code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def _a ( SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) __lowerCAmelCase = 0 __lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: __lowerCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] __lowerCAmelCase = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] __lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def _a ( SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) __lowerCAmelCase = 0 __lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: __lowerCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] __lowerCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] __lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
92
import itertools import math def a ( snake_case__: int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( ): '''simple docstring''' lowercase_ = 2 while True: if is_prime(snake_case__ ): yield num num += 1 def a ( snake_case__: int = 10_001 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , snake_case__ ) ) if __name__ == "__main__": print(f"{solution() = }")
30
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : int = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : __lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowercase = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) __lowercase = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowercase = field(default=lowerCamelCase__ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowercase = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __UpperCAmelCase : __lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) __lowercase = field( default=lowerCamelCase__ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) __lowercase = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowercase = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def SCREAMING_SNAKE_CASE__ ( ) -> int: _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) _snake_case = import_module('tasks' ) try: _snake_case = getattr(lowerCamelCase_ , model_args.task_type ) _snake_case = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _snake_case = token_classification_task.get_labels(data_args.labels ) _snake_case = dict(enumerate(lowerCamelCase_ ) ) _snake_case = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid={label: i for i, label in enumerate(lowerCamelCase_ )} , cache_dir=model_args.cache_dir , ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _snake_case = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case = ( TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case = ( TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__A , __A ) -> Tuple[List[int], List[int]]: _snake_case = np.argmax(lowerCamelCase_ , axis=2 ) _snake_case = preds.shape _snake_case = [[] for _ in range(lowerCamelCase_ )] _snake_case = [[] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__A ) -> Dict: _snake_case = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCamelCase_ , lowerCamelCase_ ), "precision": precision_score(lowerCamelCase_ , lowerCamelCase_ ), "recall": recall_score(lowerCamelCase_ , lowerCamelCase_ ), "f1": fa_score(lowerCamelCase_ , lowerCamelCase_ ), } # Data collator _snake_case = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case = trainer.evaluate() _snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCamelCase_ ) # Predict if training_args.do_predict: _snake_case = TokenClassificationDataset( token_classification_task=lowerCamelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , labels=lowerCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _snake_case = trainer.predict(lowerCamelCase_ ) _snake_case = align_predictions(lowerCamelCase_ , lowerCamelCase_ ) _snake_case = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , lowerCamelCase_ , lowerCamelCase_ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _snake_case = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return results def SCREAMING_SNAKE_CASE__ ( __A ) -> Tuple: main() if __name__ == "__main__": main()
356
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowerCamelCase ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(lowerCAmelCase_ )][self.get_x(lowerCAmelCase_ )] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_x * x ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = 800, 600 lowercase : Tuple = imread("image_data/lena.jpg", 1) lowercase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
160
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a__ ( snake_case__ ): def __init__( self , _A , _A , _A , _A , ): """simple docstring""" super().__init__() __lowerCAmelCase = value_function __lowerCAmelCase = unet __lowerCAmelCase = scheduler __lowerCAmelCase = env __lowerCAmelCase = env.get_dataset() __lowerCAmelCase = {} for key in self.data.keys(): try: __lowerCAmelCase = self.data[key].mean() except: # noqa: E722 pass __lowerCAmelCase = {} for key in self.data.keys(): try: __lowerCAmelCase = self.data[key].std() except: # noqa: E722 pass __lowerCAmelCase = env.observation_space.shape[0] __lowerCAmelCase = env.action_space.shape[0] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" return x_in * self.stds[key] + self.means[key] def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if type(_A ) is dict: return {k: self.to_torch(_A ) for k, v in x_in.items()} elif torch.is_tensor(_A ): return x_in.to(self.unet.device ) return torch.tensor(_A , device=self.unet.device ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" for key, val in cond.items(): __lowerCAmelCase = val.clone() return x_in def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = x.shape[0] __lowerCAmelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __lowerCAmelCase = torch.full((batch_size,) , _A , device=self.unet.device , dtype=torch.long ) for _ in range(_A ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __lowerCAmelCase = self.value_function(x.permute(0 , 2 , 1 ) , _A ).sample __lowerCAmelCase = torch.autograd.grad([y.sum()] , [x] )[0] __lowerCAmelCase = self.scheduler._get_variance(_A ) __lowerCAmelCase = torch.exp(0.5 * posterior_variance ) __lowerCAmelCase = model_std * grad __lowerCAmelCase = 0 __lowerCAmelCase = x.detach() __lowerCAmelCase = x + scale * grad __lowerCAmelCase = self.reset_xa(_A , _A , self.action_dim ) __lowerCAmelCase = self.unet(x.permute(0 , 2 , 1 ) , _A ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __lowerCAmelCase = self.scheduler.step(_A , _A , _A , predict_epsilon=_A )["prev_sample"] # apply conditions to the trajectory (set the initial state) __lowerCAmelCase = self.reset_xa(_A , _A , self.action_dim ) __lowerCAmelCase = self.to_torch(_A ) return x, y def __call__( self , _A , _A=6_4 , _A=3_2 , _A=2 , _A=0.1 ): """simple docstring""" __lowerCAmelCase = self.normalize(_A , "observations" ) __lowerCAmelCase = obs[None].repeat(_A , axis=0 ) __lowerCAmelCase = {0: self.to_torch(_A )} __lowerCAmelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __lowerCAmelCase = randn_tensor(_A , device=self.unet.device ) __lowerCAmelCase = self.reset_xa(_A , _A , self.action_dim ) __lowerCAmelCase = self.to_torch(_A ) # run the diffusion process __lowerCAmelCase , __lowerCAmelCase = self.run_diffusion(_A , _A , _A , _A ) # sort output trajectories by value __lowerCAmelCase = y.argsort(0 , descending=_A ).squeeze() __lowerCAmelCase = x[sorted_idx] __lowerCAmelCase = sorted_values[:, :, : self.action_dim] __lowerCAmelCase = actions.detach().cpu().numpy() __lowerCAmelCase = self.de_normalize(_A , key="actions" ) # select the action with the highest value if y is not None: __lowerCAmelCase = 0 else: # if we didn't run value guiding, select a random action __lowerCAmelCase = np.random.randint(0 , _A ) __lowerCAmelCase = denorm_actions[selected_index, 0] return denorm_actions
92
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a__ ( snake_case__ ): _a : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_A ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase = deprecated_arg[3:] __lowerCAmelCase = not kwargs.pop(_A ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __lowerCAmelCase = kwargs.pop("tpu_name" , self.tpu_name ) __lowerCAmelCase = kwargs.pop("device_idx" , self.device_idx ) __lowerCAmelCase = kwargs.pop("eager_mode" , self.eager_mode ) __lowerCAmelCase = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**_A ) _a : str = field( default=snake_case__ , metadata={"""help""": """Name of TPU"""} , ) _a : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _a : bool = field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} ) _a : bool = field( default=snake_case__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) __lowerCAmelCase = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase = None return tpu @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.n_gpu > 0
92
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE_( self ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) lowerCamelCase_ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"}, ] , ) lowerCamelCase_ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser", }, ] , ) lowerCamelCase_ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) lowerCamelCase_ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) lowerCamelCase_ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) lowerCamelCase_ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, ] , ) lowerCamelCase_ = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(lowercase , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() lowerCamelCase_ = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowercase , lowercase ) @slow @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(lowercase ) @slow @require_tf def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowercase ) , [ {"sequence": "My name is John", "score": 0.0_0_8, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_0_7, "token": 1573, "token_str": " Chris"}, ] , ) lowerCamelCase_ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowercase ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_5_1, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_1_4, "token": 12790, "token_str": " Lyon", }, ] , ) lowerCamelCase_ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowercase ) , [ {"sequence": "My name is Patrick", "score": 0.0_0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_0_0, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_0_0, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) lowerCamelCase_ = None lowerCamelCase_ = None self.run_pipeline_test(lowercase , [] ) @require_tf def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) lowerCamelCase_ = None lowerCamelCase_ = None self.run_pipeline_test(lowercase , [] ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> int: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) lowerCamelCase_ = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Any: lowerCamelCase_ = fill_masker.tokenizer lowerCamelCase_ = fill_masker.model lowerCamelCase_ = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( lowercase , [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ] , ) lowerCamelCase_ = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( lowercase , [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ] , ) lowerCamelCase_ = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( lowercase , [ [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ], [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ], ] , ) with self.assertRaises(lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowercase ): fill_masker("This is" ) self.run_test_top_k(lowercase , lowercase ) self.run_test_targets(lowercase , lowercase ) self.run_test_top_k_targets(lowercase , lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(lowercase , lowercase ) self.fill_mask_with_multiple_masks(lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> List[Any]: lowerCamelCase_ = tokenizer.get_vocab() lowerCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase , targets=lowercase ) lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( lowercase , [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ] , ) lowerCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowercase ) lowerCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowercase ) ) # Call argument lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase ) self.assertEqual( lowercase , [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ] , ) lowerCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowercase ) lowerCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowercase ) ) # Score equivalence lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase ) lowerCamelCase_ = [top_mask["token_str"] for top_mask in outputs] lowerCamelCase_ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase ) == set(lowercase ): lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase ) lowerCamelCase_ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowercase ) , nested_simplify(lowercase ) ) # Raises with invalid with self.assertRaises(lowercase ): lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowercase ): lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""] ) with self.assertRaises(lowercase ): lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , targets="" ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Any: lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase , top_k=2 ) lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( lowercase , [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ] , ) lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( lowercase , [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ] , ) self.assertEqual(nested_simplify(lowercase ) , nested_simplify(lowercase ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> List[str]: lowerCamelCase_ = tokenizer.get_vocab() lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) # top_k=2, ntargets=3 lowerCamelCase_ = sorted(vocab.keys() )[:3] lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase_ = [el["token_str"] for el in sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase ).issubset(lowercase ): lowerCamelCase_ = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowercase ) , nested_simplify(lowercase ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) lowerCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase_ = sorted(vocab.keys() )[:3] lowerCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase_ = fill_masker(f'My name is {tokenizer.mask_token}' , targets=lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowercase ) , 3 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Dict: lowerCamelCase_ = FillMaskPipeline(model=lowercase , tokenizer=lowercase ) lowerCamelCase_ = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( lowercase , [ [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ], [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ], [ {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, {"sequence": ANY(lowercase ), "score": ANY(lowercase ), "token": ANY(lowercase ), "token_str": ANY(lowercase )}, ], ] , )
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
47
0
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[Any] ) -> bool: _lowerCAmelCase : List[str] = len(_lowerCAmelCase ) _lowerCAmelCase : Dict = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCAmelCase : List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCAmelCase : int = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCAmelCase : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: _lowerCAmelCase : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
309
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_:List[Any] = """▁""" SCREAMING_SNAKE_CASE_:int = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE_:Any = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } SCREAMING_SNAKE_CASE_:Optional[Any] = { """google/pegasus-xsum""": 512, } SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = ["input_ids", "attention_mask"] def __init__( self, lowerCamelCase__, lowerCamelCase__="<pad>", lowerCamelCase__="</s>", lowerCamelCase__="<unk>", lowerCamelCase__="<mask_2>", lowerCamelCase__="<mask_1>", lowerCamelCase__=None, lowerCamelCase__=103, lowerCamelCase__ = None, **lowerCamelCase__, ): A : int = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase__ )}, but is''' f''' {type(lowerCamelCase__ )}''' ) A : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase__ ), self.offset - 1 ) ] if len(set(lowerCamelCase__ ) ) != len(lowerCamelCase__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) A : int = additional_special_tokens_extended else: A : Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2, self.offset )] A : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase__, unk_token=lowerCamelCase__, mask_token=lowerCamelCase__, pad_token=lowerCamelCase__, mask_token_sent=lowerCamelCase__, offset=lowerCamelCase__, additional_special_tokens=lowerCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase__, ) A : Union[str, Any] = mask_token_sent A : Optional[Any] = vocab_file A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) # add special tokens to encoder dict A : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) A : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _lowerCAmelCase ( self ): return len(self.sp_model ) + self.offset def _lowerCAmelCase ( self ): A : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A : List[Any] = self.__dict__.copy() A : Union[str, Any] = None return state def __setstate__( self, lowerCamelCase__ ): A : List[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): A : int = {} A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.encode(lowerCamelCase__, out_type=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A : List[str] = self.sp_model.piece_to_id(lowerCamelCase__ ) return sp_id + self.offset def _lowerCAmelCase ( self, lowerCamelCase__ ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = [] A : Optional[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase__ ) + token A : int = [] else: current_sub_tokens.append(lowerCamelCase__ ) out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def _lowerCAmelCase ( self, lowerCamelCase__=False ): return 1 def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = False ): if already_has_special_tokens: return self._special_token_mask(lowerCamelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : Any = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__, """wb""" ) as fi: A : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
116
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'CLIPImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A=None , A=None , **A ) -> Union[str, Any]: UpperCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , **A ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase : int = self.tokenizer(A , return_tensors=A , **A ) if images is not None: UpperCAmelCase : List[str] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> List[str]: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = self.tokenizer.model_input_names UpperCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __lowercase ( snake_case_ : Any ,snake_case_ : List[str] ,snake_case_ : Optional[int] ,snake_case_ : Any=1024 ) ->str: '''simple docstring''' __A : int = [], [] __A : Tuple = list(zip(_A ,_A ) ) __A : str = sorted_examples[0] def is_too_big(snake_case_ : List[str] ): return tok(_A ,return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __A : List[str] = new_src + """ """ + src __A : Dict = new_tgt + """ """ + tgt if is_too_big(_A ) or is_too_big(_A ): # cant fit, finalize example finished_src.append(_A ) finished_tgt.append(_A ) __A : Optional[int] = src, tgt else: # can fit, keep adding __A : Optional[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_A ) finished_tgt.append(_A ) return finished_src, finished_tgt def __lowercase ( snake_case_ : Tuple ,snake_case_ : str ,snake_case_ : int ,snake_case_ : Tuple ) ->str: '''simple docstring''' __A : int = Path(_A ) save_path.mkdir(exist_ok=_A ) for split in ["train"]: __A : Any = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" __A : Any = [x.rstrip() for x in Path(_A ).open().readlines()] __A : Optional[int] = [x.rstrip() for x in Path(_A ).open().readlines()] __A : Optional[Any] = pack_examples(_A ,_A ,_A ,_A ) print(F"""packed {split} split from {len(_A )} examples -> {len(_A )}.""" ) Path(save_path / F"""{split}.source""" ).open('''w''' ).write('''\n'''.join(_A ) ) Path(save_path / F"""{split}.target""" ).open('''w''' ).write('''\n'''.join(_A ) ) for split in ["val", "test"]: __A : List[Any] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(_A ,save_path / F"""{split}.source""" ) shutil.copyfile(_A ,save_path / F"""{split}.target""" ) def __lowercase ( ) ->Union[str, Any]: '''simple docstring''' __A : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--tok_name''' ,type=_A ,help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' ,type=_A ,default=128 ) parser.add_argument('''--data_dir''' ,type=_A ) parser.add_argument('''--save_path''' ,type=_A ) __A : int = parser.parse_args() __A : Any = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_A ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
179
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowercase ( _A , _A , _A ) -> int: SCREAMING_SNAKE_CASE : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : int = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } SCREAMING_SNAKE_CASE : List[Any] = F"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : List[str] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_A , exist_ok=_A ) SCREAMING_SNAKE_CASE : int = os.path.join(_A , """README.md""" ) print(F"Generating {path}" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(_A ) # make sure we are under the root of the project UpperCAmelCase__ : List[str] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase__ : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model_name.split("""-""") UpperCAmelCase__ : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
245
0
def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : Dict = [] UpperCamelCase__ : Union[str, Any] = 1 while len(__lowerCAmelCase ) < 1E6: constant.append(str(__lowerCAmelCase ) ) i += 1 UpperCamelCase__ : Dict = "".join(__lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
196
import re def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: UpperCamelCase__ : Union[str, Any] = re.compile( R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" ) return bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] ='''0094702343221''' print(is_sri_lankan_phone_number(phone))
196
1
from statistics import mean, stdev def SCREAMING_SNAKE_CASE__ ( __a , __a = 3 ): snake_case_ : int = min(__a ) snake_case_ : Union[str, Any] = max(__a ) # normalize data return [round((x - x_min) / (x_max - x_min) , __a ) for x in data] def SCREAMING_SNAKE_CASE__ ( __a , __a = 3 ): snake_case_ : List[Any] = mean(__a ) snake_case_ : int = stdev(__a ) # standardize data return [round((x - mu) / (sigma) , __a ) for x in data]
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :str = field( default=A__ , metadata={"help": "Model type selected in the list: " + ", ".join(A__ )} ) UpperCAmelCase_ :str = field( default=A__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) UpperCAmelCase_ :int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase_ :int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) UpperCAmelCase_ :int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) UpperCAmelCase_ :int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) UpperCAmelCase_ :bool = field( default=A__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) UpperCAmelCase_ :bool = field( default=A__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) UpperCAmelCase_ :float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) UpperCAmelCase_ :int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) UpperCAmelCase_ :int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) UpperCAmelCase_ :int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[Any] = "train" UpperCAmelCase_ :Dict = "dev" class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :SquadDataTrainingArguments UpperCAmelCase_ :List[SquadFeatures] UpperCAmelCase_ :Split UpperCAmelCase_ :bool def __init__( self , __A , __A , __A = None , __A = Split.train , __A = False , __A = None , __A = "pt" , ) -> int: lowerCAmelCase_ :List[Any] = args lowerCAmelCase_ :Any = is_language_sensitive lowerCAmelCase_ :Optional[Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A , __A ): try: lowerCAmelCase_ :Tuple = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) lowerCAmelCase_ :Optional[int] = mode # Load data features from cache or dataset file lowerCAmelCase_ :List[str] = """v2""" if args.version_2_with_negative else """v1""" lowerCAmelCase_ :int = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ :Union[str, Any] = cached_features_file + """.lock""" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: lowerCAmelCase_ :Dict = time.time() lowerCAmelCase_ :str = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCAmelCase_ :str = self.old_features["""features"""] lowerCAmelCase_ :Tuple = self.old_features.get("""dataset""" , __A ) lowerCAmelCase_ :List[Any] = self.old_features.get("""examples""" , __A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" """ future run""" ) else: if mode == Split.dev: lowerCAmelCase_ :Any = self.processor.get_dev_examples(args.data_dir ) else: lowerCAmelCase_ :str = self.processor.get_train_examples(args.data_dir ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=__A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__A , ) lowerCAmelCase_ :str = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , __A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self , __A ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCAmelCase_ :int = self.features[i] lowerCAmelCase_ :List[Any] = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCAmelCase_ :Tuple = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCAmelCase_ :Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCAmelCase_ :Optional[int] = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCAmelCase_ :List[str] = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCAmelCase_ :List[str] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCAmelCase_ :Optional[Any] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCAmelCase_ :Optional[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCAmelCase_ :List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
1
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ :str = values[index] + knapsack( lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def snake_case_ ( A_ : Dict, A_ : str, A_ : str, A_ : Path, A_ : str = None, A_ : str = None, A_ : str = None, ): '''simple docstring''' if config_name_or_path is None: _lowerCamelCase : Dict = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: _lowerCamelCase : Optional[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _lowerCamelCase : Union[str, Any] = question_encoder_name_or_path _lowerCamelCase : Optional[int] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. _lowerCamelCase : Optional[Any] = RagConfig.from_pretrained(A_ ) _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(A_ ) _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(A_ ) _lowerCamelCase : Optional[int] = gen_config _lowerCamelCase : List[str] = question_encoder_config _lowerCamelCase : Union[str, Any] = model_class.from_pretrained_question_encoder_generator( A_, A_, config=A_ ) rag_model.save_pretrained(A_ ) # Sanity check. model_class.from_pretrained(A_ ) # Save tokenizers. _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(A_ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(A_ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
72
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _lowerCamelCase : Optional[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _lowerCamelCase : Any = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _lowerCamelCase : str = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _lowerCamelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : int = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) )
72
1
"""simple docstring""" import numpy as np from transformers import Pipeline def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Optional[int] = np.max(a_, axis=-1, keepdims=a_ ) lowerCamelCase : Dict = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=a_ ) class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self , **UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : Optional[int] = {} if "second_text" in kwargs: lowerCamelCase : str = kwargs['second_text'] return preprocess_kwargs, {}, {} def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Optional[int]: return self.tokenizer(UpperCAmelCase_ , text_pair=UpperCAmelCase_ , return_tensors=self.framework ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Union[str, Any]: return self.model(**UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> str: lowerCamelCase : Optional[Any] = model_outputs.logits[0].numpy() lowerCamelCase : str = softmax(UpperCAmelCase_ ) lowerCamelCase : str = np.argmax(UpperCAmelCase_ ) lowerCamelCase : Tuple = self.model.config.idalabel[best_class] lowerCamelCase : Dict = probabilities[best_class].item() lowerCamelCase : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
205
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'sew-d' def __init__( self , UpperCAmelCase_=32 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_=2 , UpperCAmelCase_=512 , UpperCAmelCase_=256 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=("p2c", "c2p") , UpperCAmelCase_="layer_norm" , UpperCAmelCase_="gelu_python" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-7 , UpperCAmelCase_=1E-5 , UpperCAmelCase_="group" , UpperCAmelCase_="gelu" , UpperCAmelCase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase_=False , UpperCAmelCase_=128 , UpperCAmelCase_=16 , UpperCAmelCase_=True , UpperCAmelCase_=0.05 , UpperCAmelCase_=10 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0 , UpperCAmelCase_=10 , UpperCAmelCase_=0 , UpperCAmelCase_="mean" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=256 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , **UpperCAmelCase_ , ) -> Optional[Any]: super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase : Any = hidden_size lowerCamelCase : Any = feat_extract_norm lowerCamelCase : List[str] = feat_extract_activation lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : Any = list(UpperCAmelCase_ ) lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = conv_bias lowerCamelCase : Optional[int] = num_conv_pos_embeddings lowerCamelCase : str = num_conv_pos_embedding_groups lowerCamelCase : Optional[int] = len(self.conv_dim ) lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : str = squeeze_factor lowerCamelCase : Any = max_position_embeddings lowerCamelCase : List[Any] = position_buckets lowerCamelCase : Union[str, Any] = share_att_key lowerCamelCase : Optional[int] = relative_attention lowerCamelCase : Tuple = norm_rel_ebd lowerCamelCase : Union[str, Any] = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : Tuple = hidden_dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : List[str] = feat_proj_dropout lowerCamelCase : List[str] = final_dropout lowerCamelCase : str = layer_norm_eps lowerCamelCase : int = feature_layer_norm_eps lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Any = apply_spec_augment lowerCamelCase : Optional[int] = mask_time_prob lowerCamelCase : Optional[Any] = mask_time_length lowerCamelCase : str = mask_time_min_masks lowerCamelCase : List[Any] = mask_feature_prob lowerCamelCase : int = mask_feature_length lowerCamelCase : List[Any] = mask_feature_min_masks # ctc loss lowerCamelCase : Optional[Any] = ctc_loss_reduction lowerCamelCase : Union[str, Any] = ctc_zero_infinity # sequence classification lowerCamelCase : Optional[Any] = use_weighted_layer_sum lowerCamelCase : Dict = classifier_proj_size @property def _UpperCamelCase ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
205
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='Salesforce/blip-image-captioning-base' lowerCamelCase__ =( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) lowerCamelCase__ ='image_captioner' lowerCamelCase__ =AutoModelForVisionaSeq lowerCamelCase__ =['image'] lowerCamelCase__ =['text'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.pre_processor(images=a_ , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.model.generate(**a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.pre_processor.batch_decode(a_ , skip_special_tokens=a_ )[0].strip()
102
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE : Any = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() SCREAMING_SNAKE_CASE : Union[str, Any] = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE : int = re.compile(rF'^({joined_dirs}).*?\.py$') SCREAMING_SNAKE_CASE : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
102
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def A_ ( A__ , A__ ) -> np.array: a__ : Optional[Any] = F'{sampling_rate}' a__ : Dict = '1' a__ : Optional[Any] = 'f32le' a__ : str = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: a__ : int = ffmpeg_process.communicate(A__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error a__ : List[Any] = output_stream[0] a__ : Union[str, Any] = np.frombuffer(A__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def A_ ( A__ , A__ , A__ = "f32le" , ) -> Optional[int]: a__ : Dict = F'{sampling_rate}' a__ : Optional[int] = '1' if format_for_conversion == "s16le": a__ : Union[str, Any] = 2 elif format_for_conversion == "f32le": a__ : Optional[Any] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) a__ : Dict = platform.system() if system == "Linux": a__ : Tuple = 'alsa' a__ : Any = 'default' elif system == "Darwin": a__ : Tuple = 'avfoundation' a__ : Tuple = ':0' elif system == "Windows": a__ : Tuple = 'dshow' a__ : Optional[Any] = 'default' a__ : Optional[int] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] a__ : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample a__ : List[Any] = _ffmpeg_stream(A__ , A__ ) for item in iterator: yield item def A_ ( A__ , A__ , A__ = None , A__ = None , A__ = "f32le" , ) -> Any: if stream_chunk_s is not None: a__ : str = stream_chunk_s else: a__ : Any = chunk_length_s a__ : List[str] = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ ) if format_for_conversion == "s16le": a__ : Any = np.intaa a__ : Dict = 2 elif format_for_conversion == "f32le": a__ : Any = np.floataa a__ : List[str] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: a__ : int = chunk_length_s / 6 a__ : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A__ , (int, float) ): a__ : Optional[Any] = [stride_length_s, stride_length_s] a__ : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample a__ : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample a__ : int = datetime.datetime.now() a__ : Optional[Any] = datetime.timedelta(seconds=A__ ) for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ): # Put everything back in numpy scale a__ : str = np.frombuffer(item['raw'] , dtype=A__ ) a__ : Any = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) a__ : Dict = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def A_ ( A__ , A__ , A__ , A__ = False ) -> Dict: a__ : Optional[int] = B'' a__ , a__ : Optional[Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) a__ : Any = 0 for raw in iterator: acc += raw if stream and len(A__ ) < chunk_len: a__ : int = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A__ ) >= chunk_len: # We are flushing the accumulator a__ : Tuple = (_stride_left, stride_right) a__ : Dict = {'raw': acc[:chunk_len], 'stride': stride} if stream: a__ : List[str] = False yield item a__ : Dict = stride_left a__ : Tuple = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A__ ) > stride_left: a__ : List[str] = {'raw': acc, 'stride': (_stride_left, 0)} if stream: a__ : Optional[Any] = False yield item def A_ ( A__ , A__ ) -> List[Any]: a__ : str = 2**24 # 16Mo try: with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process: while True: a__ : Optional[int] = ffmpeg_process.stdout.read(A__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
225
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase : Optional[int] = data_utils.TransfoXLCorpus lowercase : List[Any] = data_utils lowercase : Tuple = data_utils def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: a__ : int = pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ : List[Any] = corpus.vocab.__dict__ torch.save(A__ , A__ ) a__ : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Union[str, Any] = os.path.abspath(A__ ) a__ : Optional[Any] = os.path.abspath(A__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ : Dict = TransfoXLConfig() else: a__ : Dict = TransfoXLConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) a__ : Optional[int] = TransfoXLLMHeadModel(A__ ) a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model a__ : Any = os.path.join(A__ , A__ ) a__ : Dict = os.path.join(A__ , A__ ) print(F'Save PyTorch model to {os.path.abspath(A__ )}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {os.path.abspath(A__ )}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
225
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCAmelCase = parse(importlib.metadata.version("""torch""")) def UpperCAmelCase_ (__a : Union[str, Version] , __a : str , __a : str ): """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _a : Optional[Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(__a , __a ): _a : Dict = parse(importlib.metadata.version(__a ) ) return operation(__a , parse(__a ) ) def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" return compare_versions(__a , __a , __a )
271
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ,_a : T ): '''simple docstring''' _a : List[str] = data _a : Node[T] | None = None def __str__( self : Dict ): '''simple docstring''' return F"""{self.data}""" class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' _a : Tuple = self.top while node: yield node.data _a : int = node.next def __str__( self : str ): '''simple docstring''' return "->".join([str(_a ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __lowercase ( self : str ): '''simple docstring''' return self.top is None def __lowercase ( self : List[Any] ,_a : T ): '''simple docstring''' _a : int = Node(_a ) if not self.is_empty(): _a : Optional[Any] = self.top _a : List[str] = node def __lowercase ( self : Tuple ): '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top ,_a ) _a : List[Any] = self.top _a : int = self.top.next return pop_node.data def __lowercase ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
271
1
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if nth_term == "": return [""] A_ : Tuple = int(lowerCamelCase__ ) A_ : List[Any] = int(lowerCamelCase__ ) A_ : list[str] = [] for temp in range(int(lowerCamelCase__ ) ): series.append(f'1 / {pow(temp + 1 , int(lowerCamelCase__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase :Dict = int(input('''Enter the last number (nth term) of the P-Series''')) lowerCamelCase :List[str] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
135
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , lowercase=2 , ): A_ : List[str] = parent A_ : str = batch_size A_ : Optional[Any] = image_size A_ : List[str] = patch_size A_ : List[str] = num_channels A_ : List[str] = is_training A_ : str = use_labels A_ : List[str] = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[int] = type_sequence_label_size A_ : Any = initializer_range A_ : int = scope A_ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Dict = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def _a (self ): A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[Any] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _a (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = ViTModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = ViTForMaskedImageModeling(config=lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : Any = ViTForMaskedImageModeling(lowercase ) model.to(lowercase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[int] = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Dict = self.type_sequence_label_size A_ : str = ViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Any = 1 A_ : str = ViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): A_ : str = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ) : Optional[int] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def _a (self ): A_ : Any = ViTModelTester(self ) A_ : str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = ViTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _a (self ): A_ : Optional[int] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowercase ) A_ : List[str] = self.default_image_processor A_ : Tuple = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : str = model(**lowercase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. A_ : Optional[int] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowercase ) A_ : List[Any] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) A_ : Dict = prepare_img() A_ : str = image_processor(images=lowercase , return_tensors="""pt""" ) A_ : int = inputs.pixel_values.to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(lowercase , interpolate_pos_encoding=lowercase ) # verify the logits A_ : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase ) A_ : List[Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _a (self ): A_ : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : Any = prepare_img() A_ : List[str] = image_processor(images=lowercase , return_tensors="""pt""" ) A_ : Any = inputs.pixel_values.to(lowercase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : Optional[Any] = model(lowercase )
135
1
def a ( _UpperCAmelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = int(_UpperCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = divmod(_UpperCamelCase , 2 ) return binary_recursive(_UpperCamelCase ) + str(_UpperCamelCase ) def a ( _UpperCAmelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : str = str(_UpperCamelCase ).strip() if not number: raise ValueError('''No input value was provided''' ) __UpperCAmelCase : List[Any] = '''-''' if number.startswith('''-''' ) else '''''' __UpperCAmelCase : List[Any] = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'{negative}0b{binary_recursive(int(_UpperCamelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
226
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
337
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[10, 20, 30, 40] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , ) -> int: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = num_channels lowerCamelCase = embeddings_size lowerCamelCase = hidden_sizes lowerCamelCase = depths lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_act lowerCamelCase = num_labels lowerCamelCase = scope lowerCamelCase = len(A ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[int]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , A , A , A ) -> List[Any]: '''simple docstring''' lowerCamelCase = TFResNetModel(config=A ) lowerCamelCase = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , A , A , A ) -> Any: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFResNetForImageClassification(A ) lowerCamelCase = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Tuple = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase : str = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase : List[Any] = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : int = False UpperCamelCase : Any = False UpperCamelCase : List[str] = False def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = TFResNetModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=A , has_text_modality=A ) def __A ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> int: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def __A ( self ) -> int: '''simple docstring''' pass def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(A ) lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(A , A , A ): lowerCamelCase = model_class(A ) lowerCamelCase = model(**self._prepare_for_class(A , A ) ) lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase = layer_type lowerCamelCase = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True check_hidden_states_output(A , A , A ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> str: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFResNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> Optional[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=A , return_tensors="""tf""" ) # forward pass lowerCamelCase = model(**A ) # verify the logits lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowerCamelCase = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A , atol=1e-4 ) )
360
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) UpperCAmelCase : Dict = tf.data.AUTOTUNE def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCamelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCamelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCamelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCamelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCamelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCamelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCamelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCamelCase__ , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCamelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCamelCase__ , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCamelCase__ , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCamelCase__ , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCamelCase__ , default=0.1_5 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCamelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowerCamelCase = parser.parse_args() return args def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' try: if args.tpu_name: lowerCamelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowerCamelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCamelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCamelCase__ ) return tpu def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' lowerCamelCase = 0 for file in file_list: lowerCamelCase = file.split("""/""" )[-1] lowerCamelCase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCamelCase__ ).group(1 ) lowerCamelCase = int(lowerCamelCase__ ) num_samples += sample_count return num_samples def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=None ): '''simple docstring''' lowerCamelCase = count_samples(lowerCamelCase__ ) lowerCamelCase = tf.data.Dataset.from_tensor_slices(lowerCamelCase__ ) if shuffle: lowerCamelCase = dataset.shuffle(len(lowerCamelCase__ ) ) lowerCamelCase = tf.data.TFRecordDataset(lowerCamelCase__ , num_parallel_reads=lowerCamelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowerCamelCase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCamelCase__ ) ) lowerCamelCase = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowerCamelCase = dataset.shuffle(args.shuffle_buffer_size ) lowerCamelCase = dataset.batch(lowerCamelCase__ , drop_remainder=lowerCamelCase__ ) lowerCamelCase = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) lowerCamelCase = dataset.prefetch(lowerCamelCase__ ) return dataset def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' if not args.no_tpu: lowerCamelCase = initialize_tpu(lowerCamelCase__ ) lowerCamelCase = tf.distribute.TPUStrategy(lowerCamelCase__ ) else: lowerCamelCase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer ) lowerCamelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowerCamelCase = tokenizer.vocab_size lowerCamelCase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowerCamelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowerCamelCase = count_samples(lowerCamelCase__ ) lowerCamelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowerCamelCase = steps_per_epoch * args.num_epochs with strategy.scope(): lowerCamelCase = TFAutoModelForMaskedLM.from_config(lowerCamelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowerCamelCase , lowerCamelCase = create_optimizer( num_train_steps=lowerCamelCase__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCamelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCamelCase__ : Optional[Any] ): lowerCamelCase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCamelCase__ , lowerCamelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowerCamelCase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCamelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCamelCase__ : List[Any] ): # TF really needs an isin() function lowerCamelCase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowerCamelCase , lowerCamelCase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCamelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCamelCase__ , ) return batch lowerCamelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowerCamelCase = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowerCamelCase = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , ) lowerCamelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCamelCase__ ) ) model.fit( lowerCamelCase__ , validation_data=lowerCamelCase__ , epochs=args.num_epochs , callbacks=lowerCamelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase : Tuple = parse_args() main(args)
66
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } SCREAMING_SNAKE_CASE__ = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off SCREAMING_SNAKE_CASE__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , lowercase = None , lowercase=None , lowercase=False , **lowercase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase = legacy_behaviour super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , tokenizer_file=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowercase , **lowercase , ) lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase = 1 lowerCAmelCase = len(self.sp_model ) lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase ) } lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" lowerCAmelCase = self.lang_code_to_id[self._src_lang] lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase ) -> int: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ) -> str: return self._src_lang @src_lang.setter def _snake_case ( self , lowercase ) -> None: lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) lowerCAmelCase = [1] * len(self.prefix_tokens ) lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase = src_lang lowerCAmelCase = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCAmelCase = self.convert_tokens_to_ids(lowercase ) lowerCAmelCase = tgt_lang_id return inputs def _snake_case ( self ) -> Dict: lowerCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def _snake_case ( self , lowercase ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase = self.sp_model.PieceToId(lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , lowercase ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , lowercase ) -> List[str]: lowerCAmelCase = """""".join(lowercase ).replace(lowercase , """ """ ).strip() return out_string def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def _snake_case ( self , lowercase , lowercase = "eng_Latn" , lowercase = None , lowercase = "fra_Latn" , **lowercase , ) -> BatchEncoding: lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def _snake_case ( self ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , lowercase ) -> None: lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowerCAmelCase = [] lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase = [self.cur_lang_code] lowerCAmelCase = [self.eos_token_id] def _snake_case ( self , lowercase ) -> None: lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: lowerCAmelCase = [] lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase = [self.cur_lang_code] lowerCAmelCase = [self.eos_token_id]
46
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : Dict = list(range(len(_UpperCamelCase ) ) ) snake_case_ : Dict = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Dict = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
0
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Any = len(SCREAMING_SNAKE_CASE__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCamelCase : Union[str, Any] = i + 1 else: __lowerCamelCase : Union[str, Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 1_1, 1_5], 9) = }""")
351
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase_ = logging.get_logger(__name__) class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: List[str] , *a: List[Any] , **a: Optional[Any] ): warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , a , ) super().__init__(*a , **a )
194
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : List[str] = """audio-spectrogram-transformer""" def __init__( self : List[Any] , __UpperCAmelCase : str=768 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : int=1e-12 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=10 , __UpperCAmelCase : List[Any]=10 , __UpperCAmelCase : List[str]=1024 , __UpperCAmelCase : str=128 , **__UpperCAmelCase : Dict , ): super().__init__(**__UpperCAmelCase) a : Any = hidden_size a : Tuple = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Optional[int] = initializer_range a : Any = layer_norm_eps a : Optional[int] = patch_size a : Optional[Any] = qkv_bias a : Optional[Any] = frequency_stride a : Optional[Any] = time_stride a : Tuple = max_length a : Optional[Any] = num_mel_bins
40
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline a__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') a__ = parser.parse_args() a__ = '''cpu''' a__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' a__ = '''path-to-your-trained-model''' a__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: a__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a__ = pipe.to(device) # to channels last a__ = pipe.unet.to(memory_format=torch.channels_last) a__ = pipe.vae.to(memory_format=torch.channels_last) a__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: a__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex a__ = torch.randn(2, 4, 64, 64) a__ = torch.rand(1) * 999 a__ = torch.randn(2, 77, 768) a__ = (sample, timestep, encoder_hidden_status) try: a__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: a__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) a__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) a__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: a__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute a__ = 666 a__ = torch.Generator(device).manual_seed(seed) a__ = {'''generator''': generator} if args.steps is not None: a__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): a__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[int] =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE_: Optional[Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : a__ : str = field( default=UpperCamelCase__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase__ )} ) a__ : str = field( default=UpperCamelCase__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a__ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : int = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a__ : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a__ : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a__ : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a__ : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class __A ( UpperCamelCase__ ): a__ : str = """train""" a__ : List[Any] = """dev""" class __A ( UpperCamelCase__ ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__(self : Optional[int] , __a : SquadDataTrainingArguments , __a : PreTrainedTokenizer , __a : Optional[int] = None , __a : Union[str, Split] = Split.train , __a : Optional[bool] = False , __a : Optional[str] = None , __a : Optional[str] = "pt" , ): UpperCAmelCase_ = args UpperCAmelCase_ = is_language_sensitive UpperCAmelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__a , __a ): try: UpperCAmelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) UpperCAmelCase_ = mode # Load data features from cache or dataset file UpperCAmelCase_ = "v2" if args.version_2_with_negative else "v1" UpperCAmelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not args.overwrite_cache: UpperCAmelCase_ = time.time() UpperCAmelCase_ = torch.load(__a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase_ = self.old_features["features"] UpperCAmelCase_ = self.old_features.get("dataset" , __a ) UpperCAmelCase_ = self.old_features.get("examples" , __a ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: UpperCAmelCase_ = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase_ = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase_ , UpperCAmelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=__a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__a , ) UpperCAmelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Dict , __a : Optional[int] ): # Convert to Tensors and build dataset UpperCAmelCase_ = self.features[i] UpperCAmelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
1
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = False , _UpperCamelCase = 100 , _UpperCamelCase = 0.01 , _UpperCamelCase = 1 , ): __lowerCAmelCase : Any = False __lowerCAmelCase : Dict = search_prob __lowerCAmelCase : List[Any] = start_temperate __lowerCAmelCase : Dict = [] __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Union[str, Any] = None while not search_end: __lowerCAmelCase : Tuple = current_state.score() if best_state is None or current_score > best_state.score(): __lowerCAmelCase : Optional[Any] = current_state scores.append(_UpperCamelCase ) iterations += 1 __lowerCAmelCase : int = None __lowerCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __lowerCAmelCase : str = random.randint(0 , len(_UpperCamelCase ) - 1 ) # picking a random neighbor __lowerCAmelCase : Optional[int] = neighbors.pop(_UpperCamelCase ) __lowerCAmelCase : int = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __lowerCAmelCase : int = change * -1 # in case we are finding minimum if change > 0: # improves the solution __lowerCAmelCase : List[str] = picked_neighbor else: __lowerCAmelCase : Union[str, Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __lowerCAmelCase : Optional[Any] = picked_neighbor __lowerCAmelCase : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __lowerCAmelCase : List[str] = True else: __lowerCAmelCase : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_UpperCamelCase ) , _UpperCamelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCamelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) lowerCamelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): return (3 * x**2) - (6 * y) lowerCamelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'{local_min.score()}' ) lowerCamelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'{local_min.score()}' )
182
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
182
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor A : int = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[int] , *__magic_name__ : str , **__magic_name__ : Tuple ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
118
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = CLIPTokenizer _lowerCamelCase = CLIPTokenizerFast _lowerCamelCase = True _lowerCamelCase = {} _lowerCamelCase = False def lowercase ( self : Tuple ) -> int: super().setUp() # fmt: off lowercase : Dict = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase : List[Any] = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowercase : List[str] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowercase : Union[str, Any] = {'unk_token': '<unk>'} lowercase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowercase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def lowercase ( self : Dict, **lowerCAmelCase : Optional[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Optional[Any], **lowerCAmelCase : Tuple ) -> str: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : List[Any] ) -> Optional[Any]: lowercase : int = 'lower newer' lowercase : str = 'lower newer' return input_text, output_text def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : str = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase : Union[str, Any] = 'lower newer' lowercase : List[str] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowercase : List[str] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowercase : int = tokens + [tokenizer.unk_token] lowercase : Optional[int] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase ) @require_ftfy def lowercase ( self : Tuple ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase, **lowerCAmelCase ) lowercase : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase, **lowerCAmelCase ) lowercase : Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowercase : int = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : Any = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase : Optional[int] = 'xa\u0303y' + ' ' + 'x\xe3y' lowercase : int = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : Optional[Any] = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) # Test that the tokenization is identical on unicode of space type lowercase : Any = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase : Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : Union[str, Any] = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowercase : Optional[Any] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase : str = tokenizer_s.tokenize(lowerCAmelCase ) lowercase : str = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Any ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase : Union[str, Any] = f'''{text_of_1_token} {text_of_1_token}''' lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase, use_fast=lowerCAmelCase, ) lowercase : Dict = tokenizer_r(lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1], (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )), ) lowercase : Tuple = f''' {text}''' lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase, use_fast=lowerCAmelCase, ) lowercase : Dict = tokenizer_r(lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCAmelCase ) + 1, 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )), ) def lowercase ( self : Dict ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def lowercase ( self : List[Any] ) -> str: super().test_tokenization_python_rust_equals() def lowercase ( self : Dict ) -> Tuple: # CLIP always lower cases letters pass
255
0
def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase = True for i in range(0 , len(UpperCamelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase , UpperCamelCase = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase = False for i in range(1 , len(UpperCamelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase , UpperCamelCase = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _SCREAMING_SNAKE_CASE = [int(x) for x in input().split()] # inputing elements of the list in one line _SCREAMING_SNAKE_CASE = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
165
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self : Any , lowerCamelCase_ : int = 6_5536 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : str = "fourier" , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCamelCase_ : str = None , lowerCamelCase_ : Tuple[int] = (32, 32, 64) , lowerCamelCase_ : str = None , lowerCamelCase_ : int = 8 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : bool = False , ): """simple docstring""" super().__init__() UpperCamelCase = sample_size # time if time_embedding_type == "fourier": UpperCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase_ , log=lowerCamelCase_ , flip_sin_to_cos=lowerCamelCase_ ) UpperCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase_ , downscale_freq_shift=lowerCamelCase_ ) UpperCamelCase = block_out_channels[0] if use_timestep_embedding: UpperCamelCase = block_out_channels[0] * 4 UpperCamelCase = TimestepEmbedding( in_channels=lowerCamelCase_ , time_embed_dim=lowerCamelCase_ , act_fn=lowerCamelCase_ , out_dim=block_out_channels[0] , ) UpperCamelCase = nn.ModuleList([] ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([] ) UpperCamelCase = None # down UpperCamelCase = in_channels for i, down_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCamelCase = i == len(lowerCamelCase_ ) - 1 UpperCamelCase = get_down_block( lowerCamelCase_ , num_layers=lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase_ ) # mid UpperCamelCase = get_mid_block( lowerCamelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase_ , add_downsample=lowerCamelCase_ , ) # up UpperCamelCase = list(reversed(lowerCamelCase_ ) ) UpperCamelCase = reversed_block_out_channels[0] if out_block_type is None: UpperCamelCase = out_channels else: UpperCamelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase = output_channel UpperCamelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase_ ) - 1 else final_upsample_channels ) UpperCamelCase = i == len(lowerCamelCase_ ) - 1 UpperCamelCase = get_up_block( lowerCamelCase_ , num_layers=lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase_ ) UpperCamelCase = output_channel # out UpperCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) UpperCamelCase = get_out_block( out_block_type=lowerCamelCase_ , num_groups_out=lowerCamelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase_ , act_fn=lowerCamelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Union[torch.Tensor, float, int] , lowerCamelCase_ : bool = True , ): """simple docstring""" UpperCamelCase = timestep if not torch.is_tensor(lowerCamelCase_ ): UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: UpperCamelCase = timesteps[None].to(sample.device ) UpperCamelCase = self.time_proj(lowerCamelCase_ ) if self.config.use_timestep_embedding: UpperCamelCase = self.time_mlp(lowerCamelCase_ ) else: UpperCamelCase = timestep_embed[..., None] UpperCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCamelCase = () for downsample_block in self.down_blocks: UpperCamelCase , UpperCamelCase = downsample_block(hidden_states=lowerCamelCase_ , temb=lowerCamelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCamelCase = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCamelCase = down_block_res_samples[-1:] UpperCamelCase = down_block_res_samples[:-1] UpperCamelCase = upsample_block(lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , temb=lowerCamelCase_ ) # 5. post-process if self.out_block: UpperCamelCase = self.out_block(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase_ )
165
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ : List[str] = input('Enter image url: ').strip() print(f'''Downloading image from {url} ...''') lowerCamelCase__ : str = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ : int = soup.find('meta', {'property': 'og:image'})['content'] lowerCamelCase__ : Tuple = requests.get(image_url).content lowerCamelCase__ : str = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
225
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__UpperCAmelCase ) ), } , features=__UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return filename # FILE_CONTENT + files lowerCamelCase__ : List[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt' SCREAMING_SNAKE_CASE_ = FILE_CONTENT with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with gzip.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lza.frame.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Any: if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__UpperCAmelCase , 'w' ) as archive: archive.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : str ) -> str: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]: import lzma SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lzma.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> str: import zipfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with zstd.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.xml' SCREAMING_SNAKE_CASE_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename lowerCamelCase__ : Optional[Any] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCamelCase__ : Dict = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCamelCase__ : Optional[int] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCamelCase__ : List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCamelCase__ : List[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: SCREAMING_SNAKE_CASE_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Tuple ) -> str: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__UpperCAmelCase , 'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) SCREAMING_SNAKE_CASE_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__UpperCAmelCase , 'wb' ) as f: SCREAMING_SNAKE_CASE_ = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCAmelCase ) )] for k in DATA[0]} , schema=__UpperCAmelCase ) writer.write_table(__UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA_DICT_OF_LISTS} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) -> List[str]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> List[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> int: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
225
1
def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__magic_name__ , __magic_name__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase ( __magic_name__ : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__magic_name__ , __magic_name__ ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
367
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[10, 20, 30, 40] , _UpperCAmelCase : Optional[int]=[2, 2, 3, 2] , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=["stage2", "stage3", "stage4"] , _UpperCAmelCase : List[Any]=[2, 3, 4] , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = ConvNextVaModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase__ (self : int ) -> str: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = False lowercase__ = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> int: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = preprocessor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
146
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , A , A , A , A = None , ) -> Any: super().__init__() self.register_modules(transformer=A , vae=A , scheduler=A ) # create a imagenet -> id dictionary for easier use _UpperCAmelCase : List[Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): _UpperCAmelCase : Tuple = int(A ) _UpperCAmelCase : Union[str, Any] = dict(sorted(self.labels.items() ) ) def __lowerCAmelCase ( self , A ) -> List[int]: if not isinstance(A , A ): _UpperCAmelCase : str = list(A ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , A , A = 4.0 , A = None , A = 5_0 , A = "pil" , A = True , ) -> Union[ImagePipelineOutput, Tuple]: _UpperCAmelCase : Optional[int] = len(A ) _UpperCAmelCase : Dict = self.transformer.config.sample_size _UpperCAmelCase : List[str] = self.transformer.config.in_channels _UpperCAmelCase : List[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A , device=self.device , dtype=self.transformer.dtype , ) _UpperCAmelCase : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _UpperCAmelCase : List[str] = torch.tensor(A , device=self.device ).reshape(-1 ) _UpperCAmelCase : Tuple = torch.tensor([1_0_0_0] * batch_size , device=self.device ) _UpperCAmelCase : List[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _UpperCAmelCase : Tuple = latent_model_input[: len(A ) // 2] _UpperCAmelCase : int = torch.cat([half, half] , dim=0 ) _UpperCAmelCase : List[Any] = self.scheduler.scale_model_input(A , A ) _UpperCAmelCase : List[str] = t if not torch.is_tensor(A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _UpperCAmelCase : Any = latent_model_input.device.type == '''mps''' if isinstance(A , A ): _UpperCAmelCase : Dict = torch.floataa if is_mps else torch.floataa else: _UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa _UpperCAmelCase : Optional[int] = torch.tensor([timesteps] , dtype=A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _UpperCAmelCase : Tuple = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _UpperCAmelCase : Dict = self.transformer( A , timestep=A , class_labels=A ).sample # perform guidance if guidance_scale > 1: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = torch.split(A , len(A ) // 2 , dim=0 ) _UpperCAmelCase : List[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _UpperCAmelCase : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) _UpperCAmelCase : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = torch.split(A , A , dim=1 ) else: _UpperCAmelCase : List[str] = noise_pred # compute previous image: x_t -> x_t-1 _UpperCAmelCase : List[Any] = self.scheduler.step(A , A , A ).prev_sample if guidance_scale > 1: _UpperCAmelCase , _UpperCAmelCase : List[str] = latent_model_input.chunk(2 , dim=0 ) else: _UpperCAmelCase : Tuple = latent_model_input _UpperCAmelCase : int = 1 / self.vae.config.scaling_factor * latents _UpperCAmelCase : List[Any] = self.vae.decode(A ).sample _UpperCAmelCase : Optional[int] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCAmelCase : List[str] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : List[Any] = self.numpy_to_pil(A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A )
263
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , *A , **A ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , A , ) super().__init__(*A , **A )
263
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase :List[Any] = """timm_backbone""" def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Any: super().__init__(**__a ) _A = backbone _A = num_channels _A = features_only _A = use_pretrained_backbone _A = True _A = out_indices if out_indices is not None else (-1,)
367
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] _SCREAMING_SNAKE_CASE = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def snake_case ( snake_case__ :List[str] , snake_case__ :Dict) -> str: _A = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _A = int(re.match(R""".*layer_(\d*).*""" , snake_case__)[1]) layer_number -= 3 return F'''h.{layer_number}.''' + key def snake_case ( snake_case__ :Tuple) -> int: if dtype == torch.bool: return 1 / 8 _A = re.search(R"""[^\d](\d+)$""" , str(snake_case__)) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''') _A = int(bit_search.groups()[0]) return bit_size // 8 def snake_case ( snake_case__ :Dict , snake_case__ :Any , snake_case__ :Union[str, Any] , snake_case__ :Tuple , snake_case__ :List[Any]) -> List[str]: # Construct model if bloom_config_file == "": _A = BloomConfig() else: _A = BloomConfig.from_json_file(snake_case__) if shard_model: _A = os.listdir(snake_case__) _A = sorted(filter(lambda snake_case__: s.startswith("""layer""") and "model_00" in s , snake_case__)) _A = {"""weight_map""": {}, """metadata""": {}} _A = 0 _A = None _A = BloomConfig() for j, file in enumerate(snake_case__): print("""Processing file: {}""".format(snake_case__)) _A = None for i in range(snake_case__): # load all TP files _A = file.replace("""model_00""" , F'''model_0{i}''') _A = torch.load(os.path.join(snake_case__ , snake_case__) , map_location="""cpu""") # Rename keys in the transformers names _A = list(temp.keys()) for key in keys: _A = temp.pop(snake_case__) if tensors is None: _A = temp else: for key in tensors.keys(): if any(key.endswith(snake_case__) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks _A = torch.cat([tensors[key], temp[key]] , dim=snake_case__) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case__) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): _A = tensors[key] / pretraining_tp torch.save( snake_case__ , os.path.join( snake_case__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1).zfill(5) , str(len(snake_case__)).zfill(5)) , ) , ) for key in tensors.keys(): _A = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype) if key not in index_dict["weight_map"]: _A = """pytorch_model_{}-of-{}.bin""".format( str(j + 1).zfill(5) , str(len(snake_case__)).zfill(5)) _A = BloomConfig() _A = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A = total_size with open(snake_case__ , """w""" , encoding="""utf-8""") as f: f.write(config.to_json_string()) with open(os.path.join(snake_case__ , WEIGHTS_NAME + """.index.json""") , """w""" , encoding="""utf-8""") as f: _A = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__) + """\n""" f.write(snake_case__) else: _A = BloomModel(snake_case__) _A = os.listdir(snake_case__) _A = sorted(filter(lambda snake_case__: s.startswith("""layer""") and "model_00" in s , snake_case__)) _A = None for i, file in enumerate(snake_case__): _A = None for i in range(snake_case__): # load all TP files _A = file.replace("""model_00""" , F'''model_0{i}''') _A = torch.load(os.path.join(snake_case__ , snake_case__) , map_location="""cpu""") # Rename keys in the transformers names _A = list(temp.keys()) for key in keys: _A = temp.pop(snake_case__) if tensors is None: _A = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(snake_case__) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks _A = torch.cat([tensors[key], temp[key]] , dim=snake_case__) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(snake_case__) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): _A = tensors[key] / pretraining_tp _A = model.load_state_dict(snake_case__ , strict=snake_case__) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: _A = set(other_keys.missing_keys) else: _A = missing_keys.intersection(set(other_keys.missing_keys)) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(snake_case__ , exist_ok=snake_case__) _A = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''') if config.torch_dtype is not None: _A = model.to(config.torch_dtype) torch.save(model.state_dict() , snake_case__) print(F'''Save configuration file to {pytorch_config_dump_path}''') with open(snake_case__ , """w""" , encoding="""utf-8""") as f: f.write(config.to_json_string()) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
81
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , )-> Optional[Any]: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =projection_dim lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =initializer_range lowerCamelCase_ =scope lowerCamelCase_ =bos_token_id def _snake_case ( self )-> Tuple: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase_ =input_mask.numpy() lowerCamelCase_ , lowerCamelCase_ =input_mask.shape lowerCamelCase_ =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =1 lowerCamelCase_ =0 lowerCamelCase_ =self.get_config() return config, input_ids, tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Dict: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =TFBlipTextModel(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Tuple = (TFBlipTextModel,) if is_tf_available() else () _UpperCamelCase:Optional[int] = False _UpperCamelCase:Dict = False _UpperCamelCase:Any = False def _snake_case ( self )-> List[Any]: lowerCamelCase_ =BlipTextModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> int: self.config_tester.run_common_tests() def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: pass def _snake_case ( self )-> str: pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def _snake_case ( self )-> Dict: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _snake_case ( self )-> List[Any]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _snake_case ( self )-> Optional[Any]: pass @slow def _snake_case ( self )-> Optional[int]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =TFBlipTextModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=True )-> str: super().test_pt_tf_model_equivalence(allow_missing_keys=_SCREAMING_SNAKE_CASE )
154
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Tuple = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : str ) -> list[int]: return [ord(snake_case__ ) - 96 for elem in plain] def UpperCamelCase ( snake_case__ : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCamelCase ( ) -> None: UpperCamelCase : List[str] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , snake_case__ ) print('Decoded:' , decode(snake_case__ ) ) if __name__ == "__main__": main()
358
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], ) -> List[str]: UpperCamelCase : Optional[int] = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : List[Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = num_channels UpperCamelCase : int = image_size UpperCamelCase : List[Any] = min_resolution UpperCamelCase : int = max_resolution UpperCamelCase : Any = do_resize UpperCamelCase : Optional[int] = size UpperCamelCase : List[str] = do_normalize UpperCamelCase : Optional[Any] = image_mean UpperCamelCase : Tuple = image_std def snake_case_ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> int: # Initialize image_processor UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : List[str] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image ) # Test not batched input UpperCamelCase : str = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) def snake_case_ ( self ) -> str: # Initialize image_processor UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) def snake_case_ ( self ) -> Tuple: # Initialize image_processor UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : int = prepare_image_inputs(self.image_proc_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) # Test not batched input UpperCamelCase : Optional[int] = image_processor(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), ) # Test batched UpperCamelCase : int = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ), )
103
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _snake_case ( self ): lowercase__: Tuple = self.dummy_uncond_unet lowercase__: Dict = KarrasVeScheduler() lowercase__: Dict = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = torch.manual_seed(0 ) lowercase__: List[Any] = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='''numpy''' ).images lowercase__: Union[str, Any] = torch.manual_seed(0 ) lowercase__: int = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='''numpy''' , return_dict=_UpperCAmelCase )[0] lowercase__: List[str] = image[0, -3:, -3:, -1] lowercase__: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Dict = '''google/ncsnpp-celebahq-256''' lowercase__: List[Any] = UNetaDModel.from_pretrained(_UpperCAmelCase ) lowercase__: Union[str, Any] = KarrasVeScheduler() lowercase__: Optional[Any] = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Tuple = torch.manual_seed(0 ) lowercase__: Dict = pipe(num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''numpy''' ).images lowercase__: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: Union[str, Any] = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
177
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: lowercase__: List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Union[str, Any] = 0 lowercase__: List[Any] = 2 while digits < n: index += 1 lowercase__: Dict = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> int: return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
177
1
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() A = logging.get_logger(__name__) A = '''Hello, World!''' A = '''en_XX''' def __A ( a_ :str , a_ :str , a_ :bool) -> Optional[int]: __a : List[Any] = Path('''data_bin''') __a : Optional[int] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) __a : List[str] = xmod.model.encoder.sentence_encoder __a : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __a : Union[str, Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) __a : List[str] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings __a : Tuple = xmod_sent_encoder.embed_tokens.weight __a : Union[str, Any] = xmod_sent_encoder.embed_positions.weight __a : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. __a : Optional[int] = xmod_sent_encoder.layernorm_embedding.weight __a : List[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer __a : Dict = model.roberta.encoder.layer[i] __a : Optional[int] = xmod_sent_encoder.layers[i] # self attention __a : str = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') __a : Union[str, Any] = xmod_layer.self_attn.q_proj.weight __a : Tuple = xmod_layer.self_attn.q_proj.bias __a : Any = xmod_layer.self_attn.k_proj.weight __a : Dict = xmod_layer.self_attn.k_proj.bias __a : List[str] = xmod_layer.self_attn.v_proj.weight __a : Dict = xmod_layer.self_attn.v_proj.bias # self-attention output __a : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') __a : int = xmod_layer.self_attn.out_proj.weight __a : Any = xmod_layer.self_attn.out_proj.bias __a : Any = xmod_layer.self_attn_layer_norm.weight __a : Any = xmod_layer.self_attn_layer_norm.bias # intermediate __a : Any = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') __a : Dict = xmod_layer.fca.weight __a : int = xmod_layer.fca.bias # output __a : Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') __a : str = xmod_layer.fca.weight __a : int = xmod_layer.fca.bias __a : Any = xmod_layer.final_layer_norm.weight __a : List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __a : Tuple = xmod_layer.adapter_layer_norm.weight __a : Dict = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): __a : Any = bert_output.adapter_modules[lang_code] __a : List[Any] = xmod_layer.adapter_modules[lang_code] __a : List[str] = from_adapter.fca.weight __a : int = from_adapter.fca.bias __a : Tuple = from_adapter.fca.weight __a : Optional[int] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __a : Union[str, Any] = xmod_sent_encoder.layer_norm.weight __a : Union[str, Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __a : str = xmod.model.classification_heads['''mnli'''].dense.weight __a : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias __a : Optional[int] = xmod.model.classification_heads['''mnli'''].out_proj.weight __a : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __a : Tuple = xmod.model.encoder.lm_head.dense.weight __a : List[Any] = xmod.model.encoder.lm_head.dense.bias __a : Tuple = xmod.model.encoder.lm_head.layer_norm.weight __a : int = xmod.model.encoder.lm_head.layer_norm.bias __a : int = xmod.model.encoder.lm_head.weight __a : Optional[Any] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __a : Dict = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) __a : str = model(a_)[0] if classification_head: __a : Optional[Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: __a : List[Any] = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) __a : str = torch.max(torch.abs(our_output - their_output)).item() print(F"""max_absolute_diff = {max_absolute_diff}""") # ~ 1e-7 __a : Optional[int] = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(a_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) A = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
356
"""simple docstring""" import os import string import sys A = 1 << 8 A = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A = KEYMAP['''up'''] A = KEYMAP['''left'''] if sys.platform == "win32": A = [] A = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A = ord(str(i)) def __A ( ) -> Dict: if os.name == "nt": import msvcrt __a : Optional[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a_) == 0: # Read the keystroke __a : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __a : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __a : Union[str, Any] = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(a_) if ord(a_) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26)) __a : str = chr(KEYMAP['''esc''']) except KeyError: __a : str = cha[1] else: __a : Optional[Any] = ch.decode(a_) else: __a : Union[str, Any] = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty __a : Any = sys.stdin.fileno() __a : List[str] = termios.tcgetattr(a_) try: tty.setraw(a_) __a : int = sys.stdin.read(1) finally: termios.tcsetattr(a_ , termios.TCSADRAIN , a_) return ch def __A ( ) -> str: __a : Any = get_raw_chars() if ord(a_) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a_) == KEYMAP["esc"]: __a : str = get_raw_chars() if ord(a_) == KEYMAP["mod_int"]: __a : List[str] = get_raw_chars() if ord(a_) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a_) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a_) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE :Tuple = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' SCREAMING_SNAKE_CASE :Any = 'path-to-your-trained-model' SCREAMING_SNAKE_CASE :List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE :Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE :List[Any] = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE :Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE :Union[str, Any] = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE :str = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE :Optional[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE :Union[str, Any] = torch.randn(2, 4, 64, 64) SCREAMING_SNAKE_CASE :Union[str, Any] = torch.rand(1) * 999 SCREAMING_SNAKE_CASE :Any = torch.randn(2, 77, 768) SCREAMING_SNAKE_CASE :List[Any] = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE :int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE :List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE :Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE :Union[str, Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE :Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE :Tuple = 666 SCREAMING_SNAKE_CASE :Optional[int] = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE :Optional[Any] = {'generator': generator} if args.steps is not None: SCREAMING_SNAKE_CASE :str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE :Optional[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
15
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :str = 'tf_model.h5' SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :str = 'model.ckpt' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :str = 'config.json' SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json' SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[int] = '▁' SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
15
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" snake_case : Optional[int] = [] snake_case : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case : int = result + left + right return input_list def UpperCamelCase ( __lowerCamelCase : list ): """simple docstring""" if len(__lowerCamelCase ) <= 1: return input_list snake_case : Optional[int] = list(__lowerCamelCase ) # iteration for two-way merging snake_case : Optional[Any] = 2 while p <= len(__lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): snake_case : int = i snake_case : Optional[Any] = i + p - 1 snake_case : Any = (low + high + 1) // 2 snake_case : List[str] = merge(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # final merge of last two parts if p * 2 >= len(__lowerCamelCase ): snake_case : List[str] = i snake_case : Optional[Any] = merge(__lowerCamelCase , 0 , __lowerCamelCase , len(__lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": __lowerCamelCase = [] else: __lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[Any] ={ '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] =[ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase : Any = 16 __lowerCamelCase : List[Any] = 32 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 , __UpperCamelCase : str = "bert-base-cased" ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE__ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" model.eval() SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = metric.compute() return eval_metric["accuracy"] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config["""lr"""] SCREAMING_SNAKE_CASE__ = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ = args.model_name_or_path set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE__ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: SCREAMING_SNAKE_CASE__ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE__ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE__ = num_epochs if args.partial_train_epoch is not None: SCREAMING_SNAKE_CASE__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE__ = args.resume_from_checkpoint.split("""epoch_""" )[1] SCREAMING_SNAKE_CASE__ = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break SCREAMING_SNAKE_CASE__ = int(__UpperCamelCase ) + 1 SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __UpperCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model SCREAMING_SNAKE_CASE__ = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.loss SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 SCREAMING_SNAKE_CASE__ = f"""epoch_{epoch}""" SCREAMING_SNAKE_CASE__ = os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = accuracy SCREAMING_SNAKE_CASE__ = lr_scheduler.get_lr()[0] SCREAMING_SNAKE_CASE__ = optimizer.param_groups[0]["""lr"""] SCREAMING_SNAKE_CASE__ = epoch SCREAMING_SNAKE_CASE__ = overall_step accelerator.print(f"""epoch {epoch}:""" , __UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__UpperCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCamelCase , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=2 , help="""Number of train epochs.""" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
219
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase_ : def __init__( self : Tuple , _A : str , _A : Any=13 , _A : Dict=7 , _A : List[str]=False , _A : Optional[Any]=True , _A : str=False , _A : Optional[int]=True , _A : Union[str, Any]=33 , _A : Union[str, Any]=32 , _A : Optional[int]=5 , _A : int=4 , _A : List[str]=37 , _A : Union[str, Any]="gelu" , _A : Tuple=0.1 , _A : List[Any]=0.1 , _A : List[Any]=512 , _A : Union[str, Any]=16 , _A : Dict=2 , _A : Union[str, Any]=0.0_2 , _A : Any=3 , _A : List[Any]=4 , _A : List[str]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : str = use_input_mask UpperCAmelCase__ : Optional[int] = use_token_type_ids UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : int = num_choices UpperCAmelCase__ : Union[str, Any] = scope def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[str] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase_ ( self : Dict , _A : Dict , _A : Tuple , _A : str , _A : Any , _A : Dict , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = EsmModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase__ : Dict = model(__A , attention_mask=__A ) UpperCAmelCase__ : Any = model(__A ) UpperCAmelCase__ : List[Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self : int , _A : Any , _A : Union[str, Any] , _A : List[Any] , _A : Any , _A : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = EsmForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase__ : Optional[int] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Tuple , _A : Dict , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Optional[int] = EsmForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase__ : Dict = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( A__ , A__ , unittest.TestCase ): lowerCAmelCase__ = False lowerCAmelCase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = () lowerCAmelCase__ = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = EsmModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : List[Any] = type self.model_tester.create_and_check_model(*__A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Any = EsmModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase__ : Dict = EsmEmbeddings(config=__A ) UpperCAmelCase__ : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) UpperCAmelCase__ : str = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) UpperCAmelCase__ : List[Any] = create_position_ids_from_input_ids(__A , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__A , __A ) ) ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase__ : List[str] = EsmEmbeddings(config=__A ) UpperCAmelCase__ : int = torch.empty(2 , 4 , 30 ) UpperCAmelCase__ : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase__ : Dict = torch.as_tensor([expected_single_positions, expected_single_positions] ) UpperCAmelCase__ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__A ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__A , __A ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : str ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch class lowerCamelCase_ ( A__ ): @slow def lowercase_ ( self : str ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : int = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() UpperCAmelCase__ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : Optional[int] = model(__A )[0] UpperCAmelCase__ : Optional[Any] = 33 UpperCAmelCase__ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __A ) UpperCAmelCase__ : List[str] = torch.tensor( [[[8.9_2_1_5, -10.5_898, -6.4_6_7_1], [-6.3_9_6_7, -13.9_114, -1.1_2_1_2], [-7.7_8_1_2, -13.9_516, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : Any = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() UpperCAmelCase__ : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase__ : Union[str, Any] = model(__A )[0] # compare the actual values for a slice. UpperCAmelCase__ : List[str] = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) )
351
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : str = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __A( a ): snake_case_ = '''mobilenet_v2''' def __init__( self , _snake_case=3 , _snake_case=224 , _snake_case=1.0 , _snake_case=8 , _snake_case=8 , _snake_case=6 , _snake_case=32 , _snake_case=True , _snake_case=True , _snake_case="relu6" , _snake_case=True , _snake_case=0.8 , _snake_case=0.02 , _snake_case=0.001 , _snake_case=255 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __a = num_channels __a = image_size __a = depth_multiplier __a = depth_divisible_by __a = min_depth __a = expand_ratio __a = output_stride __a = first_layer_is_expansion __a = finegrained_output __a = hidden_act __a = tf_padding __a = classifier_dropout_prob __a = initializer_range __a = layer_norm_eps __a = semantic_loss_ignore_index class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
'''simple docstring''' __snake_case : Tuple = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
134
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ = typing.Union[np.floataa, int, float] # noqa: UP007 def _a( UpperCamelCase__ : Vector, UpperCamelCase__ : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def _a( UpperCamelCase__ : Vector, UpperCamelCase__ : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__, UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def _a( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''', number=1_0_0_0_0, globals=globals(), ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''', number=1_0_0_0_0, globals=globals(), ) ) benchmark()
222
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase ( __lowerCAmelCase ): def __init__( self ) -> str: lowerCAmelCase = [] def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict: self.events.append("""on_init_end""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> int: self.events.append("""on_train_begin""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> List[str]: self.events.append("""on_train_end""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Optional[int]: self.events.append("""on_epoch_begin""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict: self.events.append("""on_epoch_end""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> List[str]: self.events.append("""on_step_begin""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Any: self.events.append("""on_step_end""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Optional[Any]: self.events.append("""on_evaluate""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict: self.events.append("""on_predict""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Union[str, Any]: self.events.append("""on_save""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> List[str]: self.events.append("""on_log""" ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> int: self.events.append("""on_prediction_step""" ) @require_torch class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> List[Any]: lowerCAmelCase = tempfile.mkdtemp() def _snake_case ( self ) -> int: shutil.rmtree(self.output_dir ) def _snake_case ( self , lowercase=0 , lowercase=0 , lowercase=64 , lowercase=64 , lowercase=None , lowercase=False , **lowercase ) -> Union[str, Any]: lowerCAmelCase = RegressionDataset(length=lowerCamelCase__ ) lowerCAmelCase = RegressionDataset(length=lowerCamelCase__ ) lowerCAmelCase = RegressionModelConfig(a=lowerCamelCase__ , b=lowerCamelCase__ ) lowerCAmelCase = RegressionPreTrainedModel(lowerCamelCase__ ) lowerCAmelCase = TrainingArguments(self.output_dir , disable_tqdm=lowerCamelCase__ , report_to=[] , **lowerCamelCase__ ) return Trainer( lowerCamelCase__ , lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , callbacks=lowerCamelCase__ , ) def _snake_case ( self , lowercase , lowercase ) -> str: self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) # Order doesn't matter lowerCAmelCase = sorted(lowerCamelCase__ , key=lambda lowercase : cb.__name__ if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cb.__class__.__name__ ) lowerCAmelCase = sorted(lowerCamelCase__ , key=lambda lowercase : cb.__name__ if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowerCamelCase__ , lowerCamelCase__ ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , cba.__class__ ) elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(cba.__class__ , lowerCamelCase__ ) else: self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( self , lowercase ) -> str: lowerCAmelCase = ['''on_init_end''', '''on_train_begin'''] lowerCAmelCase = 0 lowerCAmelCase = len(trainer.get_eval_dataloader() ) lowerCAmelCase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(lowerCamelCase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.get_trainer() lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase = self.get_trainer(disable_tqdm=lowerCamelCase__ ) lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) def _snake_case ( self ) -> List[str]: lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) lowerCAmelCase = self.get_trainer() lowerCAmelCase = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(cb.__class__ , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # We can also add, pop, or remove by instance lowerCAmelCase = self.get_trainer() lowerCAmelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) lowerCAmelCase = self.get_trainer() lowerCAmelCase = trainer.callback_handler.callbacks[0] lowerCAmelCase = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) def _snake_case ( self ) -> str: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=lowerCamelCase__ ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # Independent log/save/eval lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # A bit of everything lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowerCamelCase__ ) in warn_mock.call_args[0][0]
46
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): """simple docstring""" UpperCamelCase__ : List[Any] = LxmertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) UpperCamelCase__ : List[str] = LxmertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
146
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case , snake_case , snake_case=False ) -> List[Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: lowercase__: Optional[Any] = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(f'Loading PyTorch weights from {pt_path}' ) lowercase__: Optional[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) lowercase__: Optional[int] = convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__: int = convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return flax_state_dict def snake_case_ ( snake_case , snake_case , snake_case , snake_case , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(snake_case ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__: str = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__: str = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__: int = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__: Optional[int] = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__: int = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): lowercase__: Optional[int] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__: Union[str, Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): lowercase__: Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__: List[str] = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__: List[str] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__: Optional[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__: str = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__: Tuple = pt_tuple_key[-2] + '_v' if name is not None: lowercase__: int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: int = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__: List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__: Optional[Any] = flax_model.params['params'] else: lowercase__: List[str] = flax_model.params lowercase__: Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE_ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__: Tuple = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE_ ) lowercase__: Dict = {} lowercase__: int = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) lowercase__: Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__: Tuple = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary lowercase__: Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__: Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__: List[str] = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary lowercase__: List[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__: Union[str, Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__: Optional[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown lowercase__: Optional[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown lowercase__: Any = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( snake_case , snake_case ) -> Any: import torch # Load the index lowercase__: List[str] = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__: List[str] = torch.load(SCREAMING_SNAKE_CASE_ ) lowercase__: Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__: Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__: int = flax_model.params['params'] lowercase__: Tuple = flatten_dict(SCREAMING_SNAKE_CASE_ ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: lowercase__: List[str] = flax_model.params lowercase__: List[Any] = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__: Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) lowercase__: str = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__: List[str] = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary lowercase__: Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__: List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__: Any = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary lowercase__: Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__: List[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__: List[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue if "var" in flax_key[-1]: lowercase__: str = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown lowercase__: Any = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown lowercase__: Dict = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: Optional[Any] = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class lowercase__: Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as state_f: try: lowercase__: List[str] = from_bytes(SCREAMING_SNAKE_CASE_ , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def snake_case_ ( snake_case , snake_case ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights lowercase__: Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda snake_case : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE_ ) ).values() if any(SCREAMING_SNAKE_CASE_ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) lowercase__: List[Any] = jax.tree_util.tree_map( lambda snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE_ ) lowercase__: Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__: Tuple = pt_model.state_dict() lowercase__: Dict = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) lowercase__: Dict = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__: Union[str, Any] = [] lowercase__: Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__: List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__: List[Any] = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__: Optional[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__: Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # conv layer lowercase__: int = flax_key_tuple[:-1] + ('weight',) lowercase__: Dict = jnp.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # linear layer lowercase__: List[str] = flax_key_tuple[:-1] + ('weight',) lowercase__: int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__: Tuple = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__: Any = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: lowercase__: Dict = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: lowercase__: Union[str, Any] = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__: Any = '.'.join(SCREAMING_SNAKE_CASE_ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__: List[str] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__: Any = key.split('.' ) lowercase__: Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__: Optional[int] = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__: Optional[Any] = key_components[-2] + '_v' if name is not None: lowercase__: List[str] = key_components[:-3] + [name] lowercase__: Optional[int] = '.'.join(SCREAMING_SNAKE_CASE_ ) lowercase__: List[Any] = key if flax_key in special_pt_names: lowercase__: List[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__: Any = np.asarray(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) else flax_tensor lowercase__: List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE_ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # re-transform missing_keys to list lowercase__: Any = list(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
366
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
0
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" assert column_title.isupper() A_ : Optional[int] = 0 A_ : Union[str, Any] = len(_UpperCAmelCase ) - 1 A_ : Optional[int] = 0 while index >= 0: A_ : int = (ord(column_title[index] ) - 64) * pow(26 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
286
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = CustomTokenizer pass
286
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=99 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=None ,) -> Tuple: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : str = embedding_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : Tuple = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[Any] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[Any] = scope def a__ ( self ) -> int: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Any = None if self.use_token_type_ids: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> str: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : List[Any] = MobileBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : int = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) UpperCAmelCase_ : Dict = model(__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) UpperCAmelCase_ : Any = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Tuple = MobileBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : List[str] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Dict = MobileBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : int = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : str = MobileBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : Tuple = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,next_sentence_label=__lowerCAmelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : List[Any] = MobileBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : List[str] = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,start_positions=__lowerCAmelCase ,end_positions=__lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Dict = MobileBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : Tuple = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : Optional[Any] = MobileBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Dict = self.num_choices UpperCAmelCase_ : Dict = MobileBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCAmelCase_ : Any = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def a__ ( self ) -> str: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : Any = config_and_inputs UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = True def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> str: UpperCAmelCase_ : str = super()._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): UpperCAmelCase_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=__lowerCAmelCase ) UpperCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__lowerCAmelCase ) return inputs_dict def a__ ( self ) -> Dict: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Any: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return torch.tensor( a__ , dtype=torch.long , device=a__ , ) __a = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> int: UpperCAmelCase_ : Dict = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(__lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(__lowerCAmelCase )[0] UpperCAmelCase_ : Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,__lowerCAmelCase ) UpperCAmelCase_ : Any = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] ,device=__lowerCAmelCase ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
371
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __a = logging.get_logger(__name__) __a = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''layoutlmv3''' def __init__( self ,_SCREAMING_SNAKE_CASE=50_265 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=224 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Dict: super().__init__( vocab_size=_SCREAMING_SNAKE_CASE ,hidden_size=_SCREAMING_SNAKE_CASE ,num_hidden_layers=_SCREAMING_SNAKE_CASE ,num_attention_heads=_SCREAMING_SNAKE_CASE ,intermediate_size=_SCREAMING_SNAKE_CASE ,hidden_act=_SCREAMING_SNAKE_CASE ,hidden_dropout_prob=_SCREAMING_SNAKE_CASE ,attention_probs_dropout_prob=_SCREAMING_SNAKE_CASE ,max_position_embeddings=_SCREAMING_SNAKE_CASE ,type_vocab_size=_SCREAMING_SNAKE_CASE ,initializer_range=_SCREAMING_SNAKE_CASE ,layer_norm_eps=_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Dict = max_ad_position_embeddings UpperCAmelCase_ : Any = coordinate_size UpperCAmelCase_ : Tuple = shape_size UpperCAmelCase_ : Optional[int] = has_relative_attention_bias UpperCAmelCase_ : Union[str, Any] = rel_pos_bins UpperCAmelCase_ : Dict = max_rel_pos UpperCAmelCase_ : Union[str, Any] = has_spatial_attention_bias UpperCAmelCase_ : Any = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : List[str] = text_embed UpperCAmelCase_ : int = visual_embed UpperCAmelCase_ : int = input_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : int = patch_size UpperCAmelCase_ : Dict = classifier_dropout class __a( _a ): """simple docstring""" lowerCAmelCase = version.parse('''1.12''' ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def a__ ( self ) -> float: return 1e-5 @property def a__ ( self ) -> int: return 12 def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 40 ,_SCREAMING_SNAKE_CASE = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,'''apply_ocr''' ,_SCREAMING_SNAKE_CASE ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : Optional[Any] = processor.tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : Tuple = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Union[str, Any] = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = dict( processor( _SCREAMING_SNAKE_CASE ,text=_SCREAMING_SNAKE_CASE ,boxes=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,) ) return inputs
235
0
def _a ( SCREAMING_SNAKE_CASE_ : int = 60_08_51_47_51_43 ): try: __lowerCAmelCase = int(snake_case__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowerCAmelCase = 2 __lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase = i while n % i == 0: __lowerCAmelCase = n // i i += 1 return int(snake_case__ ) if __name__ == "__main__": print(f'''{solution() = }''')
92
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a = logging.get_logger(__name__) a = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'deberta-v2' def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any]=12_8100 , lowerCAmelCase : Any=1536 , lowerCAmelCase : str=24 , lowerCAmelCase : str=24 , lowerCAmelCase : Optional[Any]=6144 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Optional[int]=1e-7 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Dict=-1 , lowerCAmelCase : int=0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : int=None , lowerCAmelCase : Any=0 , lowerCAmelCase : Dict="gelu" , **lowerCAmelCase : Any , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = relative_attention lowerCAmelCase = max_relative_positions lowerCAmelCase = pad_token_id lowerCAmelCase = position_biased_input # Backwards compatibility if type(lowerCAmelCase ) == str: lowerCAmelCase = [x.strip() for x in pos_att_type.lower().split("""|""" )] lowerCAmelCase = pos_att_type lowerCAmelCase = vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = kwargs.get("""pooler_hidden_size""" , lowerCAmelCase ) lowerCAmelCase = pooler_dropout lowerCAmelCase = pooler_hidden_act class SCREAMING_SNAKE_CASE__ ( _a ): @property def __lowercase ( self : Optional[int] ): if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __lowercase ( self : List[str] ): return 12 def __lowercase ( self : int , lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional["TensorType"] = None , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 40 , lowerCAmelCase : int = 40 , lowerCAmelCase : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase = super().generate_dummy_inputs(preprocessor=lowerCAmelCase , framework=lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
155
0
def __lowerCamelCase ( __magic_name__ : Optional[Any] ): a__: int =[0] * len(_lowerCamelCase ) a__: Optional[int] =[] a__: Any =[] a__: Tuple =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: a__: str =queue.pop(0 ) cnt += 1 topo.append(_lowerCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) if cnt != len(_lowerCamelCase ): print("Cycle exists" ) else: print(_lowerCamelCase ) # Adjacency List of Graph __UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
363
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = torch.device("cpu") def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = dct.pop(_A ) lowerCAmelCase = val def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase = [] for k in state_dict.keys(): lowerCAmelCase = k if ".pwconv" in k: lowerCAmelCase = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: lowerCAmelCase = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: lowerCAmelCase = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: lowerCAmelCase = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: lowerCAmelCase = k_new.split(""".""" ) if ls[2].isdigit(): lowerCAmelCase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowerCAmelCase = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase = 10_00 lowerCAmelCase = """huggingface/label-files""" lowerCAmelCase = """imagenet-1k-id2label.json""" lowerCAmelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCAmelCase = [3, 3, 6, 4] lowerCAmelCase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowerCAmelCase = [3, 3, 9, 6] lowerCAmelCase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowerCAmelCase = [4, 3, 10, 5] lowerCAmelCase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowerCAmelCase = [4, 4, 12, 6] lowerCAmelCase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): lowerCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" , check_hash=_A ) else: lowerCAmelCase = torch.load(_A , map_location="""cpu""" ) lowerCAmelCase = checkpoint lowerCAmelCase = create_rename_keys(_A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_A , _A , _A ) # load HuggingFace model lowerCAmelCase = SwiftFormerForImageClassification(_A ).eval() hf_model.load_state_dict(_A ) # prepare test inputs lowerCAmelCase = prepare_img() lowerCAmelCase = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) lowerCAmelCase = processor(images=_A , return_tensors="""pt""" ) # compare outputs from both models lowerCAmelCase = get_expected_output(_A ) lowerCAmelCase = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _A , atol=1e-3 ) Path(_A ).mkdir(exist_ok=_A ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
46
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( _A : List[Any] ): '''simple docstring''' if "resnet-50" in model_name: a__ =ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: a__ =ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) a__ =DetrConfig(use_timm_backbone=_A , backbone_config=_A ) # set label attributes a__ ='''panoptic''' in model_name if is_panoptic: a__ =2_50 else: a__ =91 a__ ='''huggingface/label-files''' a__ ='''coco-detection-id2label.json''' a__ =json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) a__ ={int(_A ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase__ ( _A : Optional[int] ): '''simple docstring''' a__ =[] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def UpperCAmelCase__ ( _A : str , _A : Union[str, Any] , _A : int ): '''simple docstring''' a__ =state_dict.pop(_A ) a__ =val def UpperCAmelCase__ ( _A : Dict , _A : str=False ): '''simple docstring''' a__ ='''''' if is_panoptic: a__ ='''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[:2_56, :] a__ =in_proj_bias[:2_56] a__ =in_proj_weight[2_56:5_12, :] a__ =in_proj_bias[2_56:5_12] a__ =in_proj_weight[-2_56:, :] a__ =in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[:2_56, :] a__ =in_proj_bias[:2_56] a__ =in_proj_weight[2_56:5_12, :] a__ =in_proj_bias[2_56:5_12] a__ =in_proj_weight[-2_56:, :] a__ =in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention a__ =state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ =in_proj_weight_cross_attn[:2_56, :] a__ =in_proj_bias_cross_attn[:2_56] a__ =in_proj_weight_cross_attn[2_56:5_12, :] a__ =in_proj_bias_cross_attn[2_56:5_12] a__ =in_proj_weight_cross_attn[-2_56:, :] a__ =in_proj_bias_cross_attn[-2_56:] def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ =Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _A : Dict , _A : Optional[Any]=None , _A : List[str]=False ): '''simple docstring''' a__, a__ =get_detr_config(_A ) # load original model from torch hub a__ ={ '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) a__ =torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=_A ).eval() a__ =detr.state_dict() # rename keys for src, dest in create_rename_keys(_A ): if is_panoptic: a__ ='''detr.''' + src rename_key(_A , _A , _A ) # query, key and value matrices need special treatment read_in_q_k_v(_A , is_panoptic=_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ ='''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): a__ =state_dict.pop(_A ) a__ =val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ =state_dict.pop(_A ) a__ =val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: a__ =state_dict.pop(_A ) a__ =val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a__ =state_dict.pop(_A ) a__ =val # finally, create HuggingFace model and load state dict a__ =DetrForSegmentation(_A ) if is_panoptic else DetrForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() # verify our conversion on an image a__ ='''coco_panoptic''' if is_panoptic else '''coco_detection''' a__ =DetrImageProcessor(format=_A ) a__ =processor(images=prepare_img() , return_tensors='''pt''' ) a__ =encoding['''pixel_values'''] a__ =detr(_A ) a__ =model(_A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
188
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = TransfoXLTokenizer UpperCamelCase : int = False UpperCamelCase : int = False def __A ( self ) -> Dict: '''simple docstring''' super().setUp() lowerCamelCase = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , A ) -> List[str]: '''simple docstring''' lowerCamelCase = """<unk> UNwanted , running""" lowerCamelCase = """<unk> unwanted, running""" return input_text, output_text def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A ) lowerCamelCase = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(A , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [0, 4, 8, 7] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = TransfoXLTokenizer(lower_case=A ) lowerCamelCase = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" lowerCamelCase = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(A ) , A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.get_tokenizer() lowerCamelCase = len(A ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
368
class __lowercase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' lowerCamelCase = {} # Mapping from char to TrieNode lowerCamelCase = False def __A ( self , A ) -> None: '''simple docstring''' for word in words: self.insert(A ) def __A ( self , A ) -> None: '''simple docstring''' lowerCamelCase = self for char in word: if char not in curr.nodes: lowerCamelCase = TrieNode() lowerCamelCase = curr.nodes[char] lowerCamelCase = True def __A ( self , A ) -> bool: '''simple docstring''' lowerCamelCase = self for char in word: if char not in curr.nodes: return False lowerCamelCase = curr.nodes[char] return curr.is_leaf def __A ( self , A ) -> None: '''simple docstring''' def _delete(A , A , A ) -> bool: if index == len(A ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase = False return len(curr.nodes ) == 0 lowerCamelCase = word[index] lowerCamelCase = curr.nodes.get(A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase = _delete(A , A , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A , 0 ) def __lowerCamelCase ( lowerCamelCase__ : TrieNode , lowerCamelCase__ : str ): '''simple docstring''' if node.is_leaf: print(lowerCamelCase__ , end=""" """ ) for key, value in node.nodes.items(): print_words(lowerCamelCase__ , word + key ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = """banana bananas bandana band apple all beast""".split() lowerCamelCase = TrieNode() root.insert_many(lowerCamelCase__ ) # print_words(root, "") assert all(root.find(lowerCamelCase__ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : bool ): '''simple docstring''' print(str(lowerCamelCase__ ) , """works!""" if passes else """doesn't work :(""" ) def __lowerCamelCase ( ): '''simple docstring''' assert test_trie() def __lowerCamelCase ( ): '''simple docstring''' print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
66
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : List[str] =["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = 8 , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase_ ) __snake_case : Dict = do_rescale __snake_case : Any = rescale_factor __snake_case : List[str] = do_pad __snake_case : List[Any] = pad_size def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> str: '''simple docstring''' __snake_case : Tuple = get_image_size(UpperCAmelCase_ ) __snake_case : Any = (old_height // size + 1) * size - old_height __snake_case : Optional[int] = (old_width // size + 1) * size - old_width return pad(UpperCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> Any: '''simple docstring''' __snake_case : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : int = do_pad if do_pad is not None else self.do_pad __snake_case : Dict = pad_size if pad_size is not None else self.pad_size __snake_case : Any = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. __snake_case : Dict = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_rescale: __snake_case : str = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_pad: __snake_case : Tuple = [self.pad(UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] __snake_case : Tuple = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] __snake_case : Union[str, Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
326
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _SCREAMING_SNAKE_CASE ( lowercase__ ): snake_case__ : List[Any] = '''data2vec-audio''' def __init__( self : str , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Union[str, Any]=3_072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : int=1E-5 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : List[Any]=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : Optional[Any]=19 , __lowerCamelCase : str=5 , __lowerCamelCase : List[Any]=0.05 , __lowerCamelCase : Dict=10 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[int]="sum" , __lowerCamelCase : str=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=256 , __lowerCamelCase : Any=(512, 512, 512, 512, 1_500) , __lowerCamelCase : Any=(5, 3, 3, 1, 1) , __lowerCamelCase : Dict=(1, 2, 3, 1, 1) , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : int=2 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : List[str]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Tuple , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :str = feat_extract_activation UpperCamelCase :List[Any] = list(_a ) UpperCamelCase :str = list(_a ) UpperCamelCase :Optional[int] = list(_a ) UpperCamelCase :List[Any] = conv_bias UpperCamelCase :Optional[Any] = num_conv_pos_embeddings UpperCamelCase :Tuple = num_conv_pos_embedding_groups UpperCamelCase :Any = conv_pos_kernel_size UpperCamelCase :List[Any] = len(self.conv_dim ) UpperCamelCase :Tuple = num_hidden_layers UpperCamelCase :Any = intermediate_size UpperCamelCase :Any = hidden_act UpperCamelCase :List[Any] = num_attention_heads UpperCamelCase :Dict = hidden_dropout UpperCamelCase :str = attention_dropout UpperCamelCase :Union[str, Any] = activation_dropout UpperCamelCase :List[Any] = feat_proj_dropout UpperCamelCase :Optional[Any] = final_dropout UpperCamelCase :Tuple = layerdrop UpperCamelCase :List[str] = layer_norm_eps UpperCamelCase :Tuple = initializer_range UpperCamelCase :str = vocab_size UpperCamelCase :int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase :List[str] = mask_time_prob UpperCamelCase :List[str] = mask_time_length UpperCamelCase :Dict = mask_time_min_masks UpperCamelCase :List[Any] = mask_feature_prob UpperCamelCase :Optional[int] = mask_feature_length UpperCamelCase :Optional[Any] = mask_feature_min_masks # ctc loss UpperCamelCase :Union[str, Any] = ctc_loss_reduction UpperCamelCase :Dict = ctc_zero_infinity # adapter UpperCamelCase :Optional[int] = add_adapter UpperCamelCase :Tuple = adapter_kernel_size UpperCamelCase :int = adapter_stride UpperCamelCase :Union[str, Any] = num_adapter_layers UpperCamelCase :Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase :List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase :Optional[Any] = list(_a ) UpperCamelCase :str = list(_a ) UpperCamelCase :Union[str, Any] = list(_a ) UpperCamelCase :List[Any] = xvector_output_dim @property def _A ( self : Optional[Any] ): return math.prod(self.conv_stride )
355
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : str = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : List[Any] = DebertaVaTokenizer snake_case__ : Any = DebertaVaTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Tuple = True def _A ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase :Tuple = DebertaVaTokenizer(__lowerCamelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : int , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :str = """this is a test""" UpperCamelCase :Dict = """this is a test""" return input_text, output_text def _A ( self : Tuple ): UpperCamelCase :Optional[Any] = """<pad>""" UpperCamelCase :Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__lowerCamelCase ) , 30_001 ) def _A ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _A ( self : str ): # fmt: off UpperCamelCase :Optional[int] = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase :Any = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase :Optional[Any] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) UpperCamelCase :Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase ) UpperCamelCase :List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _A ( self : Dict ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _A ( self : Optional[Any] ): pass def _A ( self : Optional[int] ): # fmt: off UpperCamelCase :Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase :int = DebertaVaTokenizer(__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :int = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = DebertaVaTokenizerFast(__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int ): # fmt: off UpperCamelCase :Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase :Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Any ): # fmt: off UpperCamelCase :Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :List[Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase :Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : str ): # fmt: off UpperCamelCase :List[str] = """I was born in 92000, and this is falsé.""" UpperCamelCase :int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase :List[str] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[Any] ): # fmt: off UpperCamelCase :Optional[Any] = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase :Dict = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase :int = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) UpperCamelCase :Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :int = self.get_tokenizer() UpperCamelCase :str = self.get_rust_tokenizer() UpperCamelCase :Dict = """I was born in 92000, and this is falsé.""" UpperCamelCase :List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) UpperCamelCase :Optional[int] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = self.get_rust_tokenizer() UpperCamelCase :Tuple = tokenizer.encode(__lowerCamelCase ) UpperCamelCase :Dict = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Dict ): UpperCamelCase :Optional[int] = """This is a test""" UpperCamelCase :str = [13, 1, 4_398, 25, 21, 1_289] UpperCamelCase :int = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase :Any = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase :str = DebertaVaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , keep_accents=__lowerCamelCase ) UpperCamelCase :Optional[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[Any] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # fmt: off UpperCamelCase :Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase :Any = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] UpperCamelCase :Union[str, Any] = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase :Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase :str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :int = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :str = DebertaVaTokenizer(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.encode("""sequence builders""" ) UpperCamelCase :Any = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase :Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) UpperCamelCase :str = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __lowerCamelCase , ) @slow def _A ( self : List[Any] ): # fmt: off UpperCamelCase :Union[str, Any] = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
62
0
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : int = False): """simple docstring""" lowercase_ = {} # A node will be a leaf if the tree contains its word lowercase_ = is_leaf lowercase_ = prefix def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = 0 for q, w in zip(self.prefix , lowerCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any]): """simple docstring""" for word in words: self.insert(lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" if self.prefix == word: lowercase_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase_ = RadixNode(prefix=lowerCAmelCase_ , is_leaf=lowerCAmelCase_) else: lowercase_ = self.nodes[word[0]] lowercase_ , lowercase_ , lowercase_ = incoming_node.match( lowerCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase_ = remaining_prefix lowercase_ = self.nodes[matching_string[0]] lowercase_ = RadixNode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = aux_node if remaining_word == "": lowercase_ = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase_) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = self.nodes.get(word[0] , lowerCAmelCase_) if not incoming_node: return False else: lowercase_ , lowercase_ , lowercase_ = incoming_node.match( lowerCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.nodes.get(word[0] , lowerCAmelCase_) if not incoming_node: return False else: lowercase_ , lowercase_ , lowercase_ = incoming_node.match( lowerCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: lowercase_ = list(self.nodes.values())[0] lowercase_ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: lowercase_ = False # If there is 1 edge, we merge it with its child else: lowercase_ = list(incoming_node.nodes.values())[0] lowercase_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase_ = merging_node.nodes return True def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Dict = 0): """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""") for value in self.nodes.values(): value.print_tree(height + 1) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = """banana bananas bandana band apple all beast""".split() lowercase_ = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' assert test_trie() def _SCREAMING_SNAKE_CASE () -> Tuple: '''simple docstring''' lowercase_ = RadixNode() lowercase_ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__lowerCAmelCase ) print("""Words:""" , __lowerCAmelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
136
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCAmelCase_ : """simple docstring""" _lowerCAmelCase : int _lowerCAmelCase : int class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = [[] for _ in range(lowerCAmelCase )] snake_case = size def __getitem__( self , lowerCAmelCase ): """simple docstring""" return iter(self._graph[vertex] ) @property def snake_case ( self ): """simple docstring""" return self._size def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowerCAmelCase , lowerCAmelCase ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = deque([start_vertex] ) snake_case = [None] * self.size snake_case = 0 while queue: snake_case = queue.popleft() snake_case = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case = current_distance + edge.weight snake_case = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase , lowerCAmelCase ) and new_distance >= dest_vertex_distance ): continue snake_case = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
149
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = relative_attention snake_case = position_biased_input snake_case = pos_att_type snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaModel(config=lowerCAmelCase ) snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case = [input_ids, input_mask] snake_case = model(lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForMaskedLM(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForSequenceClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForTokenClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase : Any = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = False def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) snake_case = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] snake_case = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 )
149
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : str = "▁" _UpperCAmelCase : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : Dict = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _UpperCAmelCase : Optional[int] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase = 1 UpperCamelCase = len(self.sp_model ) + self.fairseq_offset UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = ''.join(A_ ).replace(A_ , ' ' ).strip() return out_string def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
222
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' if index == number_of_items: return 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = knapsack(lowercase , lowercase , lowercase , lowercase , index + 1 ) if weights[index] <= max_weight: UpperCamelCase = values[index] + knapsack( lowercase , lowercase , lowercase , max_weight - weights[index] , index + 1 ) return max(lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
222
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ (UpperCamelCase : Any ): '''simple docstring''' _a = SwinvaConfig() _a = swinva_name.split('''_''' ) _a = name_split[1] if "to" in name_split[3]: _a = int(name_split[3][-3:] ) else: _a = int(name_split[3] ) if "to" in name_split[2]: _a = int(name_split[2][-2:] ) else: _a = int(name_split[2][6:] ) if model_size == "tiny": _a = 96 _a = (2, 2, 6, 2) _a = (3, 6, 12, 24) elif model_size == "small": _a = 96 _a = (2, 2, 18, 2) _a = (3, 6, 12, 24) elif model_size == "base": _a = 128 _a = (2, 2, 18, 2) _a = (4, 8, 16, 32) else: _a = 192 _a = (2, 2, 18, 2) _a = (6, 12, 24, 48) if "to" in swinva_name: _a = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _a = 2_1841 _a = '''huggingface/label-files''' _a = '''imagenet-22k-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} else: _a = 1000 _a = '''huggingface/label-files''' _a = '''imagenet-1k-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = img_size _a = num_classes _a = embed_dim _a = depths _a = num_heads _a = window_size return config def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _a = '''encoder.''' + name if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: _a = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: _a = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: _a = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: _a = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": _a = '''layernorm.weight''' if name == "norm.bias": _a = '''layernorm.bias''' if "head" in name: _a = name.replace('''head''' , '''classifier''' ) else: _a = '''swinv2.''' + name return name def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[1] ) _a = int(key_split[3] ) _a = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[ dim : dim * 2 ] _a = val[-dim:] else: _a = val return orig_state_dict def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = timm.create_model(UpperCamelCase , pretrained=UpperCamelCase ) timm_model.eval() _a = get_swinva_config(UpperCamelCase ) _a = SwinvaForImageClassification(UpperCamelCase ) model.eval() _a = convert_state_dict(timm_model.state_dict() , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) _a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) _a = image_processor(images=UpperCamelCase , return_tensors='''pt''' ) _a = timm_model(inputs['''pixel_values'''] ) _a = model(**UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _snake_case : Dict = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
367
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : Dict = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
from __future__ import annotations A : Tuple = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class A : '''simple docstring''' def __init__(self : int , _UpperCAmelCase : dict[str, list[str]] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = graph # mapping node to its parent in resulting breadth first tree lowercase__ = {} lowercase__ = source_vertex def lowerCamelCase__ (self : List[Any] ) -> None: """simple docstring""" lowercase__ = {self.source_vertex} lowercase__ = None lowercase__ = [self.source_vertex] # first in first out queue while queue: lowercase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_UpperCAmelCase ) lowercase__ = vertex queue.append(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowercase__ = self.parent.get(_UpperCAmelCase ) if target_vertex_parent is None: lowercase__ = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_UpperCAmelCase ) return self.shortest_path(_UpperCAmelCase ) + f'''->{target_vertex}''' if __name__ == "__main__": A : Dict = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
305
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = gather(__magic_name__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [state.process_index] lowercase__ = gather_object(__magic_name__ ) assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = create_tensor(__magic_name__ ) lowercase__ = broadcast(__magic_name__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" if state.is_main_process: lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ = torch.arange(state.num_processes ).to(state.device ) lowercase__ = pad_across_processes(__magic_name__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """sum""" ) lowercase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" if state.num_processes != 2: return lowercase__ = create_tensor(__magic_name__ ) lowercase__ = reduce(__magic_name__ , """mean""" ) lowercase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" main() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() state.print(f'''State: {state}''' ) state.print("""testing gather""" ) test_gather(__magic_name__ ) state.print("""testing gather_object""" ) test_gather_object(__magic_name__ ) state.print("""testing broadcast""" ) test_broadcast(__magic_name__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__magic_name__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(__magic_name__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(__magic_name__ ) if __name__ == "__main__": main()
305
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'spiece.model'} __lowerCAmelCase = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __lowerCAmelCase = {'bert_for_seq_generation': 5_1_2} class UpperCAmelCase__ ( _lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int = [] __UpperCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Any ,_a : str ,_a : Optional[Any]="<s>" ,_a : Any="</s>" ,_a : Optional[Any]="<unk>" ,_a : List[Any]="<pad>" ,_a : List[str]="<::::>" ,_a : Optional[Dict[str, Any]] = None ,**_a : Optional[int] ,): '''simple docstring''' _a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,pad_token=lowercase_ ,sep_token=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,) _a : Optional[int] = vocab_file _a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def __lowercase ( self : int ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): '''simple docstring''' _a : Tuple = self.__dict__.copy() _a : Optional[int] = None return state def __setstate__( self : Any ,_a : Optional[int] ): '''simple docstring''' _a : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Tuple = {} _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : Any ,_a : str ): '''simple docstring''' return self.sp_model.encode(lowercase_ ,out_type=lowercase_ ) def __lowercase ( self : Optional[int] ,_a : Union[str, Any] ): '''simple docstring''' return self.sp_model.piece_to_id(lowercase_ ) def __lowercase ( self : Dict ,_a : str ): '''simple docstring''' _a : int = self.sp_model.IdToPiece(lowercase_ ) return token def __lowercase ( self : Optional[int] ,_a : List[Any] ): '''simple docstring''' _a : Dict = [] _a : Tuple = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token _a : Dict = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __lowercase ( self : List[str] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Dict = os.path.join( lowercase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ ,'wb' ) as fi: _a : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
from __future__ import annotations from typing import Any def __A ( __lowerCAmelCase )-> int: """simple docstring""" if not postfix_notation: return 0 _UpperCAmelCase = {'+', '-', '*', '/'} _UpperCAmelCase = [] for token in postfix_notation: if token in operations: _UpperCAmelCase , _UpperCAmelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__lowerCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
39
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCAmelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCAmelCase = json.load(f) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return FSMTTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : List[Any] = FSMTForConditionalGeneration.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCamelCase : int = F"""facebook/wmt19-{pair}""" UpperCamelCase : Optional[int] = self.get_tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.get_model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = bleu_data[pair]['src'] UpperCamelCase : Tuple = bleu_data[pair]['tgt'] UpperCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='pt', truncation=SCREAMING_SNAKE_CASE_, padding='longest' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model.generate( input_ids=batch.input_ids, num_beams=8, ) UpperCamelCase : Tuple = tokenizer.batch_decode( SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = calculate_bleu(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(scores['bleu'], SCREAMING_SNAKE_CASE_ )
119
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list ) -> list: """simple docstring""" if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] lowerCAmelCase_ : List[Any] = [] def generate(lowerCAmelCase__ : int , lowerCAmelCase__ : list ): lowerCAmelCase_ : Optional[int] = [0] * n res.append(tuple(lowercase_ ) ) lowerCAmelCase_ : Any = 0 while i < n: if c[i] < i: if i % 2 == 0: lowerCAmelCase_ ,lowerCAmelCase_ : Dict = arr[i], arr[0] else: lowerCAmelCase_ ,lowerCAmelCase_ : int = arr[i], arr[c[i]] res.append(tuple(lowercase_ ) ) c[i] += 1 lowerCAmelCase_ : Union[str, Any] = 0 else: lowerCAmelCase_ : Optional[Any] = 0 i += 1 generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
357
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_, lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """maskformer-swin""" _SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Dict=9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE_ : List[str]=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-5 , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = image_size lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : List[str] = embed_dim lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = num_heads lowerCAmelCase_ : List[str] = window_size lowerCAmelCase_ : Any = mlp_ratio lowerCAmelCase_ : Any = qkv_bias lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : str = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowerCAmelCase_ : List[Any] = ['stem'] + [F"stage{idx}" for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
289
0
from math import factorial class __lowerCAmelCase : def __init__( self :Any , __magic_name__ :int , __magic_name__ :List[str] ): '''simple docstring''' a = real if isinstance(__magic_name__ , __magic_name__ ): a = [1] * rank else: a = rank def __repr__( self :Optional[Any] ): '''simple docstring''' return ( F'{self.real}+' F'{"+".join(str(__magic_name__ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __magic_name__ ) def __add__( self :Optional[int] , __magic_name__ :List[Any] ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): return Dual(self.real + other , self.duals ) a = self.duals.copy() a = other.duals.copy() if len(__magic_name__ ) > len(__magic_name__ ): o_dual.extend([1] * (len(__magic_name__ ) - len(__magic_name__ )) ) elif len(__magic_name__ ) < len(__magic_name__ ): s_dual.extend([1] * (len(__magic_name__ ) - len(__magic_name__ )) ) a = [] for i in range(len(__magic_name__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __magic_name__ ) UpperCamelCase__ = __add__ def __sub__( self :Dict , __magic_name__ :Tuple ): '''simple docstring''' return self + other * -1 def __mul__( self :Union[str, Any] , __magic_name__ :Tuple ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): a = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __magic_name__ ) a = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __magic_name__ ) UpperCamelCase__ = __mul__ def __truediv__( self :Optional[Any] , __magic_name__ :Any ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): a = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __magic_name__ ) raise ValueError def __floordiv__( self :Dict , __magic_name__ :Any ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): a = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __magic_name__ ) raise ValueError def __pow__( self :Optional[int] , __magic_name__ :Dict ): '''simple docstring''' if n < 0 or isinstance(__magic_name__ , __magic_name__ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self a = self for _ in range(n - 1 ): x *= self return x def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: if not callable(__lowerCamelCase ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(__lowerCamelCase , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""differentiate() requires an int as input for order""" ) a = Dual(__lowerCamelCase , 1 ) a = func(__lowerCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def __A ( __lowerCamelCase ) -> Union[str, Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
228
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __a: List[str] = logging.get_logger(__name__) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def constraint_to_multiple_of(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=None ): lowercase__ : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ : List[str] = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ : str = math.ceil(val / multiple ) * multiple return x lowercase__ : Optional[int] = (output_size, output_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) else output_size lowercase__ , lowercase__ : Union[str, Any] = get_image_size(UpperCAmelCase ) lowercase__ , lowercase__ : List[Any] = output_size # determine new height and width lowercase__ : int = output_height / input_height lowercase__ : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ : Dict = scale_width else: # fit height lowercase__ : Tuple = scale_height lowercase__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=UpperCAmelCase ) lowercase__ : str = constraint_to_multiple_of(scale_width * input_width , multiple=UpperCAmelCase ) return (new_height, new_width) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = False , __lowerCAmelCase = 1 , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> None: super().__init__(**__lowerCAmelCase ) lowercase__ : str = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Tuple = get_size_dict(__lowerCAmelCase ) lowercase__ : Dict = do_resize lowercase__ : str = size lowercase__ : Dict = keep_aspect_ratio lowercase__ : Union[str, Any] = ensure_multiple_of lowercase__ : str = resample lowercase__ : int = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : List[str] = do_normalize lowercase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = 1 , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: lowercase__ : int = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase__ : Dict = get_resize_output_image_size( __lowerCAmelCase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=__lowerCAmelCase , multiple=__lowerCAmelCase , ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> List[Any]: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> PIL.Image.Image: lowercase__ : Dict = do_resize if do_resize is not None else self.do_resize lowercase__ : Optional[Any] = size if size is not None else self.size lowercase__ : List[Any] = get_size_dict(__lowerCAmelCase ) lowercase__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase__ : Tuple = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase__ : Union[str, Any] = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_rescale: lowercase__ : List[Any] = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase__ : str = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase__ : Tuple = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase__ : str = {'''pixel_values''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> int: lowercase__ : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowerCAmelCase ): lowercase__ : Optional[Any] = target_sizes.numpy() lowercase__ : Dict = [] for idx in range(len(__lowerCAmelCase ) ): lowercase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowerCAmelCase ) lowercase__ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCAmelCase ) else: lowercase__ : int = logits.argmax(dim=1 ) lowercase__ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
214
'''simple docstring''' import qiskit def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowercase__ : Any = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowercase__ : Any = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
214
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __a ( A__ ): _lowerCAmelCase : Dict = '''roc_bert''' def __init__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE : Dict=7_68 , SCREAMING_SNAKE_CASE : int=12 , SCREAMING_SNAKE_CASE : Dict=12 , SCREAMING_SNAKE_CASE : Any=30_72 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : int=5_12 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1e-1_2 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Tuple=0 , SCREAMING_SNAKE_CASE : List[str]="absolute" , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : List[Any]=7_68 , SCREAMING_SNAKE_CASE : Optional[Any]=9_10 , SCREAMING_SNAKE_CASE : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE : Optional[Any]=2_48_58 , SCREAMING_SNAKE_CASE : Any=True , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' UpperCamelCase__ : List[str] = vocab_size UpperCamelCase__ : List[str] = max_position_embeddings UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Optional[int] = num_hidden_layers UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : Dict = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : int = type_vocab_size UpperCamelCase__ : List[str] = layer_norm_eps UpperCamelCase__ : str = use_cache UpperCamelCase__ : Dict = enable_pronunciation UpperCamelCase__ : str = enable_shape UpperCamelCase__ : Any = pronunciation_embed_dim UpperCamelCase__ : str = pronunciation_vocab_size UpperCamelCase__ : List[str] = shape_embed_dim UpperCamelCase__ : List[Any] = shape_vocab_size UpperCamelCase__ : Tuple = concat_input UpperCamelCase__ : Any = position_embedding_type UpperCamelCase__ : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
189
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCamelCase : Tuple =False class __a ( unittest.TestCase ): pass @slow @require_torch_gpu class __a ( unittest.TestCase ): def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ : List[Any] = torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = pipe( image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCamelCase__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : Optional[Any] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
189
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Any )-> Union[str, Any]: """simple docstring""" lowercase__ = logging.get_logger() # the current default level is logging.WARNING lowercase__ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" lowercase__ = logging.get_verbosity() lowercase__ = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowercase__ = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a ) as cl: logger.warning(a ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a ) as cl: logger.warning(a ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a ) as cl: logger.warning(a ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(a ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase__ = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowercase__ = os.getenv('TRANSFORMERS_VERBOSITY' , a ) lowercase__ = logging.log_levels[env_level_str] lowercase__ = logging.get_verbosity() self.assertEqual( a , a , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level lowercase__ = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> List[str]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() lowercase__ = logging.logging.getLogger() with CaptureLogger(a ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[str]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() lowercase__ = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowercase__ = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(a ) as cl: logger.warning_advice(a ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a ) as cl: logger.warning_advice(a ) self.assertEqual(cl.out , msg + '\n' ) def __UpperCamelCase () -> List[Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
269
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : List[str] , a : Callable , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[dict] = None , a : Optional[int] = None , **a : str , )-> Tuple: """simple docstring""" super().__init__( features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase__ = Generator( cache_dir=a , features=a , generator=a , gen_kwargs=a , **a , ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split='train' , verification_mode=a , in_memory=self.keep_in_memory ) return dataset
269
1
"""simple docstring""" from __future__ import annotations import math def __magic_name__ ( lowercase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =str(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =[n] for i in range(1 , len(_lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __magic_name__ ( lowercase ): if len(str(_lowerCAmelCase ) ) > 3: if not is_prime(int(str(_lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(_lowerCAmelCase )[:3] ) ): return False return True def __magic_name__ ( lowercase = 11 ): SCREAMING_SNAKE_CASE_: int =[] SCREAMING_SNAKE_CASE_: str =13 while len(_lowerCAmelCase ) != count: if validate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =list_truncated_nums(_lowerCAmelCase ) if all(is_prime(_lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCAmelCase ) num += 2 return list_truncated_primes def __magic_name__ ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(1_1)) = }""")
173
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase = float("""nan""") class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =sys.stdout __lowercase =open(_lowerCAmelCase , 'a') def __getattr__( self : Any , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' return getattr(self.stdout , _lowerCAmelCase) def __lowerCamelCase ( self : str , _lowerCAmelCase : int): '''simple docstring''' self.stdout.write(_lowerCAmelCase) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , _lowerCAmelCase , 0 , re.M)) def _A ( _lowerCAmelCase=80 , _lowerCAmelCase=False ): """simple docstring""" __lowercase =[] # deal with critical env vars __lowercase =['CUDA_VISIBLE_DEVICES'] for key in env_keys: __lowercase =os.environ.get(_lowerCAmelCase , _lowerCAmelCase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) __lowercase =sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(_lowerCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __lowercase =[] __lowercase ='' while len(_lowerCAmelCase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_lowerCAmelCase ) __lowercase ='' return "\\\n".join(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own __lowercase =re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir __lowercase =re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) __lowercase =subprocess.run(_lowerCAmelCase , capture_output=_lowerCAmelCase , text=_lowerCAmelCase ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams __lowercase =variation.replace(' ' , '-' ) with open(Path(_lowerCAmelCase ) / f"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(_lowerCAmelCase ) / f"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: __lowercase =json.load(_lowerCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __lowercase =[] __lowercase =[] __lowercase =f"""{id}: {variation:<{longest_variation_len}}""" __lowercase =f"""{preamble}: """ __lowercase =set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_lowerCAmelCase ) , desc=_lowerCAmelCase , leave=_lowerCAmelCase ): __lowercase =process_run_single( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase =single_run_metrics[target_metric_key] if not math.isnan(_lowerCAmelCase ): metrics.append(_lowerCAmelCase ) results.append(_lowerCAmelCase ) outcome += "✓" else: outcome += "✘" __lowercase =f"""\33[2K\r{outcome}""" if len(_lowerCAmelCase ) > 0: __lowercase ={k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __lowercase =round(mean_metrics[target_metric_key] , 2 ) __lowercase =f"""{outcome} {mean_target}""" if len(_lowerCAmelCase ) > 1: results_str += f""" {tuple(round(_lowerCAmelCase , 2 ) for x in results )}""" print(_lowerCAmelCase ) __lowercase =variation return mean_metrics else: print(_lowerCAmelCase ) return {variation_key: variation, target_metric_key: nan} def _A ( ): """simple docstring""" __lowercase =torch.cuda.get_device_properties(torch.device('cuda' ) ) return f""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =pd.DataFrame(_lowerCAmelCase ) __lowercase ='variation' __lowercase ='diff_%' __lowercase =nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __lowercase =df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_lowerCAmelCase ): # as a fallback, use the minimal value as the sentinel __lowercase =df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_lowerCAmelCase ): __lowercase =df.apply( lambda _lowerCAmelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns __lowercase =[variation_key, target_metric_key, diff_key, *report_metric_keys] __lowercase =df.reindex(_lowerCAmelCase , axis='columns' ) # reorder cols # capitalize __lowercase =df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible __lowercase =df.rename(lambda _lowerCAmelCase : c.replace('_' , '<br>' ) , axis='columns' ) __lowercase =df.rename(lambda _lowerCAmelCase : c.replace('_' , '\n' ) , axis='columns' ) __lowercase =['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_lowerCAmelCase , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_lowerCAmelCase , floatfmt='.2f' )] print('\n\n'.join(_lowerCAmelCase ) ) def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Base cmd' , ) parser.add_argument( '--variations' , default=_lowerCAmelCase , type=_lowerCAmelCase , nargs='+' , required=_lowerCAmelCase , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=_lowerCAmelCase , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=_lowerCAmelCase , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=_lowerCAmelCase , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=_lowerCAmelCase , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) __lowercase =parser.parse_args() __lowercase =args.output_dir Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) __lowercase =get_base_command(_lowerCAmelCase , _lowerCAmelCase ) # split each dimension into its --foo variations __lowercase =[list(map(str.strip , re.split(r'\|' , _lowerCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __lowercase =list(map(str.strip , map(' '.join , itertools.product(*_lowerCAmelCase ) ) ) ) __lowercase =max(len(_lowerCAmelCase ) for x in variations ) # split wanted keys __lowercase =args.report_metric_keys.split() # capture prints into a log file for convenience __lowercase =f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) __lowercase =Tee(_lowerCAmelCase ) print(f"""\n*** Running {len(_lowerCAmelCase )} benchmarks:""" ) print(f"""Base command: {' '.join(_lowerCAmelCase )}""" ) __lowercase ='variation' __lowercase =[] for id, variation in enumerate(tqdm(_lowerCAmelCase , desc='Total completion: ' , leave=_lowerCAmelCase ) ): __lowercase =base_cmd + variation.split() results.append( process_run( id + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.repeat_times , _lowerCAmelCase , args.verbose , ) ) process_results(_lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.base_variation , _lowerCAmelCase ) if __name__ == "__main__": main()
166
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class __a ( __UpperCamelCase ): __lowercase : Dict = 'roberta-prelayernorm' def __init__( self , lowerCAmelCase__=50_265 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowercase__: List[str] = vocab_size lowercase__: Optional[int] = hidden_size lowercase__: Union[str, Any] = num_hidden_layers lowercase__: Dict = num_attention_heads lowercase__: str = hidden_act lowercase__: Optional[Any] = intermediate_size lowercase__: Any = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: List[str] = max_position_embeddings lowercase__: int = type_vocab_size lowercase__: Any = initializer_range lowercase__: Optional[Any] = layer_norm_eps lowercase__: List[Any] = position_embedding_type lowercase__: Optional[Any] = use_cache lowercase__: List[Any] = classifier_dropout class __a ( __UpperCamelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase__: int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
371
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ = 101 ) -> Any: '''simple docstring''' lowercase__: Any = length def __len__( self ) -> List[Any]: '''simple docstring''' return self.length def __getitem__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return i class __a : def __call__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return {"input_ids": torch.tensor(lowerCAmelCase__ ), "labels": torch.tensor(lowerCAmelCase__ )} class __a ( nn.Module ): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__: List[str] = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> int: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __a ( __UpperCamelCase ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: Optional[int] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __a ( __UpperCamelCase ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: List[str] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __lowerCAmelCase = DummyDataset(dataset_length) def snake_case_ ( snake_case ) -> Dict: lowercase__: str = list(range(len(snake_case ) ) ) lowercase__: Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = 2 __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = None
288
0
"""simple docstring""" def _snake_case ( _snake_case : int = 100 ): lowerCAmelCase : Union[str, Any] = (n * (n + 1) // 2) ** 2 lowerCAmelCase : List[str] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
60
"""simple docstring""" from math import factorial class lowerCamelCase : '''simple docstring''' def __init__( self: Optional[int] , snake_case: Dict , snake_case: int ) -> Tuple: snake_case_ :List[Any] = real if isinstance(snake_case , snake_case ): snake_case_ :Tuple = [1] * rank else: snake_case_ :Optional[Any] = rank def __repr__( self: List[str] ) -> Tuple: return ( f"""{self.real}+""" f"""{'+'.join(str(snake_case )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: snake_case_ :Any = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case ) def __add__( self: Optional[int] , snake_case: Dict ) -> List[str]: if not isinstance(snake_case , snake_case ): return Dual(self.real + other , self.duals ) snake_case_ :List[Any] = self.duals.copy() snake_case_ :Tuple = other.duals.copy() if len(snake_case ) > len(snake_case ): o_dual.extend([1] * (len(snake_case ) - len(snake_case )) ) elif len(snake_case ) < len(snake_case ): s_dual.extend([1] * (len(snake_case ) - len(snake_case )) ) snake_case_ :Dict = [] for i in range(len(snake_case ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case ) _A : str = __add__ def __sub__( self: Tuple , snake_case: Union[str, Any] ) -> Tuple: return self + other * -1 def __mul__( self: str , snake_case: Tuple ) -> Optional[Any]: if not isinstance(snake_case , snake_case ): snake_case_ :Dict = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case ) snake_case_ :int = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case ) _A : int = __mul__ def __truediv__( self: List[str] , snake_case: List[str] ) -> List[str]: if not isinstance(snake_case , snake_case ): snake_case_ :Optional[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case ) raise ValueError def __floordiv__( self: int , snake_case: List[Any] ) -> Any: if not isinstance(snake_case , snake_case ): snake_case_ :Optional[int] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case ) raise ValueError def __pow__( self: Optional[Any] , snake_case: Optional[int] ) -> List[Any]: if n < 0 or isinstance(snake_case , snake_case ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self snake_case_ :str = self for _ in range(n - 1 ): x *= self return x def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' if not callable(_lowercase ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(_lowercase, (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(_lowercase, _lowercase ): raise ValueError("""differentiate() requires an int as input for order""" ) snake_case_ :Optional[Any] = Dual(_lowercase, 1 ) snake_case_ :List[Any] = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def A_ ( _lowercase ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
66
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : str = logging.get_logger(__name__) __snake_case : List[Any] = """▁""" __snake_case : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} __snake_case : List[Any] = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } __snake_case : Dict = {"""vinai/bartpho-syllable""": 10_24} class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = monolingual_vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase__ = {} lowerCAmelCase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_UpperCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ = cnt cnt += 1 with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowerCAmelCase__ = line.strip().split()[0] lowerCAmelCase__ = len(self.fairseq_tokens_to_ids ) if str(_UpperCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None lowerCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = ''.join(_UpperCamelCase ).replace(_UpperCamelCase , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _UpperCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"{str(_UpperCamelCase )} \n" ) return out_vocab_file, out_monolingual_vocab_file
355
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __snake_case : List[str] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ __snake_case : Dict = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase__ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase__ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
122
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" ,__lowerCamelCase ,) super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
37
"""simple docstring""" import requests a_ = """""" # <-- Put your OpenWeatherMap appid here! a_ = """https://api.openweathermap.org/data/2.5/""" def __lowercase ( snake_case_ : str = "Chicago" ,snake_case_ : str = APPID ) ->dict: '''simple docstring''' return requests.get(URL_BASE + '''weather''' ,params=locals() ).json() def __lowercase ( snake_case_ : str = "Kolkata, India" ,snake_case_ : str = APPID ) ->dict: '''simple docstring''' return requests.get(URL_BASE + '''forecast''' ,params=locals() ).json() def __lowercase ( snake_case_ : float = 55.68 ,snake_case_ : float = 12.57 ,snake_case_ : str = APPID ) ->dict: '''simple docstring''' return requests.get(URL_BASE + '''onecall''' ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: a_ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
179
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = """Hello, World!""" SCREAMING_SNAKE_CASE_ = """en_XX""" def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = Path("""data_bin""" ) SCREAMING_SNAKE_CASE = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(_SCREAMING_SNAKE_CASE ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_SCREAMING_SNAKE_CASE ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_SCREAMING_SNAKE_CASE ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = XmodForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) SCREAMING_SNAKE_CASE = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) SCREAMING_SNAKE_CASE = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) SCREAMING_SNAKE_CASE = xmod_layer.fca.weight SCREAMING_SNAKE_CASE = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) SCREAMING_SNAKE_CASE = xmod_layer.fca.weight SCREAMING_SNAKE_CASE = xmod_layer.fca.bias SCREAMING_SNAKE_CASE = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE = from_adapter.fca.weight SCREAMING_SNAKE_CASE = from_adapter.fca.bias SCREAMING_SNAKE_CASE = from_adapter.fca.weight SCREAMING_SNAKE_CASE = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].dense.weight SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].dense.bias SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].out_proj.weight SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE = xmod.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_SCREAMING_SNAKE_CASE ) ) else: SCREAMING_SNAKE_CASE = xmod.model(_SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
193
def __lowercase ( _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(_SCREAMING_SNAKE_CASE , digit + 1 ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
193
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
def lowerCamelCase__ ( UpperCamelCase__ : str ) -> list[int]: '''simple docstring''' _snake_case = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer _snake_case , _snake_case = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: _snake_case = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _snake_case = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _snake_case , _snake_case = i, i + z_result[i] - 1 return z_result def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : str ) -> bool: '''simple docstring''' return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: '''simple docstring''' _snake_case = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _snake_case = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
"""simple docstring""" lowerCamelCase__ = 65_521 def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : Union[str, Any] = 0 for plain_chr in plain_text: __lowerCAmelCase : int = (a + ord(_UpperCamelCase )) % MOD_ADLER __lowerCAmelCase : List[str] = (b + a) % MOD_ADLER return (b << 16) | a
86
"""simple docstring""" UpperCAmelCase__ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) UpperCAmelCase__ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = from_type.lower().strip("""s""" ) _UpperCAmelCase = to_type.lower().strip("""s""" ) _UpperCAmelCase = UNIT_SYMBOL.get(lowercase ,lowercase ) _UpperCAmelCase = UNIT_SYMBOL.get(lowercase ,lowercase ) if from_sanitized not in METRIC_CONVERSION: _UpperCAmelCase = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowercase )}''' ) raise ValueError(lowercase ) if to_sanitized not in METRIC_CONVERSION: _UpperCAmelCase = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowercase )}''' ) raise ValueError(lowercase ) _UpperCAmelCase = METRIC_CONVERSION[from_sanitized] _UpperCAmelCase = METRIC_CONVERSION[to_sanitized] _UpperCAmelCase = 1 if from_exponent > to_exponent: _UpperCAmelCase = from_exponent - to_exponent else: _UpperCAmelCase = -(to_exponent - from_exponent) return value * pow(10 ,lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
289
0
'''simple docstring''' import csv import tweepy # Twitter API credentials lowerCAmelCase: Optional[Any] = '' lowerCAmelCase: List[Any] = '' lowerCAmelCase: str = '' lowerCAmelCase: Union[str, Any] = '' def lowerCamelCase__ ( _A ): # authorize twitter, initialize tweepy a : Tuple = tweepy.OAuthHandler(_A , _A ) auth.set_access_token(_A , _A ) a : Dict = tweepy.API(_A ) # initialize a list to hold all the tweepy Tweets a : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) a : List[str] = api.user_timeline(screen_name=_A , count=200 ) # save most recent tweets alltweets.extend(_A ) # save the id of the oldest tweet less one a : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_A ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates a : Any = api.user_timeline( screen_name=_A , count=200 , max_id=_A ) # save most recent tweets alltweets.extend(_A ) # update the id of the oldest tweet less one a : List[Any] = alltweets[-1].id - 1 print(f"""...{len(_A )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv a : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , 'w' ) as f: a : Dict = csv.writer(_A ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_A ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
96
'''simple docstring''' import math class a__: def __init__( self : int , __snake_case : Any=0 ): # a graph with Node 0,1,...,N-1 a : List[Any] = n a : Optional[Any] = [ [math.inf for j in range(0 , __snake_case )] for i in range(0 , __snake_case ) ] # adjacency matrix for weight a : Dict = [ [math.inf for j in range(0 , __snake_case )] for i in range(0 , __snake_case ) ] # dp[i][j] stores minimum distance from i to j def lowercase_ ( self : int , __snake_case : str , __snake_case : Tuple , __snake_case : int ): a : str = w def lowercase_ ( self : int ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): a : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowercase_ ( self : List[str] , __snake_case : Any , __snake_case : List[str] ): return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase: Any = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
96
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Dict = {'vocab_file': 'vocab.txt'} _a : str = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } _a : List[str] = { 'openbmb/cpm-ant-10b': 1_024, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: _lowerCAmelCase : List[str] = collections.OrderedDict() with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as reader: _lowerCAmelCase : Tuple = reader.readlines() for index, token in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = token.rstrip("""\n""" ) _lowerCAmelCase : str = index return vocab class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__="<unk>" , a__=200 ): _lowerCAmelCase : Optional[Any] = vocab _lowerCAmelCase : Any = unk_token _lowerCAmelCase : int = max_input_chars_per_word def __A ( self , a__ ): _lowerCAmelCase : Any = list(a__ ) if len(a__ ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Dict = [] while start < len(a__ ): _lowerCAmelCase : Tuple = len(a__ ) _lowerCAmelCase : int = None while start < end: _lowerCAmelCase : str = """""".join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a__ ) _lowerCAmelCase : Union[str, Any] = end return sub_tokens class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] _UpperCamelCase : str = False def __init__( self , a__ , a__="<d>" , a__="</d>" , a__="<s>" , a__="</s>" , a__="<pad>" , a__="<unk>" , a__="</n>" , a__="</_>" , a__="left" , **a__ , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=a__ , eod_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , unk_token=a__ , line_token=a__ , space_token=a__ , padding_side=a__ , **a__ , ) _lowerCAmelCase : Union[str, Any] = bod_token _lowerCAmelCase : List[Any] = eod_token _lowerCAmelCase : List[str] = load_vocab(a__ ) _lowerCAmelCase : Tuple = self.encoder[space_token] _lowerCAmelCase : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a__ : x[1] ) ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __A ( self ): return self.encoder[self.bod_token] @property def __A ( self ): return self.encoder[self.eod_token] @property def __A ( self ): return self.encoder["\n"] @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): _lowerCAmelCase : Dict = [] for x in jieba.cut(a__ , cut_all=a__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a__ ) ) return output_tokens def __A ( self , a__ , **a__ ): _lowerCAmelCase : Any = [i for i in token_ids if i >= 0] _lowerCAmelCase : str = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a__ , **a__ ) def __A ( self , a__ ): return token in self.encoder def __A ( self , a__ ): return "".join(a__ ) def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ , a__ = None ): if os.path.isdir(a__ ): _lowerCAmelCase : int = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _lowerCAmelCase : List[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _lowerCAmelCase : Any = 0 if " " in self.encoder: _lowerCAmelCase : int = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase : int = self.encoder["""\n"""] del self.encoder["\n"] _lowerCAmelCase : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a__ : x[1] ) ) with open(a__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) _lowerCAmelCase : List[str] = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) return [1] + ([0] * len(a__ ))
44
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> int: lowerCamelCase__ : List[Any] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : Any =get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(lowerCamelCase ), torch_builtin(lowerCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(lowerCamelCase ), gelu_new(lowerCamelCase ) ) ) def snake_case ( self : str )-> Optional[Any]: lowerCamelCase__ : List[str] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : Any =get_activation('''gelu''' ) lowerCamelCase__ : List[Any] =get_activation('''gelu_10''' ) lowerCamelCase__ : Dict =torch_builtin(lowerCamelCase ) lowerCamelCase__ : str =geluaa(lowerCamelCase ) lowerCamelCase__ : str =torch.where(y_gelu_aa < 10.0, 1, 0 ) self.assertTrue(torch.max(lowerCamelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_aa * clipped_mask ) ) def snake_case ( self : Any )-> int: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(lowerCamelCase ): get_activation('''bogus''' ) with self.assertRaises(lowerCamelCase ): get_activation(lowerCamelCase ) def snake_case ( self : List[Any] )-> List[Any]: lowerCamelCase__ : List[str] =get_activation('''gelu''' ) lowerCamelCase__ : Any =1 lowerCamelCase__ : Union[str, Any] =get_activation('''gelu''' ) self.assertEqual(acta.a, 1 ) with self.assertRaises(lowerCamelCase ): lowerCamelCase__ : Optional[Any] =acta.a
272
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
272
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase ( lowercase , lowercase=False ): """simple docstring""" try: __lowercase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowercase = default else: # KEY is set, convert it to True or False. try: __lowercase = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __a : Dict = parse_flag_from_env("""RUN_SLOW""", default=False) __a : List[Any] = parse_flag_from_env("""RUN_REMOTE""", default=False) __a : Optional[int] = parse_flag_from_env("""RUN_LOCAL""", default=True) __a : Optional[int] = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression __a : str = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") __a : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") __a : Tuple = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio __a : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam __a : Optional[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility __a : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows __a : List[Any] = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def UpperCAmelCase ( lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: __lowercase = unittest.skip('''test requires faiss''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import regex # noqa except ImportError: __lowercase = unittest.skip('''test requires regex''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: __lowercase = unittest.skip('''test requires elasticsearch''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: __lowercase = unittest.skip('''test requires sqlalchemy''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: __lowercase = unittest.skip('''test requires PyTorch''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not config.TF_AVAILABLE: __lowercase = unittest.skip('''test requires TensorFlow''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: __lowercase = unittest.skip('''test requires JAX''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: __lowercase = unittest.skip('''test requires Pillow''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(lowercase ) else: return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(lowercase ) else: return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(lowercase ) else: return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" def _require_spacy_model(lowercase ): try: import spacy # noqa F401 spacy.load(lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(lowercase ) )(lowercase ) else: return test_case return _require_spacy_model def UpperCAmelCase ( lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(lowercase ) else: return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(lowercase ) else: return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __lowercase = unittest.skip('''test is slow''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __lowercase = unittest.skip('''test is local''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __lowercase = unittest.skip('''test is packaged''' )(lowercase ) return test_case def UpperCAmelCase ( lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __lowercase = unittest.skip('''test requires remote''' )(lowercase ) return test_case def UpperCAmelCase ( *lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowercase ) and name.startswith('''test''' ): for decorator in decorators: __lowercase = decorator(lowercase ) setattr(cls , lowercase , lowercase ) return cls return decorate class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" pass class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = 0 __a : Optional[int] = 1 __a : Any = 2 @contextmanager def UpperCAmelCase ( lowercase=OfflineSimulationMode.CONNECTION_FAILS , lowercase=1E-16 ): """simple docstring""" __lowercase = requests.Session().request def timeout_request(lowercase , lowercase , lowercase , **lowercase ): # Change the url to an invalid url so that the connection hangs __lowercase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __lowercase = timeout try: return online_request(lowercase , lowercase , **lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __lowercase = url __lowercase = e.args[0] __lowercase = (max_retry_error.args[0].replace('''10.255.255.1''' , F"OfflineMock[{url}]" ),) __lowercase = (max_retry_error,) raise def raise_connection_error(lowercase , lowercase , **lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def UpperCAmelCase ( *lowercase , **lowercase ): """simple docstring""" __lowercase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase , **lowercase ) as tmp_dir: try: os.chdir(lowercase ) yield finally: os.chdir(lowercase ) @contextmanager def UpperCAmelCase ( ): """simple docstring""" import gc gc.collect() __lowercase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase ( ): """simple docstring""" import gc gc.collect() __lowercase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" return deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist() def UpperCAmelCase ( lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(lowercase , *lowercase , **lowercase ): try: return func(*lowercase , **lowercase ) except HTTPError as err: if str(lowercase ).startswith('''500''' ) or str(lowercase ).startswith('''502''' ): pytest.xfail(str(lowercase ) ) raise err return decorator.decorator(_wrapper , lowercase ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase = returncode __lowercase = stdout __lowercase = stderr async def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" while True: __lowercase = await stream.readline() if line: callback(lowercase ) else: break async def UpperCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=False , lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(lowercase ) ) __lowercase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowercase = [] __lowercase = [] def tee(lowercase , lowercase , lowercase , lowercase="" ): __lowercase = line.decode('''utf-8''' ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase , lowercase , file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowercase : tee(lowercase , lowercase , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda lowercase : tee(lowercase , lowercase , sys.stderr , label='''stderr:''' ) ), ] , timeout=lowercase , ) return _RunOutput(await p.wait() , lowercase , lowercase ) def UpperCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase=180 , lowercase=False , lowercase=True ): """simple docstring""" __lowercase = asyncio.get_event_loop() __lowercase = loop.run_until_complete( _stream_subprocess(lowercase , env=lowercase , stdin=lowercase , timeout=lowercase , quiet=lowercase , echo=lowercase ) ) __lowercase = ''' '''.join(lowercase ) if result.returncode > 0: __lowercase = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"'{cmd_str}' produced no output." ) return result def UpperCAmelCase ( ): """simple docstring""" __lowercase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) __lowercase = re.sub(r'''^gw''' , '''''' , lowercase , 0 , re.M ) return int(lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = 29500 __lowercase = pytest_xdist_worker_id() return port + uniq_delta
210
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __a : List[Any] = logging.getLogger(__name__) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=lowercase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=lowercase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=lowercase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=lowercase , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=lowercase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=lowercase , type=lowercase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=lowercase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=lowercase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) __lowercase = parser.parse_args() return args def UpperCAmelCase ( lowercase ): """simple docstring""" def fn(lowercase ): return tokenizer(examples['''text'''] ) return fn def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [] for i in range(len(tokenized_data['''input_ids'''] ) ): __lowercase = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } __lowercase = tf.train.Features(feature=lowercase ) __lowercase = tf.train.Example(features=lowercase ) __lowercase = example.SerializeToString() records.append(lowercase ) return records def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __lowercase = min(len(lowercase ) , args.limit ) __lowercase = dataset.select(range(lowercase ) ) print(F"Limiting the dataset to {args.limit} entries." ) __lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowercase = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowercase ): os.makedirs(lowercase ) else: __lowercase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __lowercase = tokenize_function(lowercase ) __lowercase = dataset.map(lowercase , batched=lowercase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase ): # Concatenate all texts. __lowercase = {k: sum(examples[k] , [] ) for k in examples.keys()} __lowercase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowercase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowercase = { k: [t[i : i + args.max_length] for i in range(0 , lowercase , args.max_length )] for k, t in concatenated_examples.items() } return result __lowercase = dataset_tokenized.map(lowercase , batched=lowercase , batch_size=1000 , num_proc=4 ) __lowercase = 0 __lowercase = 0 for shard in range(0 , len(lowercase ) , args.shard_size ): __lowercase = grouped_dataset[shard : shard + args.shard_size] __lowercase = len(dataset_snapshot['''input_ids'''] ) __lowercase = os.path.join(lowercase , F"dataset-{shard_count}-{records_containing}.tfrecord" ) __lowercase = get_serialized_examples(lowercase ) with tf.io.TFRecordWriter(lowercase ) as out_file: for i in range(len(lowercase ) ): __lowercase = serialized_examples[i] out_file.write(lowercase ) print('''Wrote file {} containing {} records'''.format(lowercase , lowercase ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , '''w''' ) as f: print(F"Total {args.split} records: {total_records}" , file=lowercase ) if __name__ == "__main__": __a : Optional[Any] = parse_args() main(args)
210
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE_ = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } SCREAMING_SNAKE_CASE_ = '▁' class a ( UpperCAmelCase ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["input_ids", "attention_mask"] def __init__( self , A_ , A_="</s>" , A_="<unk>" , A_="<pad>" , A_=100 , A_=None , A_ = None , A_=True , **A_ , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase : Union[str, Any] = [f'<extra_id_{i}>' for i in range(A_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase : Union[str, Any] = len(set(filter(lambda A_ : bool("extra_id" in str(A_ ) ) , A_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) _UpperCAmelCase : Optional[Any] = legacy _UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_ , unk_token=A_ , pad_token=A_ , extra_ids=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , legacy=A_ , **A_ , ) _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : Optional[int] = extra_ids _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @staticmethod def _UpperCAmelCase ( A_ , A_ , A_ ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase : str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , A_ , ) return max_model_length @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self , A_ , A_ = None , A_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def _UpperCAmelCase ( self ): '''simple docstring''' return list( set(filter(lambda A_ : bool(re.search(R"<extra_id_\d+>" , A_ ) ) is not None , self.additional_special_tokens ) ) ) def _UpperCAmelCase ( self ): '''simple docstring''' return [self._convert_token_to_id(A_ ) for token in self.get_sentinel_tokens()] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if len(A_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self._add_eos_if_not_present(A_ ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase : Dict = self._add_eos_if_not_present(A_ ) return token_ids_a + token_ids_a def __getstate__( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.__dict__.copy() _UpperCAmelCase : Optional[Any] = None return state def __setstate__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : int = {} _UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , A_ , **A_ ): '''simple docstring''' if not self.legacy: _UpperCAmelCase : Dict = SPIECE_UNDERLINE + text.replace(A_ , " " ) return super().tokenize(A_ , **A_ ) def _UpperCAmelCase ( self , A_ , **A_ ): '''simple docstring''' if not self.legacy: _UpperCAmelCase : int = text.startswith(A_ ) if is_first: _UpperCAmelCase : int = text[1:] _UpperCAmelCase : Any = self.sp_model.encode(A_ , out_type=A_ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(A_ ): _UpperCAmelCase : str = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if token.startswith("<extra_id_" ): _UpperCAmelCase : Union[str, Any] = re.match(R"<extra_id_(\d+)>" , A_ ) _UpperCAmelCase : Tuple = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if index < self.sp_model.get_piece_size(): _UpperCAmelCase : Dict = self.sp_model.IdToPiece(A_ ) else: _UpperCAmelCase : str = f'<extra_id_{self.vocab_size - 1 - index}>' return token def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token _UpperCAmelCase : List[str] = True _UpperCAmelCase : str = [] else: current_sub_tokens.append(A_ ) _UpperCAmelCase : Tuple = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : Any = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , "wb" ) as fi: _UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
189
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE_ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE_ = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') SCREAMING_SNAKE_CASE_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = None # source code of `config_class` _UpperCAmelCase : int = inspect.getsource(lowerCAmelCase ) _UpperCAmelCase : Tuple = _re_checkpoint.findall(lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Any = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Union[str, Any] = ckpt_name break return checkpoint def __SCREAMING_SNAKE_CASE ( ) -> Dict: _UpperCAmelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : int = get_checkpoint_from_config_class(lowerCAmelCase ) _UpperCAmelCase : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _UpperCAmelCase : int = "\n".join(sorted(lowerCAmelCase ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
189
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "audio-spectrogram-transformer" def __init__( self: str, a_: Optional[Any]=768, a_: str=12, a_: Dict=12, a_: List[str]=3_072, a_: str="gelu", a_: Dict=0.0, a_: str=0.0, a_: Any=0.02, a_: Tuple=1E-12, a_: Union[str, Any]=16, a_: Dict=True, a_: Any=10, a_: Optional[Any]=10, a_: Tuple=1_024, a_: Optional[int]=128, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : List[str] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : str = intermediate_size _snake_case : int = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : Optional[Any] = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : Any = qkv_bias _snake_case : Tuple = frequency_stride _snake_case : List[str] = time_stride _snake_case : Any = max_length _snake_case : int = num_mel_bins
64
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Union[str, Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case : int = deprecated_arg[3:] snake_case : Optional[Any] = not kwargs.pop(SCREAMING_SNAKE_CASE ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) snake_case : Union[str, Any] = kwargs.pop("device_idx" , self.device_idx ) snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) snake_case : Union[str, Any] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**SCREAMING_SNAKE_CASE ) a__ : str = field( default=lowerCamelCase_ , metadata={"""help""": """Name of TPU"""} , ) a__ : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) a__ : bool = field(default=lowerCamelCase_ , metadata={"""help""": """Benchmark models in eager model."""} ) a__ : bool = field( default=lowerCamelCase_ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) snake_case : int = None if self.tpu: try: if self.tpu_name: snake_case : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case : Optional[Any] = None return tpu @cached_property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) snake_case : str = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU snake_case : List[str] = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase_ ( self ): """simple docstring""" return self.n_gpu > 0
148
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __UpperCAmelCase ( __a : int ) -> Union[str, Any]: """simple docstring""" _a : Any = SwinConfig(image_size=192 ) if "base" in model_name: _a : Optional[int] = 6 _a : int = 128 _a : str = (2, 2, 18, 2) _a : Tuple = (4, 8, 16, 32) elif "large" in model_name: _a : Union[str, Any] = 12 _a : List[Any] = 192 _a : str = (2, 2, 18, 2) _a : Optional[Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) _a : List[str] = window_size _a : str = embed_dim _a : Union[str, Any] = depths _a : Optional[Any] = num_heads return config def __UpperCAmelCase ( __a : Tuple ) -> Dict: """simple docstring""" if "encoder.mask_token" in name: _a : int = name.replace('''encoder.mask_token''' ,'''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: _a : List[str] = name.replace('''encoder.patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: _a : Tuple = name.replace('''encoder.patch_embed.norm''' ,'''embeddings.norm''' ) if "attn.proj" in name: _a : List[str] = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: _a : int = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: _a : List[str] = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : int = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : Optional[Any] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : int = name.replace('''mlp.fc2''' ,'''output.dense''' ) if name == "encoder.norm.weight": _a : Dict = '''layernorm.weight''' if name == "encoder.norm.bias": _a : Optional[Any] = '''layernorm.bias''' if "decoder" in name: pass else: _a : List[Any] = '''swin.''' + name return name def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : Tuple = orig_state_dict.pop(__a ) if "attn_mask" in key: pass elif "qkv" in key: _a : List[str] = key.split('''.''' ) _a : Dict = int(key_split[2] ) _a : Any = int(key_split[4] ) _a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a : str = val[:dim, :] _a : List[Any] = val[ dim : dim * 2, : ] _a : Tuple = val[-dim:, :] else: _a : Optional[Any] = val[ :dim ] _a : List[Any] = val[ dim : dim * 2 ] _a : str = val[ -dim: ] else: _a : Dict = val return orig_state_dict def __UpperCAmelCase ( __a : Any ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : Any ) -> List[Any]: """simple docstring""" _a : Any = torch.load(__a ,map_location='''cpu''' )['''model'''] _a : Optional[Any] = get_swin_config(__a ) _a : int = SwinForMaskedImageModeling(__a ) model.eval() _a : List[str] = convert_state_dict(__a ,__a ) model.load_state_dict(__a ) _a : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Tuple = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) _a : Any = Image.open(requests.get(__a ,stream=__a ).raw ) _a : str = image_processor(images=__a ,return_tensors='''pt''' ) with torch.no_grad(): _a : List[Any] = model(**__a ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase , """num_encoder_blocks""" ) ) class _lowerCamelCase : def __init__( self : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Dict=64 , UpperCamelCase : List[str]=3 , UpperCamelCase : Tuple=4 , UpperCamelCase : str=[2, 2, 2, 2] , UpperCamelCase : Dict=[8, 4, 2, 1] , UpperCamelCase : List[Any]=[16, 32, 64, 1_28] , UpperCamelCase : Union[str, Any]=[1, 4, 8, 16] , UpperCamelCase : str=[1, 2, 4, 8] , UpperCamelCase : Tuple=True , UpperCamelCase : List[Any]=True , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : List[str]=3 , UpperCamelCase : Optional[int]=None , ) -> str: """simple docstring""" lowerCAmelCase__ : str = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : List[Any] = image_size lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : Tuple = num_encoder_blocks lowerCAmelCase__ : int = sr_ratios lowerCAmelCase__ : str = depths lowerCAmelCase__ : Union[str, Any] = hidden_sizes lowerCAmelCase__ : Optional[int] = downsampling_rates lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Any = use_labels lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : int = num_labels lowerCAmelCase__ : Dict = scope def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Tuple = None if self.use_labels: lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = SegformerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : str = model(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _lowerCAmelCase ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ) -> Any: """simple docstring""" lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Optional[Any] = SegformerForSemanticSegmentation(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : Optional[int] = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCAmelCase__ : int = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List[str] = SegformerForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : Dict = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase ) lowerCAmelCase__ : Tuple = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs lowerCAmelCase__ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( a_ , a_ , unittest.TestCase ): _lowerCamelCase :Union[str, Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowerCamelCase :List[Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase :Dict = True _lowerCamelCase :Tuple = False _lowerCamelCase :Tuple = False _lowerCamelCase :List[str] = False def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = SegformerModelTester(self ) lowerCAmelCase__ : int = SegformerConfigTester(self , config_class=UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = True for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Dict = False lowerCAmelCase__ : int = True lowerCAmelCase__ : Optional[int] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Dict = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : List[Any] = sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first attentions (first block, first layer) lowerCAmelCase__ : List[str] = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ : Optional[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCAmelCase__ : Optional[int] = (self.model_tester.image_size // 32) ** 2 lowerCAmelCase__ : Union[str, Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCAmelCase__ : Any = len(UpperCamelCase ) # Check attention is always last and order is fine lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first attentions (first block, first layer) lowerCAmelCase__ : List[str] = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" def check_hidden_states_output(UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): lowerCAmelCase__ : Optional[int] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : List[str] = outputs.hidden_states lowerCAmelCase__ : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : str = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase ): continue lowerCAmelCase__ : int = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.train() lowerCAmelCase__ : str = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) lowerCAmelCase__ : List[Any] = model(**UpperCamelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass @slow def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[str] = SegformerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _lowerCamelCase ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" # only resize + normalize lowerCAmelCase__ : int = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) lowerCAmelCase__ : Tuple = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase ) lowerCAmelCase__ : Dict = prepare_img() lowerCAmelCase__ : Dict = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) lowerCAmelCase__ : Union[str, Any] = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Dict = model(UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" # only resize + normalize lowerCAmelCase__ : Optional[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) lowerCAmelCase__ : Any = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) lowerCAmelCase__ : Union[str, Any] = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase , atol=1E-1 ) ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" # only resize + normalize lowerCAmelCase__ : Tuple = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) lowerCAmelCase__ : Tuple = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : Tuple = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) lowerCAmelCase__ : str = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(UpperCamelCase ) lowerCAmelCase__ : Tuple = outputs.logits.detach().cpu() lowerCAmelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase , target_sizes=[(5_00, 3_00)] ) lowerCAmelCase__ : Any = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , UpperCamelCase ) lowerCAmelCase__ : Tuple = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , UpperCamelCase )
242
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase_ ( __UpperCAmelCase ) -> tuple: return (data["data"], data["target"]) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: lowerCAmelCase__ : List[Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__UpperCAmelCase , __UpperCAmelCase ) # Predict target for test data lowerCAmelCase__ : Dict = xgb.predict(__UpperCAmelCase ) lowerCAmelCase__ : Any = predictions.reshape(len(__UpperCAmelCase ) , 1 ) return predictions def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[Any] = fetch_california_housing() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = data_handling(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = train_test_split( __UpperCAmelCase , __UpperCAmelCase , test_size=0.25 , random_state=1 ) lowerCAmelCase__ : Optional[Any] = xgboost(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(__UpperCAmelCase , __UpperCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(__UpperCAmelCase , __UpperCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
242
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = KandinskyVaaPriorPipeline lowerCAmelCase : Any = ["prompt"] lowerCAmelCase : Optional[Any] = ["prompt", "negative_prompt"] lowerCAmelCase : Optional[int] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowerCAmelCase : Union[str, Any] = False @property def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return 32 @property def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return 32 @property def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return 100 @property def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModelWithProjection(_snake_case ) @property def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowercase__ : Dict = PriorTransformer(**_snake_case ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase__ : List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=224 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=14 ,) lowercase__ : Optional[Any] = CLIPVisionModelWithProjection(_snake_case ) return model @property def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = CLIPImageProcessor( crop_size=224 ,do_center_crop=_snake_case ,do_normalize=_snake_case ,do_resize=_snake_case ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=224 ,) return image_processor def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : int = self.dummy_prior lowercase__ : Union[str, Any] = self.dummy_image_encoder lowercase__ : Optional[int] = self.dummy_text_encoder lowercase__ : Optional[Any] = self.dummy_tokenizer lowercase__ : Union[str, Any] = self.dummy_image_processor lowercase__ : Tuple = UnCLIPScheduler( variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_000 ,clip_sample=_snake_case ,clip_sample_range=10.0 ,) lowercase__ : Dict = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Tuple=0 ) -> int: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) else: lowercase__ : Any = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**_snake_case ) lowercase__ : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(_snake_case ) ) lowercase__ : Any = output.image_embeds lowercase__ : List[str] = pipe( **self.get_dummy_inputs(_snake_case ) ,return_dict=_snake_case ,)[0] lowercase__ : str = image[0, -10:] lowercase__ : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) lowercase__ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : int = torch_device == '''cpu''' lowercase__ : Any = True lowercase__ : str = False self._test_inference_batch_single_identical( test_max_difference=_snake_case ,relax_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,) @skip_mps def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = torch_device == '''cpu''' lowercase__ : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,)
351
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Optional[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str ) -> List[str]: return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ) -> int: _snake_case = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] _snake_case = [] if args.gold_data_mode == "qa": _snake_case = pd.read_csv(lowerCAmelCase__ , sep='''\t''' , header=lowerCAmelCase__ ) for answer_list in data[1]: _snake_case = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: _snake_case = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] _snake_case = [[reference] for reference in references] _snake_case = _snake_case = _snake_case = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _snake_case = 1_00.0 * em / total _snake_case = 1_00.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Any ) -> Any: _snake_case = args.k _snake_case = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] _snake_case = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] _snake_case = _snake_case = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case = set(hypo.split('''\t''' )[:k] ) _snake_case = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _snake_case = 1_00.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : str ) -> Dict: def strip_title(__lowerCamelCase : Tuple ): if title.startswith('''"''' ): _snake_case = title[1:] if title.endswith('''"''' ): _snake_case = title[:-1] return title _snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )['''input_ids'''].to(args.device ) _snake_case = rag_model.rag.question_encoder(lowerCAmelCase__ ) _snake_case = question_enc_outputs[0] _snake_case = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) _snake_case = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _snake_case = [] for docs in all_docs: _snake_case = [strip_title(lowerCAmelCase__ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(lowerCAmelCase__ ) ) return provenance_strings def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any ) -> Any: with torch.no_grad(): _snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) _snake_case = inputs_dict.input_ids.to(args.device ) _snake_case = inputs_dict.attention_mask.to(args.device ) _snake_case = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _snake_case = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info('''Q: {} - A: {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCAmelCase__ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=lowerCAmelCase__ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCAmelCase__ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=lowerCAmelCase__ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCAmelCase__ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=lowerCAmelCase__ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=lowerCAmelCase__ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=lowerCAmelCase__ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=lowerCAmelCase__ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=lowerCAmelCase__ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=lowerCAmelCase__ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=lowerCAmelCase__ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) _snake_case = parser.parse_args() _snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] ) -> str: _snake_case = {} if args.model_type is None: _snake_case = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): _snake_case = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration _snake_case = args.n_docs if args.index_name is not None: _snake_case = args.index_name if args.index_path is not None: _snake_case = args.index_path else: _snake_case = BartForConditionalGeneration _snake_case = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , lowerCAmelCase__ ) _snake_case = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k _snake_case = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(lowerCAmelCase__ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): _snake_case = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _snake_case = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: _snake_case = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: _snake_case = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: _snake_case = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) + '''\n''' ) preds_file.flush() _snake_case = [] if len(lowerCAmelCase__ ) > 0: _snake_case = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase__ = get_args() main(args)
288
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=14 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_token_type_ids __a = use_input_mask __a = use_labels __a = use_mc_token_ids __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = self.vocab_size - 1 def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None if self.use_mc_token_ids: __a = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() __a = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ): __a = CTRLModel(config=_a ) model.to(_a ) model.eval() model(_a , token_type_ids=_a , head_mask=_a ) model(_a , token_type_ids=_a ) __a = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ): __a = CTRLLMHeadModel(_a ) model.to(_a ) model.eval() __a = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def __UpperCAmelCase ( self , _a , _a , _a , _a , *_a ): __a = self.num_labels __a = CTRLForSequenceClassification(_a ) model.to(_a ) model.eval() __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __UpperCAmelCase : Union[str, Any] = (CTRLLMHeadModel,) if is_torch_available() else () __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = False def __UpperCAmelCase ( self , _a , _a , _a , _a , _a ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self ): __a = CTRLModelTester(self ) __a = ConfigTester(self , config_class=_a , n_embd=37 ) def __UpperCAmelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass @slow def __UpperCAmelCase ( self ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = CTRLModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self ): pass @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self ): __a = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_a ) __a = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_a ) # Legal the president is __a = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __a = model.generate(_a , do_sample=_a ) self.assertListEqual(output_ids[0].tolist() , _a )
45
0
from manim import * class __magic_name__ ( snake_case ): def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_ = [mem.copy() for i in range(6 )] UpperCamelCase_ = [mem.copy() for i in range(6 )] UpperCamelCase_ = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCamelCase_ = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCamelCase_ = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) UpperCamelCase_ = Text("CPU" , font_size=24 ) UpperCamelCase_ = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) UpperCamelCase_ = [mem.copy() for i in range(1 )] UpperCamelCase_ = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCamelCase_ = Text("GPU" , font_size=24 ) UpperCamelCase_ = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) UpperCamelCase_ = [mem.copy() for i in range(6 )] UpperCamelCase_ = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCamelCase_ = Text("Model" , font_size=24 ) UpperCamelCase_ = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) UpperCamelCase_ = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) UpperCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = [] for i, rect in enumerate(_lowercase ): UpperCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() UpperCamelCase_ = 0.46 / 4 UpperCamelCase_ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
60
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE :Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None )-> Any: UpperCamelCase_ = None UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase_ = os.path.abspath("examples" ) for item in os.listdir(_lowercase ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ) and ".py" in item_path: with self.subTest( tested_script=_lowercase , feature_script=_lowercase , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase_ = compare_against_test( os.path.join(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase ) UpperCamelCase_ = "\n".join(_lowercase ) if special_strings is not None: for string in special_strings: UpperCamelCase_ = diff.replace(_lowercase , "" ) self.assertEqual(_lowercase , "" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.one_complete_example("complete_nlp_example.py" , _lowercase ) self.one_complete_example("complete_nlp_example.py" , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = False @classmethod def UpperCAmelCase_ ( cls )-> List[str]: super().setUpClass() UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls )-> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) else: self.assertIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) UpperCamelCase_ = re.findall("({.+})" , _lowercase ) UpperCamelCase_ = [r for r in results if "accuracy" in r][-1] UpperCamelCase_ = ast.literal_eval(_lowercase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "tracking" ) ) ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
60
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase (unittest.TestCase ): @property def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.dummy_uncond_unet __lowerCAmelCase : Optional[Any] = KarrasVeScheduler() __lowerCAmelCase : Optional[int] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : str = pipe(num_inference_steps=2 , generator=_A , output_type='''numpy''' ).images __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) __lowerCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=_A , output_type='''numpy''' , return_dict=_A )[0] __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : List[str] = """google/ncsnpp-celebahq-256""" __lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(_A ) __lowerCAmelCase : Optional[int] = KarrasVeScheduler() __lowerCAmelCase : Optional[int] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __lowerCAmelCase : int = torch.manual_seed(0 ) __lowerCAmelCase : Tuple = pipe(num_inference_steps=20 , generator=_A , output_type='''numpy''' ).images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCAmelCase : Optional[int] = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
275
"""simple docstring""" # Lint as: python3 import itertools import os import re lowerCamelCase__ : str = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowerCamelCase__ : List[Any] = re.compile(r'''([a-z\d])([A-Z])''') lowerCamelCase__ : int = re.compile(r'''(?<!_)_(?!_)''') lowerCamelCase__ : List[str] = re.compile(r'''(_{2,})''') lowerCamelCase__ : List[Any] = r'''^\w+(\.\w+)*$''' lowerCamelCase__ : str = r'''<>:/\|?*''' def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> str: _UpperCAmelCase : Any = _uppercase_uppercase_re.sub(R"""\1_\2""", _lowerCAmelCase ) _UpperCAmelCase : Tuple = _lowercase_uppercase_re.sub(R"""\1_\2""", _lowerCAmelCase ) return name.lower() def UpperCamelCase ( _lowerCAmelCase : Optional[Any] ) -> Tuple: _UpperCAmelCase : Optional[Any] = _single_underscore_re.split(_lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(_lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCAmelCase ) if n != """""" ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any] ) -> str: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : Tuple ) -> int: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, _lowerCAmelCase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(_lowerCAmelCase )}-{split}''' def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple=None ) -> List[Any]: _UpperCAmelCase : Optional[int] = filename_prefix_for_split(_lowerCAmelCase, _lowerCAmelCase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' _UpperCAmelCase : int = os.path.join(_lowerCAmelCase, _lowerCAmelCase ) return f'''{filepath}*''' def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : str, _lowerCAmelCase : List[Any], _lowerCAmelCase : Any=None, _lowerCAmelCase : int=None ) -> str: _UpperCAmelCase : Union[str, Any] = filename_prefix_for_split(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = os.path.join(_lowerCAmelCase, _lowerCAmelCase ) if shard_lengths: _UpperCAmelCase : List[str] = len(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_lowerCAmelCase )] if filetype_suffix: _UpperCAmelCase : Union[str, Any] = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: _UpperCAmelCase : Any = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
246
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") __UpperCAmelCase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) __UpperCAmelCase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __UpperCAmelCase = BeautifulSoup(res.text, """html.parser""") __UpperCAmelCase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F'https://google.com{link.get("href")}')
355
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A_ : int = logging.get_logger(__name__) A_ : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A_ : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : lowerCamelCase__ : str = field( default=A__ ,metadata={'help': 'Model type selected in the list: ' + ', '.join(A__ )} ) lowerCamelCase__ : str = field( default=A__ ,metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCamelCase__ : int = field( default=1_2_8 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase__ : int = field( default=1_2_8 ,metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} ,) lowerCamelCase__ : int = field( default=6_4 ,metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } ,) lowerCamelCase__ : int = field( default=3_0 ,metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } ,) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCamelCase__ : float = field( default=0.0 ,metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCamelCase__ : int = field( default=2_0 ,metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCamelCase__ : int = field( default=0 ,metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } ,) lowerCamelCase__ : int = field(default=1 ,metadata={'help': 'multiple threads for converting example to features'} ) class lowerCamelCase (A__ ): lowerCamelCase__ : Dict = 'train' lowerCamelCase__ : Union[str, Any] = 'dev' class lowerCamelCase (A__ ): lowerCamelCase__ : SquadDataTrainingArguments lowerCamelCase__ : List[SquadFeatures] lowerCamelCase__ : Split lowerCamelCase__ : bool def __init__( self : Optional[int] , __UpperCAmelCase : SquadDataTrainingArguments , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Union[str, Split] = Split.train , __UpperCAmelCase : Optional[bool] = False , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = "pt" , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = is_language_sensitive SCREAMING_SNAKE_CASE__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCAmelCase , __UpperCAmelCase ): try: SCREAMING_SNAKE_CASE__ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) SCREAMING_SNAKE_CASE__ = mode # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ = """v2""" if args.version_2_with_negative else """v1""" SCREAMING_SNAKE_CASE__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + """.lock""" with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = torch.load(__UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. SCREAMING_SNAKE_CASE__ = self.old_features["""features"""] SCREAMING_SNAKE_CASE__ = self.old_features.get("""dataset""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.old_features.get("""examples""" , __UpperCAmelCase ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" """ future run""" ) else: if mode == Split.dev: SCREAMING_SNAKE_CASE__ = self.processor.get_dev_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE__ = self.processor.get_train_examples(args.data_dir ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=__UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , __UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Tuple ) -> Any: return len(self.features ) def __getitem__( self : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset SCREAMING_SNAKE_CASE__ = self.features[i] SCREAMING_SNAKE_CASE__ = torch.tensor(feature.input_ids , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.attention_mask , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.cls_index , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.p_mask , dtype=torch.float ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.is_impossible , dtype=torch.float ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: SCREAMING_SNAKE_CASE__ = torch.tensor(feature.start_position , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
165
"""simple docstring""" from __future__ import annotations import math def A ( snake_case__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(snake_case__ ) SCREAMING_SNAKE_CASE__ = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A ( snake_case__ ): '''simple docstring''' if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def A ( snake_case__ = 11 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): SCREAMING_SNAKE_CASE__ = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def A ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(11)) = }')
165
1
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def a ( __a ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def a ( __a , __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = np.nan for i in range(__a ): UpperCamelCase__ :List[str] = features[:, labels == i] UpperCamelCase__ :str = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ :List[str] = data - column_reshape(__a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__a , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ :List[str] = np.dot(__a , centered_data.T ) return covariance_sum / features.shape[1] def a ( __a , __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Tuple = features.mean(1 ) UpperCamelCase__ :Optional[Any] = np.nan for i in range(__a ): UpperCamelCase__ :str = features[:, labels == i] UpperCamelCase__ :Dict = data.shape[1] UpperCamelCase__ :Union[str, Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__a ) - column_reshape(__a ) , (column_reshape(__a ) - column_reshape(__a )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ :str = device_data * np.dot( column_reshape(__a ) - column_reshape(__a ) , (column_reshape(__a ) - column_reshape(__a )).T , ) return covariance_sum / features.shape[1] def a ( __a , __a ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ :str = features.mean(1 ) # Center the dataset UpperCamelCase__ :Any = features - np.reshape(__a , (data_mean.size, 1) ) UpperCamelCase__ :Optional[int] = np.dot(__a , centered_data.T ) / features.shape[1] UpperCamelCase__ :Any = np.linalg.eigh(__a ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ :int = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ :List[str] = np.dot(filtered_eigenvectors.T , __a ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__a ) logging.error('''Dataset empty''' ) raise AssertionError def a ( __a , __a , __a , __a ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ :Any = eigh( covariance_between_classes(__a , __a , __a ) , covariance_within_classes(__a , __a , __a ) , ) UpperCamelCase__ :str = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ :Tuple = np.linalg.svd(__a ) UpperCamelCase__ :List[str] = svd_matrix[:, 0:dimensions] UpperCamelCase__ :List[str] = np.dot(filtered_svd_matrix.T , __a ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__a ) logging.error('''Dataset empty''' ) raise AssertionError def a ( ) -> None: '''simple docstring''' UpperCamelCase__ :Any = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ :Optional[Any] = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__a ) as error_info: UpperCamelCase__ :Any = linear_discriminant_analysis( __a , __a , __a , __a ) if isinstance(__a , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def a ( ) -> None: '''simple docstring''' UpperCamelCase__ :int = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ :Union[str, Any] = 2 UpperCamelCase__ :List[Any] = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(__a ) as error_info: UpperCamelCase__ :Dict = principal_component_analysis(__a , __a ) if not np.allclose(__a , __a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' model.eval() UpperCamelCase__ :List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Any = config['''lr'''] UpperCamelCase__ :Optional[int] = int(config['''num_epochs'''] ) UpperCamelCase__ :List[Any] = int(config['''seed'''] ) UpperCamelCase__ :List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[Any] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Any = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Dict = 1 UpperCamelCase__ :Tuple = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Any = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :Tuple = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :Any = int(__a ) + 1 UpperCamelCase__ :Dict = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :Union[str, Any] = f'''epoch_{epoch}''' UpperCamelCase__ :List[Any] = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :List[Any] = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :int = accuracy UpperCamelCase__ :List[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :int = epoch UpperCamelCase__ :Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Optional[int] = parser.parse_args() UpperCamelCase__ :List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
219
0
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def _lowerCAmelCase ( _UpperCamelCase : jnp.ndarray , _UpperCamelCase : int , _UpperCamelCase : float = 1 , _UpperCamelCase : float = 1 , _UpperCamelCase : float = 1.0E4 , _UpperCamelCase : bool = False , _UpperCamelCase : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" _SCREAMING_SNAKE_CASE =float(embedding_dim // 2 ) _SCREAMING_SNAKE_CASE =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _SCREAMING_SNAKE_CASE =min_timescale * jnp.exp(jnp.arange(_UpperCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) _SCREAMING_SNAKE_CASE =jnp.expand_dims(_UpperCamelCase , 1 ) * jnp.expand_dims(_UpperCamelCase , 0 ) # scale embeddings _SCREAMING_SNAKE_CASE =scale * emb if flip_sin_to_cos: _SCREAMING_SNAKE_CASE =jnp.concatenate([jnp.cos(_UpperCamelCase ), jnp.sin(_UpperCamelCase )] , axis=1 ) else: _SCREAMING_SNAKE_CASE =jnp.concatenate([jnp.sin(_UpperCamelCase ), jnp.cos(_UpperCamelCase )] , axis=1 ) _SCREAMING_SNAKE_CASE =jnp.reshape(_UpperCamelCase , [jnp.shape(_UpperCamelCase )[0], embedding_dim] ) return signal class A__ ( nn.Module ): A__ = 32 A__ = jnp.floataa @nn.compact def __call__( self : int , _a : Union[str, Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_a ) _SCREAMING_SNAKE_CASE =nn.silu(_a ) _SCREAMING_SNAKE_CASE =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_a ) return temb class A__ ( nn.Module ): A__ = 32 A__ = False A__ = 1 @nn.compact def __call__( self : Tuple , _a : Dict ) -> List[Any]: '''simple docstring''' return get_sinusoidal_embeddings( _a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
47
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : int = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ["GLPNFeatureExtractor"] lowerCamelCase : Optional[int] = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
1
from __future__ import annotations def UpperCAmelCase_ ( __UpperCAmelCase : list[int | str] ) -> None: create_state_space_tree(__UpperCAmelCase , [] , 0 , [0 for i in range(len(__UpperCAmelCase ) )] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int | str] , __UpperCAmelCase : list[int | str] , __UpperCAmelCase : int , __UpperCAmelCase : list[int] , ) -> None: if index == len(__UpperCAmelCase ): print(__UpperCAmelCase ) return for i in range(len(__UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE_ = True create_state_space_tree(__UpperCAmelCase , __UpperCAmelCase , index + 1 , __UpperCAmelCase ) current_sequence.pop() SCREAMING_SNAKE_CASE_ = False lowerCamelCase__ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCamelCase__ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
210
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ : str = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : Optional[int] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'fake-roberta' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertEqual(type(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('model' , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('bert' , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self : int ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowerCAmelCase_ ( self : Union[str, Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowerCAmelCase_ ( self : Any ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "new-model" try: AutoConfig.register('new-model' , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
210
1
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } lowerCamelCase__ = {"""allegro/herbert-base-cased""": 514} lowerCamelCase__ = {} class A__ ( _lowerCamelCase): A_ : Dict = VOCAB_FILES_NAMES A_ : str = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = PRETRAINED_INIT_CONFIGURATION A_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ): super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Union[str, Any] = [self.cls_token_id] __lowerCAmelCase : Dict = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Optional[int] = [self.sep_token_id] __lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Union[str, Any] = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
86
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( _lowercase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self , __a ) -> np.ndarray: if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def snake_case_ (self , __a ) -> np.ndarray: UpperCamelCase = self.get_masked_index(__a ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ (self , __a ) -> Any: if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def snake_case_ (self , __a , __a=None , **__a ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def snake_case_ (self , __a ) -> Dict: UpperCamelCase = self.model(**__a ) UpperCamelCase = model_inputs["input_ids"] return model_outputs def snake_case_ (self , __a , __a=5 , __a=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs["input_ids"][0] UpperCamelCase = model_outputs["logits"] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(__a , 0 ) UpperCamelCase = tf.math.top_k(__a , k=__a ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(__a ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCamelCase = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def snake_case_ (self , __a , __a=None ) -> Any: if isinstance(__a , __a ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(__a , __a ) if id_ is None: UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) UpperCamelCase = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCamelCase = np.array(__a ) return target_ids def snake_case_ (self , __a=None , __a=None ) -> int: UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(__a , __a ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self , __a , *__a , **__a ) -> Tuple: UpperCamelCase = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
153
0
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCamelCase : int = logging.get_logger(__name__) class __magic_name__ ( __lowerCAmelCase): A: str = ["pixel_values"] def __init__( self : str , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 255 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , **lowerCamelCase__ : Any , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase__ : List[str] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCamelCase__ : Dict = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) UpperCamelCase__ : Optional[Any] = do_resize UpperCamelCase__ : List[Any] = size UpperCamelCase__ : Optional[int] = resample UpperCamelCase__ : Optional[int] = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : Optional[Any] = do_center_crop UpperCamelCase__ : int = crop_size UpperCamelCase__ : List[str] = do_flip_channel_order def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PIL.Image.BILINEAR , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[str] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Optional[int] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__ : int = get_resize_output_image_size(lowerCamelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Tuple , ) -> List[Any]: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: '''simple docstring''' return flip_channel_order(lowerCamelCase__ , data_format=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCamelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[Any] = resample if resample is not None else self.resample UpperCamelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ : List[str] = size if size is not None else self.size UpperCamelCase__ : int = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) UpperCamelCase__ : Tuple = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : int = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) UpperCamelCase__ : int = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Union[str, Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: UpperCamelCase__ : Tuple = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: UpperCamelCase__ : Optional[Any] = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: UpperCamelCase__ : List[Any] = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ : List[Any] = [self.flip_channel_order(image=lowerCamelCase__ ) for image in images] UpperCamelCase__ : Union[str, Any] = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] UpperCamelCase__ : int = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Tuple] = None ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCamelCase__ ): UpperCamelCase__ : Tuple = target_sizes.numpy() UpperCamelCase__ : Any = [] for idx in range(len(lowerCamelCase__ ) ): UpperCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: UpperCamelCase__ : Dict = logits.argmax(dim=1 ) UpperCamelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
51
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = SwinConfig(image_size=1_9_2 ) if "base" in model_name: __A = 6 __A = 1_2_8 __A = (2, 2, 1_8, 2) __A = (4, 8, 1_6, 3_2) elif "large" in model_name: __A = 1_2 __A = 1_9_2 __A = (2, 2, 1_8, 2) __A = (6, 1_2, 2_4, 4_8) else: raise ValueError("Model not supported, only supports base and large variants" ) __A = window_size __A = embed_dim __A = depths __A = num_heads return config def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if "encoder.mask_token" in name: __A = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: __A = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: __A = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: __A = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __A = name.replace("attn" , "attention.self" ) if "norm1" in name: __A = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __A = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __A = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __A = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __A = "layernorm.weight" if name == "encoder.norm.bias": __A = "layernorm.bias" if "decoder" in name: pass else: __A = "swin." + name return name def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(a_ ) if "attn_mask" in key: pass elif "qkv" in key: __A = key.split("." ) __A = int(key_split[2] ) __A = int(key_split[4] ) __A = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A = val[:dim, :] __A = val[ dim : dim * 2, : ] __A = val[-dim:, :] else: __A = val[ :dim ] __A = val[ dim : dim * 2 ] __A = val[ -dim: ] else: __A = val return orig_state_dict def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = torch.load(a_ , map_location="cpu" )["model"] __A = get_swin_config(a_ ) __A = SwinForMaskedImageModeling(a_ ) model.eval() __A = convert_state_dict(a_ , a_ ) model.load_state_dict(a_ ) __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = ViTImageProcessor(size={"height": 1_9_2, "width": 1_9_2} ) __A = Image.open(requests.get(a_ , stream=a_ ).raw ) __A = image_processor(images=a_ , return_tensors="pt" ) with torch.no_grad(): __A = model(**a_ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a_ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
15
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE :Union[str, Any] = False SCREAMING_SNAKE_CASE :Any = True SCREAMING_SNAKE_CASE :Tuple = False if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } SCREAMING_SNAKE_CASE :Optional[int] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: SCREAMING_SNAKE_CASE :Dict = reader.read() SCREAMING_SNAKE_CASE :List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE :Optional[Any] = config[key] del config[key] SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) SCREAMING_SNAKE_CASE :Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue SCREAMING_SNAKE_CASE :List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: SCREAMING_SNAKE_CASE :List[Any] = param_value SCREAMING_SNAKE_CASE :str = True if not has_changed: SCREAMING_SNAKE_CASE :List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : List[Any] = XGLMConfig lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Dict = """gelu""" def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str=14 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Union[str, Any]=0.02 , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = d_model UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = ffn_dim UpperCAmelCase__ = activation_function UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = initializer_range UpperCAmelCase__ = None UpperCAmelCase__ = 0 UpperCAmelCase__ = 2 UpperCAmelCase__ = 1 def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = self.get_config() UpperCAmelCase__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase_ : List[str] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = TFXGLMModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFXGLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : str=True ): """simple docstring""" UpperCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCAmelCase__ = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase__ = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on UpperCAmelCase__ = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) UpperCAmelCase__ = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) UpperCAmelCase__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): UpperCAmelCase__ = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] ) UpperCAmelCase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCAmelCase__ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCAmelCase__ = """left""" # use different length sentences to test batching UpperCAmelCase__ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding=_UpperCAmelCase ) UpperCAmelCase__ = inputs["""input_ids"""] UpperCAmelCase__ = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) UpperCAmelCase__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids UpperCAmelCase__ = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) UpperCAmelCase__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids UpperCAmelCase__ = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
61
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ): """simple docstring""" UpperCAmelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } UpperCAmelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase__ = token_dict["""token"""] UpperCAmelCase__ = Tokenizer(Unigram() ) UpperCAmelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) UpperCAmelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase__ = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) UpperCAmelCase__ = TemplateProcessing( single=f'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) UpperCAmelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = json.loads(self._tokenizer.to_str() ) UpperCAmelCase__ = self.special_tokens["""unk"""]["""id"""] UpperCAmelCase__ = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
61
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def _lowerCamelCase ( self :int ) -> str: __UpperCamelCase : List[str] = SMALL_MODEL_IDENTIFIER __UpperCamelCase : Tuple = "pt" __UpperCamelCase : Tuple = "tf" def _lowerCamelCase ( self :Optional[int] , a :str ) -> Optional[Any]: __UpperCamelCase : Dict = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__lowercase ) def _lowerCamelCase ( self :Any , a :Dict ) -> int: __UpperCamelCase : List[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__lowercase ) model_tf.save_pretrained(__lowercase ) def _lowerCamelCase ( self :Optional[int] ) -> str: __UpperCamelCase : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides __UpperCamelCase : List[str] = FeaturesManager.determine_framework(self.test_model , __lowercase ) self.assertEqual(__lowercase , __lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase ) __UpperCamelCase : Any = FeaturesManager.determine_framework(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def _lowerCamelCase ( self :int ) -> Optional[int]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase ) __UpperCamelCase : Tuple = FeaturesManager.determine_framework(__lowercase ) self.assertEqual(__lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(__lowercase ) self.assertEqual(__lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__lowercase ): __UpperCamelCase : List[str] = FeaturesManager.determine_framework(__lowercase ) def _lowerCamelCase ( self :Any ) -> Tuple: __UpperCamelCase : Optional[int] = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_tf_available" , __lowercase ): __UpperCamelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCamelCase : Tuple = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_torch_available" , __lowercase ): __UpperCamelCase : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_tf ) # Both in environment -> use PyTorch __UpperCamelCase : int = MagicMock(return_value=__lowercase ) __UpperCamelCase : int = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_tf_available" , __lowercase ), patch( "transformers.onnx.features.is_torch_available" , __lowercase ): __UpperCamelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_pt ) # Both not in environment -> raise error __UpperCamelCase : Any = MagicMock(return_value=__lowercase ) __UpperCamelCase : Dict = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_tf_available" , __lowercase ), patch( "transformers.onnx.features.is_torch_available" , __lowercase ): with self.assertRaises(__lowercase ): __UpperCamelCase : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
232
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "" lowercase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ = None # compression type in fsspec. ex: "gzip" lowercase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Dict ,lowercase_ : str = "" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,**lowercase_ : Any ): super().__init__(self ,**lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase__ : Dict = fsspec.open( lowercase_ ,mode='''rb''' ,protocol=lowercase_ ,compression=self.compression ,client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) lowerCAmelCase__ : Any = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCAmelCase__ : Tuple = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCAmelCase__ : Any = None @classmethod def __lowerCAmelCase ( cls : Optional[int] ,lowercase_ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('''/''' ) def __lowerCAmelCase ( self : Optional[Any] ): if self.dir_cache is None: lowerCAmelCase__ : List[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCAmelCase__ : str = {f['''name''']: f} def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): return self.file.open().read() def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : List[Any]=None ,lowercase_ : Dict=True ,lowercase_ : Any=None ,**lowercase_ : Tuple ,): lowerCAmelCase__ : Union[str, Any] = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "bz2" lowercase__ = "bz2" lowercase__ = ".bz2" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "gzip" lowercase__ = "gzip" lowercase__ = ".gz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "lz4" lowercase__ = "lz4" lowercase__ = ".lz4" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "xz" lowercase__ = "xz" lowercase__ = ".xz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "zstd" lowercase__ = "zstd" lowercase__ = ".zst" def __init__( self : str ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,lowercase_ : int = DEFAULT_BLOCK_SIZE ,**lowercase_ : Union[str, Any] ,): super().__init__( fo=lowercase_ ,mode=lowercase_ ,target_protocol=lowercase_ ,target_options=lowercase_ ,block_size=lowercase_ ,**lowercase_ ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase__ : List[str] = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : Tuple = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : int ,*lowercase_ : str ,**lowercase_ : Optional[Any] ): self._file.__exit__(*lowercase_ ,**lowercase_ ) def __iter__( self : Union[str, Any] ): return iter(self._file ) def __lowerCAmelCase ( self : Tuple ): return next(self._file ) def __getattr__( self : str ,lowercase_ : Any ): return getattr(self._file ,lowercase_ ) def fixed_enter(*lowercase_ : List[Any] ,**lowercase_ : Dict ): return WrappedFile(_enter(*lowercase_ ,**lowercase_ ) ) lowerCAmelCase__ : Any = fixed_enter
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """spiece.model"""} lowercase__ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ): _lowerCamelCase : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token _lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) _lowerCamelCase : List[Any] = 3 _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : Optional[Any] = remove_space _lowerCamelCase : Union[str, Any] = keep_accents _lowerCamelCase : int = vocab_file _lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) _lowerCamelCase : Optional[Any] = jieba _lowerCamelCase : List[Any] = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A_ ( self ): return len(self.sp_model ) def A_ ( self ): _lowerCamelCase : Tuple = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCamelCase : Optional[Any] = self.__dict__.copy() _lowerCamelCase : Optional[int] = None return state def __setstate__( self , lowercase ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self , lowercase ): if self.remove_space: _lowerCamelCase : List[str] = ' '.join(inputs.strip().split() ) else: _lowerCamelCase : Tuple = inputs _lowerCamelCase : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _lowerCamelCase : Any = unicodedata.normalize('NFKD' , lowercase ) _lowerCamelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(lowercase )] ) if self.do_lower_case: _lowerCamelCase : Dict = outputs.lower() return outputs def A_ ( self , lowercase ): _lowerCamelCase : Tuple = self.preprocess_text(lowercase ) _lowerCamelCase : List[Any] = self.sp_model.encode(lowercase , out_type=lowercase ) _lowerCamelCase : int = [] for piece in pieces: if len(lowercase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCamelCase : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCamelCase : Any = cur_pieces[1:] else: _lowerCamelCase : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase ) else: new_pieces.append(lowercase ) return new_pieces def A_ ( self , lowercase ): return self.sp_model.PieceToId(lowercase ) def A_ ( self , lowercase ): return self.sp_model.IdToPiece(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[str] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is not None: return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1, 1] return ([0] * len(lowercase )) + [1, 1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Optional[int] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: _lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def A_ ( self , *lowercase , **lowercase ): _lowerCamelCase : Any = super()._decode(*lowercase , **lowercase ) _lowerCamelCase : List[Any] = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
96
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: _A = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _A = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) # load decoder from hub _A = """hf-internal-testing/ngram-beam-search-decoder""" def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Tuple: _A = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCAmelCase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = floats_list((3, 10_00) ) _A = feature_extractor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = """This is a test string""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> Tuple: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(lowerCAmelCase_ ) _A = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _A = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as p: _A = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _A , _A , _A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _A = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor_auto(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _A = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits()[0] _A = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits() _A = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self ) -> Any: import torch _A = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=lowerCAmelCase_ ) _A = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(lowerCAmelCase_ ) _A = next(lowerCAmelCase_ ) _A = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _A = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _A = model(lowerCAmelCase_ ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _A = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , lowerCAmelCase_ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """start_time""" ) ) _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """end_time""" ) ) # fmt: off _A = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _A = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
180
0
from collections.abc import Sequence def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) UpperCamelCase__ : Any = nums[0] for i in range(1 , len(_lowerCAmelCase ) ): UpperCamelCase__ : Any = nums[i] UpperCamelCase__ : List[str] = max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase : List[Any] =int(input('''Enter number of elements : ''').strip()) lowerCamelCase : Dict =list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
354
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: UpperCamelCase__ : List[Any] = f'The input value of [n={number}] has to be > 0' raise ValueError(__lowerCAmelCase ) else: UpperCamelCase__ : Optional[Any] = sylvester(number - 1 ) UpperCamelCase__ : str = num - 1 UpperCamelCase__ : int = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
196
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def __A ( __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ) -> List[Any]: a = """backbone.""" if is_semantic else """""" a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', """beit.embeddings.cls_token"""), (f'{prefix}patch_embed.proj.weight', """beit.embeddings.patch_embeddings.projection.weight"""), (f'{prefix}patch_embed.proj.bias', """beit.embeddings.patch_embeddings.projection.bias"""), (f'{prefix}pos_embed', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): a = """backbone.""" if is_semantic else """""" # queries, keys and values a = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) a = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) a = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) a = in_proj_weight[ : config.hidden_size, : ] a = q_bias a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_weight[ -config.hidden_size :, : ] a = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained a = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) a = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) a = gamma_a a = gamma_a def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: a = dct.pop(__lowerCamelCase ) a = val def __A ( ) -> List[str]: a = """http://images.cocodataset.org/val2017/000000039769.jpg""" a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> int: a = False if """rvlcdip""" in checkpoint_url else True a = BeitConfig(use_absolute_position_embeddings=__lowerCamelCase , use_mask_token=__lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: a = 1024 a = 4096 a = 24 a = 16 # labels if "rvlcdip" in checkpoint_url: a = 16 a = """huggingface/label-files""" a = """rvlcdip-id2label.json""" a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) a = {int(__lowerCamelCase ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys a = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""] a = create_rename_keys(__lowerCamelCase , has_lm_head=__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , has_lm_head=__lowerCamelCase ) # load HuggingFace model a = BeitForMaskedImageModeling(__lowerCamelCase ) if has_lm_head else BeitForImageClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image a = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase ) a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ) a = encoding["""pixel_values"""] a = model(__lowerCamelCase ) a = outputs.logits # verify logits a = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__lowerCamelCase ), "Shape of logits not as expected" Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: if has_lm_head: a = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: a = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __UpperCamelCase : Dict = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
228
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __A ( ) -> Any: a = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__lowerCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__lowerCamelCase ) return parser.parse_args() def __A ( ) -> Union[str, Any]: a = parse_args() # Import training_script as a module. a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a = script_fpath.stem a = importlib.import_module(__lowerCamelCase ) # Patch sys.argv a = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
228
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() lowercase =logging.get_logger(__name__) lowercase ='The Nymphenburg Palace is a beautiful palace in Munich!' def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Optional[int] ={ 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } _UpperCAmelCase : List[str] =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _UpperCAmelCase : Tuple =BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _UpperCAmelCase : List[str] ='openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab _UpperCAmelCase : int =os.path.join(get_home_dir() , 'models' ) _UpperCAmelCase : Optional[int] =_load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) _UpperCAmelCase : Optional[int] =original_bort._collect_params_with_prefix() # Build our config 🤗 _UpperCAmelCase : List[str] ={ 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(__lowerCamelCase ), } _UpperCAmelCase : Optional[Any] =BertConfig.from_dict(__lowerCamelCase ) _UpperCAmelCase : str =BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase : Optional[int] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): _UpperCAmelCase : Optional[int] =hf_param.shape _UpperCAmelCase : int =to_torch(params[gluon_param] ) _UpperCAmelCase : Tuple =gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param _UpperCAmelCase : Optional[int] =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) _UpperCAmelCase : int =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) _UpperCAmelCase : Union[str, Any] =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) _UpperCAmelCase : Optional[Any] =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _UpperCAmelCase : List[str] =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _UpperCAmelCase : BertLayer =hf_bort_model.bert.encoder.layer[i] # self attention _UpperCAmelCase : BertSelfAttention =layer.attention.self _UpperCAmelCase : Optional[int] =check_and_map_params( self_attn.key.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) _UpperCAmelCase : int =check_and_map_params( self_attn.key.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) _UpperCAmelCase : Dict =check_and_map_params( self_attn.query.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) _UpperCAmelCase : Optional[Any] =check_and_map_params( self_attn.query.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) _UpperCAmelCase : List[str] =check_and_map_params( self_attn.value.bias.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) _UpperCAmelCase : str =check_and_map_params( self_attn.value.weight.data , f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output _UpperCAmelCase : BertSelfOutput =layer.attention.output _UpperCAmelCase : int =check_and_map_params( self_output.dense.bias , f"encoder.transformer_cells.{i}.proj.bias" ) _UpperCAmelCase : Optional[Any] =check_and_map_params( self_output.dense.weight , f"encoder.transformer_cells.{i}.proj.weight" ) _UpperCAmelCase : Dict =check_and_map_params( self_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.layer_norm.beta" ) _UpperCAmelCase : Optional[Any] =check_and_map_params( self_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate _UpperCAmelCase : BertIntermediate =layer.intermediate _UpperCAmelCase : Optional[Any] =check_and_map_params( intermediate.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) _UpperCAmelCase : Union[str, Any] =check_and_map_params( intermediate.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output _UpperCAmelCase : BertOutput =layer.output _UpperCAmelCase : Optional[Any] =check_and_map_params( bert_output.dense.bias , f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) _UpperCAmelCase : List[str] =check_and_map_params( bert_output.dense.weight , f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) _UpperCAmelCase : List[Any] =check_and_map_params( bert_output.LayerNorm.bias , f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) _UpperCAmelCase : Optional[Any] =check_and_map_params( bert_output.LayerNorm.weight , f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _UpperCAmelCase : List[Any] =RobertaTokenizer.from_pretrained('roberta-base' ) _UpperCAmelCase : Any =tokenizer.encode_plus(__lowerCamelCase )['input_ids'] # Get gluon output _UpperCAmelCase : Any =mx.nd.array([input_ids] ) _UpperCAmelCase : int =original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) _UpperCAmelCase : str =BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() _UpperCAmelCase : int =tokenizer.encode_plus(__lowerCamelCase , return_tensors='pt' ) _UpperCAmelCase : Dict =hf_bort_model(**__lowerCamelCase )[0] _UpperCAmelCase : Optional[Any] =output_gluon[0].asnumpy() _UpperCAmelCase : Optional[Any] =output_hf[0].detach().numpy() _UpperCAmelCase : Dict =np.max(np.abs(hf_layer - gluon_layer ) ).item() _UpperCAmelCase : Optional[Any] =np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , __lowerCamelCase ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
242
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="glpn" def __init__( self , snake_case=3 , snake_case=4 , snake_case=[2, 2, 2, 2] , snake_case=[8, 4, 2, 1] , snake_case=[3_2, 6_4, 1_6_0, 2_5_6] , snake_case=[7, 3, 3, 3] , snake_case=[4, 2, 2, 2] , snake_case=[1, 2, 5, 8] , snake_case=[4, 4, 4, 4] , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=0.1 , snake_case=1E-6 , snake_case=6_4 , snake_case=1_0 , snake_case=-1 , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =num_channels _UpperCAmelCase : List[str] =num_encoder_blocks _UpperCAmelCase : Optional[Any] =depths _UpperCAmelCase : str =sr_ratios _UpperCAmelCase : Dict =hidden_sizes _UpperCAmelCase : List[str] =patch_sizes _UpperCAmelCase : Any =strides _UpperCAmelCase : List[str] =mlp_ratios _UpperCAmelCase : Dict =num_attention_heads _UpperCAmelCase : List[str] =hidden_act _UpperCAmelCase : int =hidden_dropout_prob _UpperCAmelCase : List[Any] =attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =drop_path_rate _UpperCAmelCase : str =layer_norm_eps _UpperCAmelCase : Optional[int] =decoder_hidden_size _UpperCAmelCase : List[str] =max_depth _UpperCAmelCase : Dict =head_in_index
242
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowerCAmelCase = logging.getLogger(__name__) def __lowerCAmelCase ( snake_case__ , snake_case__ ): # save results if os.path.exists(snake_case__ ): if os.path.exists(os.path.join(snake_case__ , "config.json" ) ) and os.path.isfile( os.path.join(snake_case__ , "config.json" ) ): os.remove(os.path.join(snake_case__ , "config.json" ) ) if os.path.exists(os.path.join(snake_case__ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(snake_case__ , "pytorch_model.bin" ) ): os.remove(os.path.join(snake_case__ , "pytorch_model.bin" ) ) else: os.makedirs(snake_case__ ) model.save_pretrained(snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase : str = 2 if unlogit: __UpperCamelCase : Dict = torch.pow(snake_case__ , snake_case__ ) __UpperCamelCase : Any = p * torch.log(snake_case__ ) __UpperCamelCase : Tuple = 0 return -plogp.sum(dim=-1 ) def __lowerCAmelCase ( snake_case__ ): logger.info("lv, h >\t" + "\t".join(F"{x + 1}" for x in range(len(snake_case__ ) ) ) ) for row in range(len(snake_case__ ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=True , snake_case__=True , snake_case__=None , snake_case__=False ): __UpperCamelCase : Optional[Any] = model.config.num_hidden_layers, model.config.num_attention_heads __UpperCamelCase : int = torch.zeros(snake_case__ , snake_case__ ).to(args.device ) __UpperCamelCase : Any = torch.zeros(snake_case__ , snake_case__ ).to(args.device ) if head_mask is None: __UpperCamelCase : Dict = torch.ones(snake_case__ , snake_case__ ).to(args.device ) head_mask.requires_grad_(requires_grad=snake_case__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __UpperCamelCase : Optional[int] = None __UpperCamelCase : List[Any] = 0.0 __UpperCamelCase : str = 0.0 for step, inputs in enumerate(tqdm(snake_case__ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __UpperCamelCase : Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) (__UpperCamelCase ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __UpperCamelCase : Union[str, Any] = model(snake_case__ , labels=snake_case__ , head_mask=snake_case__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __UpperCamelCase : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(snake_case__ ): __UpperCamelCase : Optional[Any] = entropy(attn.detach() , snake_case__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(snake_case__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __UpperCamelCase : Union[str, Any] = 2 __UpperCamelCase : List[Any] = torch.pow(torch.pow(snake_case__ , snake_case__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: __UpperCamelCase : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(snake_case__ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(snake_case__ ) logger.info("Head ranked by importance scores" ) __UpperCamelCase : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __UpperCamelCase : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) __UpperCamelCase : str = head_ranks.view_as(snake_case__ ) print_ad_tensor(snake_case__ ) return attn_entropy, head_importance, total_loss def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Any = compute_heads_importance(snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ ) __UpperCamelCase : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , snake_case__ , original_score * args.masking_threshold ) __UpperCamelCase : Optional[Any] = torch.ones_like(snake_case__ ) __UpperCamelCase : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __UpperCamelCase : Dict = original_score while current_score >= original_score * args.masking_threshold: __UpperCamelCase : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __UpperCamelCase : List[Any] = float("Inf" ) __UpperCamelCase : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(snake_case__ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __UpperCamelCase : int = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __UpperCamelCase : int = new_head_mask.view(-1 ) __UpperCamelCase : int = 0.0 __UpperCamelCase : Union[str, Any] = new_head_mask.view_as(snake_case__ ) __UpperCamelCase : List[str] = new_head_mask.clone().detach() print_ad_tensor(snake_case__ ) # Compute metric and head importance again __UpperCamelCase : Any = compute_heads_importance( snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ , head_mask=snake_case__ ) __UpperCamelCase : Dict = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , snake_case__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(snake_case__ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Any = datetime.now() __UpperCamelCase : str = compute_heads_importance( snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ , compute_importance=snake_case__ , head_mask=snake_case__ ) __UpperCamelCase : Tuple = 1 / loss __UpperCamelCase : Dict = datetime.now() - before_time __UpperCamelCase : Union[str, Any] = sum(p.numel() for p in model.parameters() ) __UpperCamelCase : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(snake_case__ ) ) } for k, v in heads_to_prune.items(): if isinstance(snake_case__ , snake_case__ ): __UpperCamelCase : Any = [ v, ] assert sum(len(snake_case__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(snake_case__ ) __UpperCamelCase : Dict = sum(p.numel() for p in model.parameters() ) __UpperCamelCase : Tuple = datetime.now() __UpperCamelCase : Dict = compute_heads_importance( snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ , compute_importance=snake_case__ , head_mask=snake_case__ , actually_pruned=snake_case__ , ) __UpperCamelCase : Any = 1 / loss __UpperCamelCase : int = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , snake_case__ , snake_case__ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , snake_case__ , snake_case__ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(snake_case__ , args.output_dir ) def __lowerCAmelCase ( ): __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=snake_case__ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=snake_case__ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=snake_case__ , type=snake_case__ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=snake_case__ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don\'t normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don\'t normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=snake_case__ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=snake_case__ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=snake_case__ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=snake_case__ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=snake_case__ , help="Batch size." ) parser.add_argument("--seed" , type=snake_case__ , default=42 ) parser.add_argument("--local_rank" , type=snake_case__ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=snake_case__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=snake_case__ , default="" , help="Can be used for distant debugging." ) __UpperCamelCase : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __UpperCamelCase : List[Any] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __UpperCamelCase : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __UpperCamelCase : int = torch.device("cuda" , args.local_rank ) __UpperCamelCase : List[str] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __UpperCamelCase : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __UpperCamelCase : List[str] = nn.parallel.DistributedDataParallel( snake_case__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=snake_case__ ) elif args.n_gpu > 1: __UpperCamelCase : Optional[int] = nn.DataParallel(snake_case__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=snake_case__ ) torch.save(snake_case__ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , snake_case__ ) # Prepare dataset __UpperCamelCase : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __UpperCamelCase : List[str] = (torch.from_numpy(snake_case__ ),) __UpperCamelCase : int = TensorDataset(*snake_case__ ) __UpperCamelCase : Union[str, Any] = RandomSampler(snake_case__ ) __UpperCamelCase : Any = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(snake_case__ , snake_case__ , snake_case__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __UpperCamelCase : Dict = mask_heads(snake_case__ , snake_case__ , snake_case__ ) prune_heads(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": main()
298
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ :Optional[Any] = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowercase__ :int = logging.getLogger(__name__) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ): '''simple docstring''' lowercase = bnb_quantization_config.load_in_abit lowercase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowercase = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: lowercase = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) lowercase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase = [] lowercase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft lowercase = load_in_abit lowercase = load_in_abit lowercase = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowercase = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype lowercase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): lowercase = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) lowercase = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase = True lowercase = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowercase = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowercase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase = {} lowercase = special_dtypes lowercase = no_split_module_classes lowercase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == '''balanced_low_0''') , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase = max_memory lowercase = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu lowercase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): '''simple docstring''' if modules_to_not_convert is None: lowercase = [] lowercase , lowercase = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , ): '''simple docstring''' lowercase = False for name, module in model.named_children(): if current_key_name is None: lowercase = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase = '''.'''.join(lowerCAmelCase__ ) lowercase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowercase = module.weight.data if module.bias is not None: lowercase = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = True if len(list(module.children() ) ) > 0: lowercase , lowercase = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # Create a copy of the model with init_empty_weights(): lowercase = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase = sum(lowerCAmelCase__ , [] ) lowercase = len(lowerCAmelCase__ ) > 0 # Check if it is a base model lowercase = False if hasattr(lowerCAmelCase__ , '''base_model_prefix''' ): lowercase = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase = list(model.named_children() ) lowercase = [list_modules[-1][0]] # add last module together with tied weights lowercase = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) lowercase = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys lowercase = ['''.weight''', '''.bias'''] lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase = name.replace(lowerCAmelCase__ , '''''' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return next(parameter.parameters() ).device def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) lowercase = param_name lowercase = model if "." in tensor_name: lowercase = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) lowercase = new_module lowercase = splits[-1] # offload weights lowercase = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace('''weight''' , '''SCB''' ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , '''meta''' , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
368
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
0