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase :Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Dict ): UpperCamelCase :Optional[Any] = self.num_labels UpperCamelCase :Optional[int] = TFDebertaVaForSequenceClassification(config=__lowerCamelCase ) UpperCamelCase :Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase :Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): UpperCamelCase :int = self.num_labels UpperCamelCase :Optional[Any] = TFDebertaVaForTokenClassification(config=__lowerCamelCase ) UpperCamelCase :Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase :int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict ): UpperCamelCase :Optional[Any] = TFDebertaVaForQuestionAnswering(config=__lowerCamelCase ) UpperCamelCase :Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase :Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Any ): UpperCamelCase :List[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :str = config_and_inputs UpperCamelCase :Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case__ : Optional[Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : Any = False snake_case__ : Union[str, Any] = False def _A ( self : Any ): UpperCamelCase :Tuple = TFDebertaVaModelTester(self ) UpperCamelCase :Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _A ( self : Optional[int] ): self.config_tester.run_common_tests() def _A ( self : str ): UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _A ( self : Tuple ): UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _A ( self : Tuple ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def _A ( self : Tuple ): UpperCamelCase :Optional[int] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _A ( self : Union[str, Any] ): pass @slow def _A ( self : Optional[Any] ): UpperCamelCase :Dict = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) UpperCamelCase :Any = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCamelCase :Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase :Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] UpperCamelCase :Tuple = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 )
38
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Any = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = "swinv2" _UpperCamelCase : List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=32 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : List[Any] = len(a__ ) _lowerCAmelCase : Any = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Any = qkv_bias _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = drop_path_rate _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[str] = use_absolute_embeddings _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Tuple = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : Tuple = (0, 0, 0, 0)
44
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCamelCase ( nn.Module ): def __init__( self , __a , __a ): '''simple docstring''' super().__init__() __a : int = module __a : List[Any] = nn.Sequential( nn.Linear(module.in_features , __a , bias=__a ) , nn.Linear(__a , module.out_features , bias=__a ) , ) __a : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__a ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __UpperCAmelCase ( self , __a , *__a , **__a ): '''simple docstring''' return self.module(__a , *__a , **__a ) + self.adapter(__a ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module A_ = "bigscience/bloom-1b7" # Constant values A_ = 2.109659552692574 A_ = "Hello my name is" A_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) A_ = 10 def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __a : int = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __a : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map='auto' ) def __UpperCAmelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_abit.config self.assertTrue(hasattr(__a , 'quantization_config' ) ) __a : Union[str, Any] = config.to_dict() __a : Tuple = config.to_diff_dict() __a : Tuple = config.to_json_string() def __UpperCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __a : List[Any] = self.model_fpaa.get_memory_footprint() __a : List[Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __a : Tuple = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __UpperCAmelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__a , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) __a : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = BitsAndBytesConfig() __a : Tuple = True __a : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__a , device_map='auto' ) __a : str = self.tokenizer(self.input_text , return_tensors='pt' ) __a : List[Any] = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = BitsAndBytesConfig() with self.assertRaises(__a ): __a : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__a , load_in_abit=__a , device_map='auto' , bnb_abit_quant_type='nf4' , ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(__a ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__a ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(__a ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__a ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __a : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ) __a : Optional[int] = self.model_fpaa.to(torch.floataa ) __a : Tuple = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __a : List[Any] = self.model_fpaa.to('cpu' ) # Check this does not throw an error __a : Union[str, Any] = self.model_fpaa.half() # Check this does not throw an error __a : Union[str, Any] = self.model_fpaa.float() def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=__a , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): @classmethod def __UpperCAmelCase ( cls ): '''simple docstring''' __a : Any = 't5-small' __a : Tuple = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __a : int = AutoTokenizer.from_pretrained(cls.model_name ) __a : Union[str, Any] = 'Translate in German: Hello, my dog is cute' def __UpperCAmelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __a : Optional[int] = TaForConditionalGeneration._keep_in_fpaa_modules __a : List[str] = None # test with `t5-small` __a : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map='auto' ) __a : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __a : Any = model.generate(**__a ) # test with `flan-t5-small` __a : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__a , device_map='auto' ) __a : str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __a : List[Any] = model.generate(**__a ) __a : Optional[int] = modules def __UpperCAmelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __a : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __a : str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __a : List[str] = model.generate(**__a ) # test with `flan-t5-small` __a : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__a , device_map='auto' ) __a : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __a : int = model.generate(**__a ) class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # model_name __a : List[Any] = 'bigscience/bloom-560m' __a : Union[str, Any] = 't5-small' # Different types of model __a : Optional[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=__a , device_map='auto' ) # Sequence classification model __a : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__a , device_map='auto' ) # CausalLM model __a : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map='auto' ) # Seq2seq model __a : Any = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__a , device_map='auto' ) def __UpperCAmelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() def __UpperCAmelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __a : str = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__a , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __a : List[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __a : str = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 'facebook/opt-350m' super().setUp() def __UpperCAmelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __a : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __a : Tuple = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __a : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__a ) ): __a : str = LoRALayer(module.q_proj , rank=16 ) __a : str = LoRALayer(module.k_proj , rank=16 ) __a : Optional[int] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __a : List[str] = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __a : int = model.forward(**__a ) out.logits.norm().backward() for module in model.modules(): if isinstance(__a , __a ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__a , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "gpt2-xl" A_ = 3.3191854854152187
294
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CodeGenTokenizer A_ = CodeGenTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __a : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Dict = {'unk_token': '<unk>'} __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = 'lower newer' __a : Tuple = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : str = 'lower newer' __a : Tuple = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) __a : List[str] = tokens + [tokenizer.unk_token] __a : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : List[Any] = self.get_tokenizer() __a : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Any = 'lower newer' # Testing tokenization __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) __a : Dict = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens __a : int = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __a : Tuple = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens __a : Tuple = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Union[str, Any] = tokenizer.encode(__a , add_prefix_space=__a ) __a : int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token __a : Any = tokens + [rust_tokenizer.unk_token] __a : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self , *__a , **__a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __a : List[Any] = 'This is a simple input' __a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] __a : Tuple = ('This is a simple input', 'This is a pair') __a : str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __a : str = 'This is a simple input' __a : Any = ['This is a simple input looooooooong', 'This is a simple input'] __a : Optional[int] = ('This is a simple input', 'This is a pair') __a : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __a : int = tokenizer.pad_token_id __a : List[Any] = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) __a : Union[str, Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) __a : Optional[Any] = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) __a : List[Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = '$$$' __a : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) __a : Union[str, Any] = 'This is a simple input' __a : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] __a : List[Any] = tokenizer.bos_token_id __a : List[str] = tokenizer(__a ) __a : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __a : Any = tokenizer.decode(out_s.input_ids ) __a : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) __a : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' __a : Tuple = '\nif len_a > len_b: result = a\nelse: result = b' __a : Optional[int] = tokenizer.encode(__a ) __a : Union[str, Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] __a : Tuple = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
294
1