code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(snake_case__ , max_perimeter + 1 ): A : Union[str, Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case__ ): A : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCAmelCase_ ( snake_case__ = 1000 ): '''simple docstring''' A : str = pythagorean_triple(snake_case__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
3
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase : Dict = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ): if dataset.ndim != value_array.ndim: __lowercase : Dict = ( """Wrong input data's dimensions... """ F"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: __lowercase : Dict = ( """Wrong input data's shape... """ F"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __lowercase : Tuple = ( """Input data have different datatype... """ F"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(lowerCAmelCase_ ) __lowercase : Union[str, Any] = [] for value in value_array: __lowercase : Optional[int] = euclidean(lowerCAmelCase_ , dataset[0] ) __lowercase : Optional[Any] = dataset[0].tolist() for dataset_value in dataset[1:]: __lowercase : Union[str, Any] = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: __lowercase : Tuple = temp_dist __lowercase : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ): return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Dict = logging.get_logger(__name__) set_seed(770) UpperCAmelCase : List[Any] = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } UpperCAmelCase : Dict = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } UpperCAmelCase : Dict = os.path.dirname(os.path.abspath(__file__)) UpperCAmelCase : List[Any] = os.path.join(os.path.expanduser("~"), ".cache") UpperCAmelCase : Optional[int] = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: '''simple docstring''' lowercase_ = model_type if use_small: key += "_small" return os.path.join(__lowerCAmelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) hf_hub_download(repo_id=__lowerCAmelCase , filename=__lowerCAmelCase , local_dir=__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase="text" ) -> int: '''simple docstring''' if model_type == "text": lowercase_ = BarkSemanticModel lowercase_ = BarkSemanticConfig lowercase_ = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase_ = BarkCoarseModel lowercase_ = BarkCoarseConfig lowercase_ = BarkCoarseGenerationConfig elif model_type == "fine": lowercase_ = BarkFineModel lowercase_ = BarkFineConfig lowercase_ = BarkFineGenerationConfig else: raise NotImplementedError() lowercase_ = F'''{model_type}_small''' if use_small else model_type lowercase_ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCAmelCase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) lowercase_ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) # this is a hack lowercase_ = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: lowercase_ = model_args["""vocab_size"""] lowercase_ = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase_ = model_args.pop("""n_head""" ) lowercase_ = model_args.pop("""n_embd""" ) lowercase_ = model_args.pop("""n_layer""" ) lowercase_ = ConfigClass(**checkpoint["""model_args"""] ) lowercase_ = ModelClass(config=__lowerCAmelCase ) lowercase_ = GenerationConfigClass() lowercase_ = model_generation_config lowercase_ = checkpoint["""model"""] # fixup checkpoint lowercase_ = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(__lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation lowercase_ = k[len(__lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: lowercase_ = new_k.replace(__lowerCAmelCase , new_layer_name_dict[old_layer_name] ) lowercase_ = state_dict.pop(__lowerCAmelCase ) lowercase_ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase_ = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} lowercase_ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase_ = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__lowerCAmelCase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(__lowerCAmelCase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = model.num_parameters(exclude_embeddings=__lowerCAmelCase ) lowercase_ = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(__lowerCAmelCase , 3 )} loss''' ) model.eval() model.to(__lowerCAmelCase ) del checkpoint, state_dict return model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase="text" ) -> str: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase_ = """cpu""" # do conversion on cpu lowercase_ = _get_ckpt_path(__lowerCAmelCase , use_small=__lowerCAmelCase ) lowercase_ = _load_model(__lowerCAmelCase , __lowerCAmelCase , model_type=__lowerCAmelCase , use_small=__lowerCAmelCase ) # load bark initial model lowercase_ = _bark_load_model(__lowerCAmelCase , """cpu""" , model_type=__lowerCAmelCase , use_small=__lowerCAmelCase ) if model_type == "text": lowercase_ = bark_model["""model"""] if model.num_parameters(exclude_embeddings=__lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model lowercase_ = 5 lowercase_ = 10 if model_type in ["text", "coarse"]: lowercase_ = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) lowercase_ = bark_model(__lowerCAmelCase )[0] lowercase_ = model(__lowerCAmelCase ) # take last logits lowercase_ = output_new_model_total.logits[:, [-1], :] else: lowercase_ = 3 lowercase_ = 8 lowercase_ = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase_ = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = bark_model(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> int: '''simple docstring''' lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCAmelCase , """config.json""" ) ) lowercase_ = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCAmelCase , """config.json""" ) ) lowercase_ = BarkFineConfig.from_pretrained(os.path.join(__lowerCAmelCase , """config.json""" ) ) lowercase_ = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) lowercase_ = BarkSemanticModel.from_pretrained(__lowerCAmelCase ) lowercase_ = BarkCoarseModel.from_pretrained(__lowerCAmelCase ) lowercase_ = BarkFineModel.from_pretrained(__lowerCAmelCase ) lowercase_ = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) lowercase_ = BarkConfig.from_sub_model_configs( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase_ = BarkModel(__lowerCAmelCase ) lowercase_ = semantic lowercase_ = coarseAcoustic lowercase_ = fineAcoustic lowercase_ = codec lowercase_ = bark_generation_config Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) bark.save_pretrained(__lowerCAmelCase , repo_id=__lowerCAmelCase , push_to_hub=__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") UpperCAmelCase : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
136
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =10 SCREAMING_SNAKE_CASE_: Dict =datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) SCREAMING_SNAKE_CASE_: Tuple =datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowercase ) ), } , features=lowercase , ) return dataset @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowercase ) return filename # FILE_CONTENT + files _UpperCAmelCase = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """file.txt""" SCREAMING_SNAKE_CASE_: str =FILE_CONTENT with open(lowercase , """w""" ) as f: f.write(lowercase ) return filename @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): import bza SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" SCREAMING_SNAKE_CASE_: Union[str, Any] =bytes(lowercase , """utf-8""" ) with bza.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): import gzip SCREAMING_SNAKE_CASE_: List[str] =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) SCREAMING_SNAKE_CASE_: Dict =bytes(lowercase , """utf-8""" ) with gzip.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_: Tuple =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" SCREAMING_SNAKE_CASE_: List[Any] =bytes(lowercase , """utf-8""" ) with lza.frame.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_: Tuple =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowercase , """w""" ) as archive: archive.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import tarfile SCREAMING_SNAKE_CASE_: List[Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): import lzma SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" SCREAMING_SNAKE_CASE_: List[Any] =bytes(lowercase , """utf-8""" ) with lzma.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import zipfile SCREAMING_SNAKE_CASE_: str =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_: Tuple =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" SCREAMING_SNAKE_CASE_: Dict =bytes(lowercase , """utf-8""" ) with zstd.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""data""" ) / """file.xml""" SCREAMING_SNAKE_CASE_: Union[str, Any] =textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowercase , """w""" ) as f: f.write(lowercase ) return filename _UpperCAmelCase = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] _UpperCAmelCase = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] _UpperCAmelCase = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } _UpperCAmelCase = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] _UpperCAmelCase = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =datasets.Dataset.from_dict(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowercase ) ) as con: SCREAMING_SNAKE_CASE_: int =con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowercase , """w""" , newline="""""" ) as f: SCREAMING_SNAKE_CASE_: int =csv.DictWriter(lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowercase , """w""" , newline="""""" ) as f: SCREAMING_SNAKE_CASE_: Tuple =csv.DictWriter(lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import bza SCREAMING_SNAKE_CASE_: Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowercase , """rb""" ) as f: SCREAMING_SNAKE_CASE_: Optional[int] =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowercase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) SCREAMING_SNAKE_CASE_: List[Any] =pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowercase , """wb""" ) as f: SCREAMING_SNAKE_CASE_: int =pq.ParquetWriter(lowercase , schema=lowercase ) SCREAMING_SNAKE_CASE_: str =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase ) writer.write_table(lowercase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) SCREAMING_SNAKE_CASE_: Optional[Any] ={"""data""": DATA} with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) SCREAMING_SNAKE_CASE_: Tuple ={"""data""": DATA_DICT_OF_LISTS} with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import gzip SCREAMING_SNAKE_CASE_: Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowercase , """rb""" ) as orig_file: with gzip.open(lowercase , """wb""" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import gzip SCREAMING_SNAKE_CASE_: int =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowercase , """rb""" ) as orig_file: with gzip.open(lowercase , """wb""" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""nested""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.join("""nested""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =["""0""", """1""", """2""", """3"""] SCREAMING_SNAKE_CASE_: Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =["""0""", """1""", """2""", """3"""] SCREAMING_SNAKE_CASE_: Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =["""0""", """1""", """2""", """3"""] SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowercase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) SCREAMING_SNAKE_CASE_: List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
173
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = ["""pixel_values"""] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ): super().__init__(**a) lowercase__ : Any = size if size is not None else {'height': 384, 'width': 384} lowercase__ : List[Any] = get_size_dict(a , default_to_square=a) lowercase__ : Tuple = do_resize lowercase__ : Optional[int] = size lowercase__ : int = resample lowercase__ : Optional[Any] = do_rescale lowercase__ : Union[str, Any] = rescale_factor lowercase__ : Dict = do_normalize lowercase__ : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Union[str, Any] = do_convert_rgb def snake_case_ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ): lowercase__ : Optional[int] = get_size_dict(a , default_to_square=a) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") lowercase__ : Any = (size['height'], size['width']) return resize(a , size=a , resample=a , data_format=a , **a) def snake_case_ ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a) def snake_case_ ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a) def snake_case_ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): lowercase__ : Dict = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = resample if resample is not None else self.resample lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : List[str] = image_mean if image_mean is not None else self.image_mean lowercase__ : Optional[int] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Any = size if size is not None else self.size lowercase__ : Any = get_size_dict(a , default_to_square=a) lowercase__ : List[Any] = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Optional[int] = [convert_to_rgb(a) for image in images] # All transformations expect numpy arrays. lowercase__ : int = [to_numpy_array(a) for image in images] if do_resize: lowercase__ : str = [self.resize(image=a , size=a , resample=a) for image in images] if do_rescale: lowercase__ : Union[str, Any] = [self.rescale(image=a , scale=a) for image in images] if do_normalize: lowercase__ : Any = [self.normalize(image=a , mean=a , std=a) for image in images] lowercase__ : List[str] = [to_channel_dimension_format(a , a) for image in images] lowercase__ : str = BatchFeature(data={'pixel_values': images} , tensor_type=a) return encoded_outputs
359
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore snake_case_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" snake_case_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') snake_case_ = [file for file in filepaths if ''' ''' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') snake_case_ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') snake_case_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') snake_case_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
216
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : List[str] = 1 while repunit: _UpperCAmelCase : Tuple = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( _lowerCAmelCase : int = 1000000 ) -> int: _UpperCAmelCase : Any = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
246
0
def lowerCamelCase__ ( a ) -> bool: return str(a ) == str(a )[::-1] def lowerCamelCase__ ( a ) -> int: return int(a ) + int(str(a )[::-1] ) def lowerCamelCase__ ( a = 1_00_00 ) -> int: _A: Tuple = [] for num in range(1 , a ): _A: int = 0 _A: Any = num while iterations < 50: _A: List[Any] = sum_reverse(a ) iterations += 1 if is_palindrome(a ): break else: lychrel_nums.append(a ) return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
import requests _UpperCAmelCase : Union[str, Any] = "" # <-- Put your OpenWeatherMap appid here! _UpperCAmelCase : int = "https://api.openweathermap.org/data/2.5/" def A ( lowercase = "Chicago" , lowercase = APPID ) -> Optional[int]: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def A ( lowercase = "Kolkata, India" , lowercase = APPID ) -> int: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def A ( lowercase = 5_5.6_8 , lowercase = 1_2.5_7 , lowercase = APPID ) -> int: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _UpperCAmelCase : Optional[Any] = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
222
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ): UpperCAmelCase_ : List[Any] = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ : Optional[int] = Dataset.from_dict(__lowerCamelCase ) return dataset class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_dataset() UpperCAmelCase_ : Any = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
61
0
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Dict=False ): '''simple docstring''' try: UpperCamelCase : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase : Any = default else: # KEY is set, convert it to True or False. try: UpperCamelCase : str = strtobool(snake_case_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value __A : int = parse_flag_from_env('''RUN_SLOW''', default=False) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(snake_case_ ) def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests ,"""test is slow""" )(snake_case_ ) def A_ ( snake_case_ : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() ,"""test requires only a CPU""" )(snake_case_ ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() ,"""test requires a GPU""" )(snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() ,"""test requires a XPU""" )(snake_case_ ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skipUnless(is_mps_available() ,"""test requires a `mps` backend support in `torch`""" )(snake_case_ ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() ,"""test requires the Hugging Face suite""" )(snake_case_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() ,"""test requires the bitsandbytes library""" )(snake_case_ ) def A_ ( snake_case_ : Any ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() ,"""test requires TPU""" )(snake_case_ ) def A_ ( snake_case_ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 ,"""test requires a GPU""" )(snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 ,"""test requires a XPU""" )(snake_case_ ) def A_ ( snake_case_ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 ,"""test requires multiple GPUs""" )(snake_case_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 ,"""test requires multiple XPUs""" )(snake_case_ ) def A_ ( snake_case_ : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() ,"""test requires safetensors""" )(snake_case_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() ,"""test requires DeepSpeed""" )(snake_case_ ) def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" ,"""1.12.0""" ) ,"""test requires torch version >= 1.12.0""" )(snake_case_ ) def A_ ( snake_case_ : Tuple=None ,snake_case_ : List[str]=None ): '''simple docstring''' if test_case is None: return partial(snake_case_ ,version=snake_case_ ) return unittest.skipUnless(is_torch_version(""">=""" ,snake_case_ ) ,f'test requires torch version >= {version}' )(snake_case_ ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() ,"""test requires Tensorboard""" )(snake_case_ ) def A_ ( snake_case_ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() ,"""test requires wandb""" )(snake_case_ ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() ,"""test requires comet_ml""" )(snake_case_ ) __A : int = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available ,"""test requires at least one tracker to be available and for `comet_ml` to not be installed""" ,)(snake_case_ ) class lowerCamelCase ( unittest.TestCase ): lowercase : Optional[Any] = True @classmethod def a_ ( cls ): UpperCamelCase : Optional[Any] = tempfile.mkdtemp() @classmethod def a_ ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def a_ ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE_ ) class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase ( unittest.TestCase ): def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = mocks if isinstance(SCREAMING_SNAKE_CASE_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : List[str] = AcceleratorState() UpperCamelCase : Dict = tensor[None].clone().to(state.device ) UpperCamelCase : Optional[Any] = gather(snake_case_ ).cpu() UpperCamelCase : Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] ,snake_case_ ): return False return True class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = returncode UpperCamelCase : List[str] = stdout UpperCamelCase : Union[str, Any] = stderr async def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : List[str] ): '''simple docstring''' while True: UpperCamelCase : Any = await stream.readline() if line: callback(snake_case_ ) else: break async def A_ ( snake_case_ : List[str] ,snake_case_ : Tuple=None ,snake_case_ : int=None ,snake_case_ : str=None ,snake_case_ : Dict=False ,snake_case_ : List[str]=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(snake_case_ ) ) UpperCamelCase : Any = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=snake_case_ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=snake_case_ ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase : List[Any] = [] UpperCamelCase : List[str] = [] def tee(snake_case_ : List[Any] ,snake_case_ : Tuple ,snake_case_ : int ,snake_case_ : str="" ): UpperCamelCase : Tuple = line.decode("""utf-8""" ).rstrip() sink.append(snake_case_ ) if not quiet: print(snake_case_ ,snake_case_ ,file=snake_case_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout ,lambda snake_case_ : tee(snake_case_ ,snake_case_ ,sys.stdout ,label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr ,lambda snake_case_ : tee(snake_case_ ,snake_case_ ,sys.stderr ,label="""stderr:""" ) ) ), ] ,timeout=snake_case_ ,) return _RunOutput(await p.wait() ,snake_case_ ,snake_case_ ) def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Optional[Any]=None ,snake_case_ : Dict=None ,snake_case_ : Any=1_8_0 ,snake_case_ : List[str]=False ,snake_case_ : Optional[Any]=True ): '''simple docstring''' UpperCamelCase : List[str] = asyncio.get_event_loop() UpperCamelCase : Dict = loop.run_until_complete( _stream_subprocess(snake_case_ ,env=snake_case_ ,stdin=snake_case_ ,timeout=snake_case_ ,quiet=snake_case_ ,echo=snake_case_ ) ) UpperCamelCase : int = """ """.join(snake_case_ ) if result.returncode > 0: UpperCamelCase : List[Any] = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase ( _UpperCAmelCase ): pass def A_ ( snake_case_ : List[str] ,snake_case_ : Optional[int]=False ): '''simple docstring''' try: UpperCamelCase : Dict = subprocess.check_output(snake_case_ ,stderr=subprocess.STDOUT ) if return_stdout: if hasattr(snake_case_ ,"""decode""" ): UpperCamelCase : Optional[Any] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(snake_case_ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
27
"""simple docstring""" def A_ ( snake_case_ : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(snake_case_ ,(list, tuple) ) or not all( isinstance(snake_case_ ,snake_case_ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) UpperCamelCase : int = numbers[0] for i in range(1 ,len(snake_case_ ) ): # update the maximum and minimum subarray products UpperCamelCase : List[str] = numbers[i] if number < 0: UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number ) UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number ) # update the maximum product found till now UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ ) return max_prod
27
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : List[Any] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] lowerCAmelCase : List[Any] = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = torch.load(_UpperCAmelCase , map_location="cpu" ) return sd def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=rename_keys_prefix ): SCREAMING_SNAKE_CASE_: List[Any] = OrderedDict() SCREAMING_SNAKE_CASE_: List[Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE_: Tuple = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE_: List[str] = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE_: Optional[int] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE_: Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE_: Any = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_: Optional[Any] = {"visual_embedding_dim": 5_12} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_: int = {"visual_embedding_dim": 20_48} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_: Optional[int] = {"visual_embedding_dim": 20_48} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_: List[str] = {"visual_embedding_dim": 10_24} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_: List[str] = {"visual_embedding_dim": 5_12} SCREAMING_SNAKE_CASE_: str = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_: Union[str, Any] = {"visual_embedding_dim": 20_48} SCREAMING_SNAKE_CASE_: List[str] = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_: Union[str, Any] = {"visual_embedding_dim": 20_48, "num_labels": 31_29} SCREAMING_SNAKE_CASE_: Optional[int] = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_: str = { "visual_embedding_dim": 10_24, "num_labels": 2, } SCREAMING_SNAKE_CASE_: Dict = "nlvr" SCREAMING_SNAKE_CASE_: Dict = VisualBertConfig(**_UpperCAmelCase ) # Load State Dict SCREAMING_SNAKE_CASE_: Union[str, Any] = load_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = get_new_dict(_UpperCAmelCase , _UpperCAmelCase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE_: Dict = VisualBertForPreTraining(_UpperCAmelCase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE_: str = VisualBertForQuestionAnswering(_UpperCAmelCase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE_: Tuple = VisualBertForVisualReasoning(_UpperCAmelCase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE_: Optional[Any] = VisualBertForMultipleChoice(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # Save Checkpoints Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
13
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _lowerCAmelCase ( UpperCAmelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray ): '''simple docstring''' UpperCamelCase__ : List[Any] =XGBClassifier() classifier.fit(UpperCAmelCase , UpperCAmelCase ) return classifier def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Dict =load_iris() UpperCamelCase__ , UpperCamelCase__ : Tuple =data_handling(UpperCAmelCase ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple =train_test_split( UpperCAmelCase , UpperCAmelCase , test_size=0.25 ) UpperCamelCase__ : Any =iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCamelCase__ : Tuple =xgboost(UpperCAmelCase , UpperCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , display_labels=UpperCAmelCase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
157
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowerCAmelCase : lowercase = 42 lowercase = None lowercase = None def A ( ) -> Node | None: __UpperCamelCase = Node(1 ) __UpperCamelCase = Node(2 ) __UpperCamelCase = Node(3 ) __UpperCamelCase = Node(4 ) __UpperCamelCase = Node(5 ) return tree def A ( snake_case :Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A ( snake_case :Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A ( snake_case :Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A ( snake_case :Node | None ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A ( snake_case :Node | None ) -> Sequence[Node | None]: __UpperCamelCase = [] if root is None: return output __UpperCamelCase = deque([root] ) while process_queue: __UpperCamelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A ( snake_case :Node | None , snake_case :int ) -> Sequence[Node | None]: __UpperCamelCase = [] def populate_output(snake_case :Node | None , snake_case :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case , snake_case ) return output def A ( snake_case :Node | None , snake_case :int ) -> Sequence[Node | None]: __UpperCamelCase = [] def populate_output(snake_case :Node | None , snake_case :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case , snake_case ) return output def A ( snake_case :Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = height(snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case , snake_case ) ) __UpperCamelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case , snake_case ) ) __UpperCamelCase = 0 return output def A ( ) -> None: # Main function for testing. __UpperCamelCase = make_tree() print(f'In-order Traversal: {inorder(snake_case )}' ) print(f'Pre-order Traversal: {preorder(snake_case )}' ) print(f'Post-order Traversal: {postorder(snake_case )}' , '\n' ) print(f'Height of Tree: {height(snake_case )}' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(snake_case ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(snake_case ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(snake_case , level=snake_case ) ) print('\nZigZag order Traversal: ' ) print(zigzag(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Any = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class _a ( _UpperCAmelCase): _a : int = "xlm" _a : List[Any] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=3_0145 , _SCREAMING_SNAKE_CASE : int=2048 , _SCREAMING_SNAKE_CASE : Any=12 , _SCREAMING_SNAKE_CASE : Tuple=16 , _SCREAMING_SNAKE_CASE : str=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Union[str, Any]=False , _SCREAMING_SNAKE_CASE : Tuple=1 , _SCREAMING_SNAKE_CASE : List[Any]=True , _SCREAMING_SNAKE_CASE : Dict=512 , _SCREAMING_SNAKE_CASE : Union[str, Any]=2048**-0.5 , _SCREAMING_SNAKE_CASE : int=1E-12 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=0 , _SCREAMING_SNAKE_CASE : int=1 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : Optional[int]=3 , _SCREAMING_SNAKE_CASE : int=5 , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : List[Any]="first" , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : str=0.1 , _SCREAMING_SNAKE_CASE : Any=5 , _SCREAMING_SNAKE_CASE : List[Any]=5 , _SCREAMING_SNAKE_CASE : Tuple=0 , _SCREAMING_SNAKE_CASE : Dict=0 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : int=0 , **_SCREAMING_SNAKE_CASE : str , )-> int: lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Any = emb_dim lowerCAmelCase__ : Optional[int] = n_layers lowerCAmelCase__ : Optional[int] = n_heads lowerCAmelCase__ : Dict = dropout lowerCAmelCase__ : str = attention_dropout lowerCAmelCase__ : Union[str, Any] = gelu_activation lowerCAmelCase__ : Union[str, Any] = sinusoidal_embeddings lowerCAmelCase__ : Union[str, Any] = causal lowerCAmelCase__ : int = asm lowerCAmelCase__ : Tuple = n_langs lowerCAmelCase__ : Tuple = use_lang_emb lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : List[str] = bos_index lowerCAmelCase__ : Optional[Any] = eos_index lowerCAmelCase__ : int = pad_index lowerCAmelCase__ : Union[str, Any] = unk_index lowerCAmelCase__ : Union[str, Any] = mask_index lowerCAmelCase__ : Tuple = is_encoder lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Optional[int] = embed_init_std lowerCAmelCase__ : Tuple = init_std lowerCAmelCase__ : List[Any] = summary_type lowerCAmelCase__ : List[str] = summary_use_proj lowerCAmelCase__ : Optional[int] = summary_activation lowerCAmelCase__ : Any = summary_proj_to_labels lowerCAmelCase__ : Any = summary_first_dropout lowerCAmelCase__ : List[str] = start_n_top lowerCAmelCase__ : Any = end_n_top lowerCAmelCase__ : Optional[Any] = mask_token_id lowerCAmelCase__ : Union[str, Any] = lang_id if "n_words" in kwargs: lowerCAmelCase__ : Tuple = kwargs['''n_words'''] super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class _a ( _UpperCAmelCase): @property def UpperCAmelCase__( self : Optional[Any] )-> List[str]: if self.task == "multiple-choice": lowerCAmelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
352
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
64
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase : Tuple = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" UpperCAmelCase : Optional[int] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" UpperCAmelCase : List[str] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ = new_id # turn into Numpy arrays lowercase_ = np.array(__lowerCAmelCase ) lowercase_ = np.array(__lowerCAmelCase ) if reduce_labels: lowercase_ = 2_55 lowercase_ = label - 1 lowercase_ = 2_55 lowercase_ = label != ignore_index lowercase_ = np.not_equal(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = pred_label[mask] lowercase_ = np.array(__lowerCAmelCase )[mask] lowercase_ = pred_label[pred_label == label] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Optional[Any]: '''simple docstring''' lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Any: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = total_intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # compute metrics lowercase_ = {} lowercase_ = total_area_intersect.sum() / total_area_label.sum() lowercase_ = total_area_intersect / total_area_union lowercase_ = total_area_intersect / total_area_label lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = all_acc lowercase_ = iou lowercase_ = acc if nan_to_num is not None: lowercase_ = {metric: np.nan_to_num(__lowerCAmelCase , nan=__lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), }) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Dict[int, int]] = None , lowerCAmelCase_ : bool = False , ): """simple docstring""" lowercase_ = mean_iou( results=lowerCAmelCase_ , gt_seg_maps=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , ignore_index=lowerCAmelCase_ , nan_to_num=lowerCAmelCase_ , label_map=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ , ) return iou_result
136
0
'''simple docstring''' import operator as op __snake_case ="scaler.pt" __snake_case ="pytorch_model" __snake_case ="random_states" __snake_case ="optimizer" __snake_case ="scheduler" __snake_case ="pytorch_model.bin" __snake_case ="pytorch_model.bin.index.json" __snake_case ="model.safetensors" __snake_case ="model.safetensors.index.json" __snake_case ="1.10.2" __snake_case ="py38" __snake_case ="4.17.0" __snake_case =["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __snake_case =["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __snake_case =["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __snake_case =["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __snake_case =["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __snake_case ="2.0.1" __snake_case =["pdsh", "standard", "openmpi", "mvapich"] __snake_case =["default", "reduce-overhead", "max-autotune"] __snake_case ={">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __snake_case =[ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __snake_case =["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __snake_case =["DEEPSPEED", "MULTI_XPU", "FSDP"]
369
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: lowerCAmelCase = jnp.ones((batch_size, length) ) / length return scores def __UpperCAmelCase ( self : Optional[Any] ) -> str: lowerCAmelCase = None lowerCAmelCase = 2_0 lowerCAmelCase = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase__ ) # tweak scores to not be uniform anymore lowerCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ) lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) lowerCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = None lowerCAmelCase = 1_0 lowerCAmelCase = 2 # create ramp distribution lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() lowerCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase = FlaxTopKLogitsWarper(3 ) lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase = 5 lowerCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, length) ).copy() lowerCAmelCase = top_k_warp_safety_check(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __UpperCAmelCase ( self : Any ) -> str: lowerCAmelCase = None lowerCAmelCase = 1_0 lowerCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase = np.exp(top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = 2_0 lowerCAmelCase = 4 lowerCAmelCase = 0 lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCAmelCase__ ) # check that min length is applied at length 5 lowerCAmelCase = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) lowerCAmelCase = 5 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = 1_5 lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __UpperCAmelCase ( self : Dict ) -> str: lowerCAmelCase = 2_0 lowerCAmelCase = 4 lowerCAmelCase = 0 lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase = ids_tensor((batch_size, 1) , vocab_size=2_0 ) lowerCAmelCase = 1 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase = 3 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = 2_0 lowerCAmelCase = 4 lowerCAmelCase = 0 lowerCAmelCase = 5 lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase = ids_tensor((batch_size, 4) , vocab_size=2_0 ) lowerCAmelCase = 4 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase = 3 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: lowerCAmelCase = 4 lowerCAmelCase = 1_0 lowerCAmelCase = 1_5 lowerCAmelCase = 2 lowerCAmelCase = 1 lowerCAmelCase = 1_5 # dummy input_ids and scores lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) lowerCAmelCase = input_ids.copy() lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scores.copy() # instantiate all dist processors lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase = FlaxTopKLogitsWarper(3 ) lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = 1_0 # no processor list lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # with processor list lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __UpperCAmelCase ( self : int ) -> List[str]: lowerCAmelCase = 4 lowerCAmelCase = 1_0 lowerCAmelCase = 1_5 lowerCAmelCase = 2 lowerCAmelCase = 1 lowerCAmelCase = 1_5 # dummy input_ids and scores lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) lowerCAmelCase = input_ids.copy() lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scores.copy() # instantiate all dist processors lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase = FlaxTopKLogitsWarper(3 ) lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = 1_0 # no processor list def run_no_processor_list(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores # with processor list def run_processor_list(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ): lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores lowerCAmelCase = jax.jit(UpperCAmelCase__ ) lowerCAmelCase = jax.jit(UpperCAmelCase__ ) lowerCAmelCase = jitted_run_no_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = jitted_run_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
55
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : Tuple ='pixel_values' lowercase : Any =False lowercase : int =TimmBackboneConfig def __init__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, '''timm''' ) super().__init__(lowerCAmelCase ) lowerCamelCase_ =config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(lowerCAmelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowerCamelCase_ =getattr(lowerCAmelCase, '''use_pretrained_backbone''', lowerCAmelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase_ =config.out_indices if getattr(lowerCAmelCase, '''out_indices''', lowerCAmelCase ) is not None else (-1,) lowerCamelCase_ =timm.create_model( config.backbone, pretrained=lowerCAmelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCAmelCase, **lowerCAmelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase_ =self._backbone.return_layers lowerCamelCase_ ={layer['''module''']: str(lowerCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase ) @classmethod def lowercase__ ( cls, lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase_ =kwargs.pop('''config''', TimmBackboneConfig() ) lowerCamelCase_ =kwargs.pop('''use_timm_backbone''', lowerCAmelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowerCamelCase_ =kwargs.pop('''num_channels''', config.num_channels ) lowerCamelCase_ =kwargs.pop('''features_only''', config.features_only ) lowerCamelCase_ =kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowerCamelCase_ =kwargs.pop('''out_indices''', config.out_indices ) lowerCamelCase_ =TimmBackboneConfig( backbone=lowerCAmelCase, num_channels=lowerCAmelCase, features_only=lowerCAmelCase, use_pretrained_backbone=lowerCAmelCase, out_indices=lowerCAmelCase, ) return super()._from_config(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" pass def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase_ =self._all_layers lowerCamelCase_ =self._backbone(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =self._return_layers lowerCamelCase_ =tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase_ =self._backbone(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =None lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =tuple(lowerCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCamelCase_ =(feature_maps,) if output_hidden_states: lowerCamelCase_ =output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase, hidden_states=lowerCAmelCase, attentions=lowerCAmelCase )
75
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter snake_case_ = logging.get_logger(__name__) snake_case_ = {} snake_case_ = {} snake_case_ = {} def snake_case__ ( SCREAMING_SNAKE_CASE_ : type , SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ): '''simple docstring''' lowercase__ : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowercase__ : Any = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowercase__ : int = format_type def snake_case__ ( SCREAMING_SNAKE_CASE_ : Exception , SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None ): '''simple docstring''' lowercase__ : Optional[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase__ : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: snake_case_ = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: snake_case_ = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: snake_case_ = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[str] , **SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : Tuple = get_format_type_from_alias(SCREAMING_SNAKE_CASE_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
214
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } __A : Any = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } __A : str = { '''jukebox''': 512, } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase_ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=["v3", "v2", "v2"] , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Any="<|endoftext|>" , **UpperCAmelCase_ : Tuple , ): lowerCAmelCase : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token super().__init__( unk_token=UpperCAmelCase_ , n_genres=UpperCAmelCase_ , version=UpperCAmelCase_ , max_n_lyric_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase : Tuple = version lowerCAmelCase : Any = max_n_lyric_tokens lowerCAmelCase : int = n_genres with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : Optional[int] = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : Tuple = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : Any = json.load(UpperCAmelCase_ ) lowerCAmelCase : List[str] = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowerCAmelCase : int = oov.replace(R'\-\'' , R'\-+\'' ) lowerCAmelCase : List[Any] = regex.compile(UpperCAmelCase_ ) lowerCAmelCase : Any = {v: k for k, v in self.artists_encoder.items()} lowerCAmelCase : Optional[Any] = {v: k for k, v in self.genres_encoder.items()} lowerCAmelCase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def lowercase__ ( self : Optional[Any] ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowercase__ ( self : List[str] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Optional[Any] = [self.artists_encoder.get(UpperCAmelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase_ ) ): lowerCAmelCase : List[Any] = [self.genres_encoder.get(UpperCAmelCase_ , 0 ) for genre in list_genres[genres]] lowerCAmelCase : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowerCAmelCase : int = [[self.lyrics_encoder.get(UpperCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Optional[int] ): return list(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = self.prepare_for_tokenization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = self._tokenize(UpperCAmelCase_ ) return artist, genre, lyrics def lowercase__ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowerCAmelCase : Tuple = artists[idx].lower() lowerCAmelCase : Union[str, Any] = [genres[idx].lower()] else: lowerCAmelCase : Dict = self._normalize(artists[idx] ) + '.v2' lowerCAmelCase : Optional[Any] = [ self._normalize(UpperCAmelCase_ ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCAmelCase : Optional[Any] = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) lowerCAmelCase : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' lowerCAmelCase : Dict = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )} lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : int = len(UpperCAmelCase_ ) + 1 lowerCAmelCase : int = self.vocab lowerCAmelCase : List[str] = {v: k for k, v in self.vocab.items()} lowerCAmelCase : Dict = '' else: lowerCAmelCase : Tuple = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) lowerCAmelCase : int = self._run_strip_accents(UpperCAmelCase_ ) lowerCAmelCase : List[str] = lyrics.replace('\\' , '\n' ) lowerCAmelCase : Optional[Any] = self.out_of_vocab.sub('' , UpperCAmelCase_ ), [], [] return artists, genres, lyrics def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = unicodedata.normalize('NFD' , UpperCAmelCase_ ) lowerCAmelCase : str = [] for char in text: lowerCAmelCase : Dict = unicodedata.category(UpperCAmelCase_ ) if cat == "Mn": continue output.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[int] = ( [chr(UpperCAmelCase_ ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) lowerCAmelCase : Tuple = frozenset(UpperCAmelCase_ ) lowerCAmelCase : str = re.compile(R'_+' ) lowerCAmelCase : Tuple = ''.join([c if c in accepted else '_' for c in text.lower()] ) lowerCAmelCase : Tuple = pattern.sub('_' , UpperCAmelCase_ ).strip('_' ) return text def lowercase__ ( self : str , UpperCAmelCase_ : List[str] ): return " ".join(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : bool = False ): # Convert to TensorType if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = TensorType(UpperCAmelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf lowerCAmelCase : List[str] = tf.constant lowerCAmelCase : str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch lowerCAmelCase : List[Any] = torch.tensor lowerCAmelCase : Optional[int] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 lowerCAmelCase : Optional[Any] = jnp.array lowerCAmelCase : Optional[Any] = _is_jax else: lowerCAmelCase : Any = np.asarray lowerCAmelCase : Union[str, Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCAmelCase : Optional[Any] = [inputs] if not is_tensor(UpperCAmelCase_ ): lowerCAmelCase : Any = as_tensor(UpperCAmelCase_ ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]="" , UpperCAmelCase_ : List[str]="pt" ): lowerCAmelCase : Dict = [0, 0, 0] lowerCAmelCase : Dict = [artist] * len(self.version ) lowerCAmelCase : Tuple = [genres] * len(self.version ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.tokenize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = self._convert_token_to_id(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = [-INFINITY] * len(full_tokens[-1] ) lowerCAmelCase : List[Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def lowercase__ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : Dict = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase_ ) ) lowerCAmelCase : int = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase_ ) ) return (artists_file, genres_file, lyrics_file) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : int = self.artists_decoder.get(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index] lowerCAmelCase : List[Any] = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index] return artist, genres, lyrics
138
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A : Any = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): lowerCAmelCase_ : int = 1_0000 lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ : List[Any] = ParquetConfig def lowercase__ ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict ): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowerCAmelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase_ , (str, list, tuple) ): lowerCAmelCase : int = data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Dict = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase : Any = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Dict = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'rb' ) as f: lowerCAmelCase : int = datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase_ ) ) break splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={'files': files} ) ) return splits def lowercase__ ( self : Any , UpperCAmelCase_ : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase : Union[str, Any] = table_cast(UpperCAmelCase_ , self.info.features.arrow_schema ) return pa_table def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ): with open(UpperCAmelCase_ , 'rb' ) as f: lowerCAmelCase : Optional[Any] = pq.ParquetFile(UpperCAmelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(UpperCAmelCase_ ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}" ) raise
138
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( A ) -> Optional[Any]: snake_case = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) snake_case = MaskFormerConfig(backbone_config=A ) snake_case = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok snake_case = 8_4_7 snake_case = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok snake_case = 1_5_0 snake_case = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok snake_case = 1_7_1 snake_case = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO snake_case = 1_3_3 snake_case = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok snake_case = 1_9 snake_case = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok snake_case = 6_5 snake_case = 'mapillary-vistas-id2label.json' snake_case = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} return config def __magic_name__ ( A ) -> Dict: snake_case = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = dct.pop(A ) snake_case = val def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) snake_case = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[:dim, :] snake_case = in_proj_bias[: dim] snake_case = in_proj_weight[ dim : dim * 2, : ] snake_case = in_proj_bias[ dim : dim * 2 ] snake_case = in_proj_weight[ -dim :, : ] snake_case = in_proj_bias[-dim :] # fmt: on def __magic_name__ ( A , A ) -> int: # fmt: off snake_case = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[: hidden_size, :] snake_case = in_proj_bias[:config.hidden_size] snake_case = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case = in_proj_bias[hidden_size : hidden_size * 2] snake_case = in_proj_weight[-hidden_size :, :] snake_case = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[: hidden_size, :] snake_case = in_proj_bias[:config.hidden_size] snake_case = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case = in_proj_bias[hidden_size : hidden_size * 2] snake_case = in_proj_weight[-hidden_size :, :] snake_case = in_proj_bias[-hidden_size :] # fmt: on def __magic_name__ ( ) -> torch.Tensor: snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def __magic_name__ ( A , A , A , A = False ) -> Tuple: snake_case = get_maskformer_config(A ) # load original state_dict with open(A , 'rb' ) as f: snake_case = pickle.load(A ) snake_case = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # update to torch tensors for key, value in state_dict.items(): snake_case = torch.from_numpy(A ) # load 🤗 model snake_case = MaskFormerForInstanceSegmentation(A ) model.eval() for name, param in model.named_parameters(): print(A , param.shape ) snake_case , snake_case = model.load_state_dict(A , strict=A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(A ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results snake_case = prepare_img() if "vistas" in model_name: snake_case = 6_5 elif "cityscapes" in model_name: snake_case = 6_5_5_3_5 else: snake_case = 2_5_5 snake_case = True if 'ade' in model_name else False snake_case = MaskFormerImageProcessor(ignore_index=A , reduce_labels=A ) snake_case = image_processor(A , return_tensors='pt' ) snake_case = model(**A ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a : Tuple = get_tests_dir("fixtures") class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = mock.Mock() UpperCAmelCase : Optional[Any] = 5_0_0 UpperCAmelCase : List[Any] = {} UpperCAmelCase : int = HTTPError UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case ) as mock_head: UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def A_ ( cls ): '''simple docstring''' UpperCAmelCase : int = TOKEN HfFolder.save_token(snake_case ) @classmethod def A_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(snake_case ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( snake_case , repo_id="test-feature-extractor" , push_to_hub=snake_case , use_auth_token=self._token ) UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( snake_case , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=snake_case , use_auth_token=self._token ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) def A_ ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase : Optional[Any] = CustomFeatureExtractor.from_pretrained(snake_case ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=snake_case ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
311
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase =' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/')) _UpperCAmelCase : Optional[Any] =self.transformer_dir shutil.copy( os.path.join(snake_case , 'src/transformers/models/bert/modeling_bert.py') , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py') , ) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : int ='src/transformers' shutil.rmtree(self.transformer_dir) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case=None) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: _UpperCAmelCase : Union[str, Any] =comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result _UpperCAmelCase : Tuple =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) _UpperCAmelCase : str =black.format_str(snake_case , mode=snake_case) _UpperCAmelCase : Dict =os.path.join(self.transformer_dir , 'new_code.py') with open(snake_case , 'w' , newline='\n') as f: f.write(snake_case) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case) with open(snake_case , 'r') as f: self.assertTrue(f.read() , snake_case) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : str =check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , snake_case , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , snake_case) , ) # Copy consistency with a really long name _UpperCAmelCase : Any ='TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , f"{long_class_name}LMPredictionHead" , re.sub('Bert' , snake_case , snake_case) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , snake_case , overwrite_result=re.sub('Bert' , 'TestModel' , snake_case) , ) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : int =check_copies.LOCALIZED_READMES['README_zh-hans.md'] _UpperCAmelCase : Optional[Any] =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _UpperCAmelCase : Optional[Any] =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _UpperCAmelCase : Optional[Any] =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _UpperCAmelCase : Optional[Any] =check_copies.convert_to_localized_md( snake_case , snake_case , localized_readme['format_model_list']) self.assertFalse(snake_case) self.assertEqual(snake_case , snake_case) _UpperCAmelCase : List[str] =check_copies.convert_to_localized_md( snake_case , snake_case , localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(snake_case) _UpperCAmelCase : Union[str, Any] =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _UpperCAmelCase : Optional[int] =( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _UpperCAmelCase : List[Any] =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _UpperCAmelCase : Tuple =check_copies.convert_to_localized_md( snake_case , snake_case , localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(snake_case , snake_case)
352
'''simple docstring''' from __future__ import annotations from random import choice def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): '''simple docstring''' return choice(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : int =random_pivot(__lowerCamelCase ) # partition based on pivot # linear time _UpperCAmelCase : str =[e for e in lst if e < pivot] _UpperCAmelCase : Dict =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCamelCase ) < k - 1: return kth_number(__lowerCamelCase , k - len(__lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowercase : Optional[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : tuple , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str]=False , ): output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , enable_onnx_checker=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) else: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = False ): __a : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a : Dict = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __a : Union[str, Any] = 'cpu' __a : str = Path(_SCREAMING_SNAKE_CASE ) # VAE DECODER __a : Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __a : Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __a : Any = vae_decoder.decode onnx_export( _SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , _SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __lowercase : Tuple = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : int = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ["""LayoutLMv2FeatureExtractor"""] __lowerCamelCase : Any = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = SMALL_MODEL_IDENTIFIER snake_case__ : Any = "pt" snake_case__ : Any = "tf" def _lowercase ( self : Union[str, Any] , __A : List[Any] ): snake_case__ : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__A ) def _lowercase ( self : Optional[int] , __A : Tuple ): snake_case__ : List[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__A ) model_tf.save_pretrained(__A ) def _lowercase ( self : str ): snake_case__ : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model , __A ) self.assertEqual(__A , __A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : Optional[int] = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : int = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) def _lowercase ( self : Dict ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : List[str] = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : Tuple = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__A ): snake_case__ : int = FeaturesManager.determine_framework(__A ) def _lowercase ( self : Dict ): snake_case__ : Dict = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ): snake_case__ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case__ : Tuple = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_torch_available" , __A ): snake_case__ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_tf ) # Both in environment -> use PyTorch snake_case__ : Dict = MagicMock(return_value=__A ) snake_case__ : Optional[int] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # Both not in environment -> raise error snake_case__ : List[str] = MagicMock(return_value=__A ) snake_case__ : Optional[Any] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): with self.assertRaises(__A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
286
0
import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase = 2_0_4_8 lowerCAmelCase = 4_0_9_6 lowerCAmelCase = 4_2 lowerCAmelCase = os.environ.pop('''PROCESS_TRAIN''', '''false''') lowerCAmelCase = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' def choose_first(lowercase__ , lowercase__=False ): assert isinstance(lowercase__ , lowercase__ ) if len(lowercase__ ) == 1: __lowercase= answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __lowercase= {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a __lowercase= {'id': example['id']} __lowercase= example['annotations'] __lowercase= annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: __lowercase= ['yes'] if 1 in yes_no_answer else ['no'] __lowercase= __lowercase= [] __lowercase= __lowercase= [] __lowercase= ['<cls>'] else: __lowercase= ['short'] __lowercase= choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available __lowercase= ['long'] __lowercase= choose_first(annotation['long_answer'] , is_long_answer=lowercase__ ) __lowercase= [] answer.update(lowercase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: __lowercase= True else: __lowercase= False __lowercase= ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , lowercase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def _lowerCamelCase( lowercase__ , lowercase__=False ) -> str: '''simple docstring''' __lowercase= _get_single_answer(lowercase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase= example['document']['tokens'] __lowercase= [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __lowercase= ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __lowercase= example['document']['tokens'] __lowercase= answer['start_token'] __lowercase= answer['end_token'] __lowercase= [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __lowercase= ' '.join(context[start_token:end_token] ) # checking above code if assertion: __lowercase= doc['is_html'][answer['start_token'] : answer['end_token']] __lowercase= doc['token'][answer['start_token'] : answer['end_token']] __lowercase= ' '.join([old[i] for i in range(len(lowercase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , lowercase__ , end='\n' ) print('Old:' , lowercase__ , end='\n\n' ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=2_0_4_8 , lowercase__=4_0_9_6 , lowercase__=True ) -> Optional[Any]: '''simple docstring''' __lowercase= get_context_and_ans(lowercase__ , assertion=lowercase__ ) __lowercase= out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __lowercase= tokenizer(example['question']['text'] , out['context'] ).input_ids __lowercase= input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase= [] __lowercase= [] __lowercase= input_ids[:q_len] __lowercase= range(lowercase__ , len(lowercase__ ) , max_length - doc_stride ) for i in doc_start_indices: __lowercase= i + max_length - q_len __lowercase= input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowercase__ ), "end_token": [-1_0_0] * len(lowercase__ ), "category": category, }, } __lowercase= out['context'].split() __lowercase= splitted_context[answer['end_token']] __lowercase= len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=lowercase__ , ).input_ids ) __lowercase= len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=lowercase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __lowercase= len(tokenizer(lowercase__ , add_special_tokens=lowercase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __lowercase= input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive __lowercase= answer['start_token'] __lowercase= answer['end_token'] if assertion: __lowercase= tokenizer.decode(lowercase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , lowercase__ , end='\n\n' ) if len(lowercase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __lowercase= input_ids[:q_len] __lowercase= range(lowercase__ , len(lowercase__ ) , max_length - doc_stride ) __lowercase= [] __lowercase= [] __lowercase= [] __lowercase= [] # null, yes, no, long, short for i in doc_start_indices: __lowercase= i + max_length - q_len __lowercase= input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __lowercase= start_token - i + q_len __lowercase= end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: __lowercase= -1_0_0 __lowercase= -1_0_0 answers_category.append('null' ) __lowercase= inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase__ ) answers_end_token.append(lowercase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(lowercase__ ) ) print('Old:' , tokenizer.decode(lowercase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=2_0_4_8 , lowercase__=4_0_9_6 , lowercase__=False ) -> Tuple: '''simple docstring''' __lowercase= get_strided_contexts_and_ans( lowercase__ , lowercase__ , doc_stride=lowercase__ , max_length=lowercase__ , assertion=lowercase__ , ) return example def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' with jsonlines.open(lowercase__ , 'a' ) as writer: for example in tqdm(lowercase__ , total=len(lowercase__ ) , desc='Saving samples ... ' ): __lowercase= example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase = load_dataset('''natural_questions''') lowerCAmelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') lowerCAmelCase = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] lowerCAmelCase = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } lowerCAmelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) lowerCAmelCase = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
295
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase( lowercase__=None , lowercase__=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase__ ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCamelCase_ : Optional[List[str]] =list_field( default=A_ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: int(lowercase__ ) return True except ValueError: return False def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: float(lowercase__ ) return True except ValueError: return False class A : def __init__(self , lowerCAmelCase ): __lowercase= args __lowercase= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowercase= csv.DictReader(lowerCAmelCase ) for row in reader: __lowercase= row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowercase= int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowercase= float(row['result'] ) def _A (self ): __lowercase, __lowercase= plt.subplots() __lowercase= 'Time usage' if self.args.is_time else 'Memory usage' __lowercase= title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase= sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowercase= sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowercase= self.result_dict[model_name]['result'] ((__lowercase), (__lowercase))= ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase= ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase= np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase , ) else: __lowercase= np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase), (__lowercase))= ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowercase= np.asarray(lowerCAmelCase , lowerCAmelCase )[: len(lowerCAmelCase )] plt.scatter( lowerCAmelCase , lowerCAmelCase , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCAmelCase , lowerCAmelCase , '--' ) title_str += f' {label_model_name} vs.' __lowercase= title_str[:-4] __lowercase= 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase ) plt.xlabel(lowerCAmelCase ) plt.ylabel(lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= HfArgumentParser(lowercase__ ) __lowercase= parser.parse_args_into_dataclasses()[0] __lowercase= Plot(args=lowercase__ ) plot.plot() if __name__ == "__main__": main()
295
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase :str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase :list[int] = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase :set[int] = {ord(char) for char in VALID_CHARS} lowerCamelCase :list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : str = "" A_ : int A_ : int A_ : int for keychar, cipherchar in zip(cycle(lowerCamelCase__ ) , lowerCamelCase__ ): A_ : Any = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase__ ) return decoded def a ( lowerCamelCase__ ): '''simple docstring''' A_ : list[str] = [] for key in product(lowerCamelCase__ , repeat=3 ): A_ : Union[str, Any] = try_key(lowerCamelCase__ , lowerCamelCase__ ) if encoded is not None: possibles.append(lowerCamelCase__ ) return possibles def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def a ( lowerCamelCase__ = "p059_cipher.txt" ): '''simple docstring''' A_ : list[int] A_ : list[str] A_ : str A_ : str A_ : str = Path(lowerCamelCase__ ).parent.joinpath(lowerCamelCase__ ).read_text(encoding="""utf-8""" ) A_ : Optional[Any] = [int(lowerCamelCase__ ) for number in data.strip().split(""",""" )] A_ : Union[str, Any] = filter_valid_chars(lowerCamelCase__ ) for common_word in COMMON_WORDS: A_ : Optional[Any] = filter_common_word(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: break A_ : str = possibles[0] return sum(ord(lowerCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
135
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase :Optional[int] = logging.getLogger(__name__) lowerCamelCase :Optional[int] = tf.data.AUTOTUNE def a ( ): '''simple docstring''' A_ : Any = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCamelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCamelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCamelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCamelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCamelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCamelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCamelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCamelCase__ , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCamelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCamelCase__ , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCamelCase__ , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCamelCase__ , default=5_12 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCamelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCamelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) A_ : Dict = parser.parse_args() return args def a ( lowerCamelCase__ ): '''simple docstring''' try: if args.tpu_name: A_ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: A_ : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCamelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCamelCase__ ) return tpu def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = 0 for file in file_list: A_ : Optional[Any] = file.split("""/""" )[-1] A_ : Optional[int] = re.search(r"""-\d+-(\d+)\.tfrecord""" , lowerCamelCase__ ).group(1 ) A_ : Any = int(lowerCamelCase__ ) num_samples += sample_count return num_samples def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' A_ : List[Any] = count_samples(lowerCamelCase__ ) A_ : List[str] = tf.data.Dataset.from_tensor_slices(lowerCamelCase__ ) if shuffle: A_ : Optional[int] = dataset.shuffle(len(lowerCamelCase__ ) ) A_ : Tuple = tf.data.TFRecordDataset(lowerCamelCase__ , num_parallel_reads=lowerCamelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A_ : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(lowerCamelCase__ ) ) A_ : Any = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) if shuffle: assert shuffle_buffer_size is not None A_ : List[str] = dataset.shuffle(args.shuffle_buffer_size ) A_ : str = dataset.batch(lowerCamelCase__ , drop_remainder=lowerCamelCase__ ) A_ : str = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) A_ : Optional[int] = dataset.prefetch(lowerCamelCase__ ) return dataset def a ( lowerCamelCase__ ): '''simple docstring''' if not args.no_tpu: A_ : Dict = initialize_tpu(lowerCamelCase__ ) A_ : str = tf.distribute.TPUStrategy(lowerCamelCase__ ) else: A_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) A_ : str = AutoConfig.from_pretrained(args.pretrained_model_config ) A_ : Optional[int] = tokenizer.vocab_size A_ : Dict = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) A_ : Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) A_ : Dict = count_samples(lowerCamelCase__ ) A_ : Optional[Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A_ : Dict = steps_per_epoch * args.num_epochs with strategy.scope(): A_ : Optional[int] = TFAutoModelForMaskedLM.from_config(lowerCamelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A_, A_ : Any = create_optimizer( num_train_steps=lowerCamelCase__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCamelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCamelCase__ ): A_ : Optional[int] = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCamelCase__ , lowerCamelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A_ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCamelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCamelCase__ ): # TF really needs an isin() function A_ : str = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A_, A_ : Union[str, Any] = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCamelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCamelCase__ , ) return batch A_ : str = args.per_replica_batch_size * strategy.num_replicas_in_sync A_ : Tuple = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) A_ : Optional[Any] = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , ) A_ : Union[str, Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCamelCase__ ) ) model.fit( lowerCamelCase__ , validation_data=lowerCamelCase__ , epochs=args.num_epochs , callbacks=lowerCamelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase :Tuple = parse_args() main(args)
135
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class snake_case__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=99 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : str=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=5_12 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]="None" , __lowerCamelCase : str=3 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Any=None , ) -> int: a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = relative_attention a = position_biased_input a = pos_att_type a = scope def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : str ) -> Union[str, Any]: a = TFDebertaVaModel(config=__lowerCamelCase ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = [input_ids, input_mask] a = model(__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : int ) -> Optional[Any]: a = TFDebertaVaForMaskedLM(config=__lowerCamelCase ) a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Optional[int]: a = self.num_labels a = TFDebertaVaForSequenceClassification(config=__lowerCamelCase ) a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> Any: a = self.num_labels a = TFDebertaVaForTokenClassification(config=__lowerCamelCase ) a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> List[Any]: a = TFDebertaVaForQuestionAnswering(config=__lowerCamelCase ) a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Dict ) -> int: a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def __UpperCAmelCase ( self : int ) -> int: a = TFDebertaVaModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str] ) -> Dict: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> Tuple: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def __UpperCAmelCase ( self : Any ) -> Tuple: pass @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) a = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] a = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 )
107
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def a_ ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 , _lowerCAmelCase : float = 1 , _lowerCAmelCase : float = 1.0E4 , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" lowercase__ : Optional[Any] = float(embedding_dim // 2 ) lowercase__ : Optional[Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase__ : Any = min_timescale * jnp.exp(jnp.arange(_lowerCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase__ : Dict = jnp.expand_dims(_lowerCAmelCase , 1 ) * jnp.expand_dims(_lowerCAmelCase , 0 ) # scale embeddings lowercase__ : List[str] = scale * emb if flip_sin_to_cos: lowercase__ : Dict = jnp.concatenate([jnp.cos(_lowerCAmelCase ), jnp.sin(_lowerCAmelCase )] , axis=1 ) else: lowercase__ : Optional[int] = jnp.concatenate([jnp.sin(_lowerCAmelCase ), jnp.cos(_lowerCAmelCase )] , axis=1 ) lowercase__ : List[Any] = jnp.reshape(_lowerCAmelCase , [jnp.shape(_lowerCAmelCase )[0], embedding_dim] ) return signal class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ : int = 3_2 lowerCamelCase__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , a ) -> Any: lowercase__ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(a ) lowercase__ : Union[str, Any] = nn.silu(a ) lowercase__ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(a ) return temb class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ : int = 3_2 lowerCamelCase__ : bool = False lowerCamelCase__ : float = 1 @nn.compact def __call__( self , a ) -> str: return get_sinusoidal_embeddings( a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
77
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __snake_case : lowerCAmelCase_ = MBartConfig lowerCAmelCase_ = {} lowerCAmelCase_ = "gelu" def __init__( self : List[str] , _lowercase : Optional[int] , _lowercase : List[Any]=13 , _lowercase : List[Any]=7 , _lowercase : Dict=True , _lowercase : Tuple=False , _lowercase : Optional[Any]=99 , _lowercase : Dict=32 , _lowercase : str=2 , _lowercase : str=4 , _lowercase : Tuple=37 , _lowercase : Tuple=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Optional[int]=20 , _lowercase : Dict=2 , _lowercase : List[str]=1 , _lowercase : Union[str, Any]=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def __a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFMBartModel(config=_A ).get_decoder() SCREAMING_SNAKE_CASE__ = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE__ = input_ids[:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE__ = 1 # first forward pass SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) SCREAMING_SNAKE_CASE__ = outputs.to_tuple() SCREAMING_SNAKE_CASE__ = past_key_values[1] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : str=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[Any]=None , ) -> Dict: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : Any , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : str , _lowercase : int , _lowercase : Dict ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFMBartModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_A ) def __a ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase_ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase_ = "facebook/mbart-large-en-ro" @cached_property def __a ( self : str ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __a ( self : Optional[int] , **_lowercase : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def __a ( self : Union[str, Any] , **_lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , **_A , return_tensors="""tf""" ) SCREAMING_SNAKE_CASE__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def __a ( self : str ): """simple docstring""" self._assert_generated_batch_equal_expected()
350
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) SCREAMING_SNAKE_CASE__ = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss SCREAMING_SNAKE_CASE__ = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
204
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(UpperCamelCase__ ): print(F"""{i}\t\t{d}""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' for j in range(UpperCamelCase__ ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list[float]: '''simple docstring''' UpperCAmelCase = [float('''inf''' )] * vertex_count UpperCAmelCase = 0.0 for _ in range(vertex_count - 1 ): for j in range(UpperCamelCase__ ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCAmelCase = distance[u] + w UpperCAmelCase = check_negative_cycle(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = int(input("Enter number of vertices: ").strip()) __A : Optional[int] = int(input("Enter number of edges: ").strip()) __A : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __A , __A , __A : str = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __A : List[Any] = {"src": src, "dst": dest, "weight": weight} __A : int = int(input("\nEnter shortest path source:").strip()) __A : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
273
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''prompt'''] UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] if "image" in inputs: UpperCAmelCase = inputs['''image'''] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['''mask_image'''] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['''original_image'''] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(_A ) # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_A , _A , _A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 )
273
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowercase =logging.get_logger(__name__) class __magic_name__ ( _SCREAMING_SNAKE_CASE ): def __init__( self , **snake_case) -> Tuple: '''simple docstring''' requires_backends(self , ['bs4']) super().__init__(**snake_case) def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[] _UpperCAmelCase : Union[str, Any] =[] _UpperCAmelCase : List[Any] =element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCAmelCase : List[Any] =parent.find_all(child.name , recursive=snake_case) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(snake_case) else next(i for i, s in enumerate(snake_case , 1) if s is child)) _UpperCAmelCase : Dict =parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase ( self , snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : str =BeautifulSoup(snake_case , 'html.parser') _UpperCAmelCase : Optional[Any] =[] _UpperCAmelCase : Dict =[] _UpperCAmelCase : Union[str, Any] =[] for element in html_code.descendants: if type(snake_case) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue _UpperCAmelCase : Optional[int] =html.unescape(snake_case).strip() if not text_in_this_tag: continue all_doc_strings.append(snake_case) _UpperCAmelCase , _UpperCAmelCase : Dict =self.xpath_soup(snake_case) stringaxtag_seq.append(snake_case) stringaxsubs_seq.append(snake_case) if len(snake_case) != len(snake_case): raise ValueError('Number of doc strings and xtags does not correspond') if len(snake_case) != len(snake_case): raise ValueError('Number of doc strings and xsubs does not correspond') return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase ( self , snake_case , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict ='' for tagname, subs in zip(snake_case , snake_case): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__( self , snake_case) -> BatchFeature: '''simple docstring''' _UpperCAmelCase : Tuple =False # Check that strings has a valid type if isinstance(snake_case , snake_case): _UpperCAmelCase : int =True elif isinstance(snake_case , (list, tuple)): if len(snake_case) == 0 or isinstance(html_strings[0] , snake_case): _UpperCAmelCase : Union[str, Any] =True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f"but is of type {type(snake_case)}.") _UpperCAmelCase : Union[str, Any] =bool(isinstance(snake_case , (list, tuple)) and (isinstance(html_strings[0] , snake_case))) if not is_batched: _UpperCAmelCase : Dict =[html_strings] # Get nodes + xpaths _UpperCAmelCase : str =[] _UpperCAmelCase : str =[] for html_string in html_strings: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] =self.get_three_from_single(snake_case) nodes.append(snake_case) _UpperCAmelCase : Optional[int] =[] for node, tag_list, sub_list in zip(snake_case , snake_case , snake_case): _UpperCAmelCase : Optional[Any] =self.construct_xpath(snake_case , snake_case) xpath_strings.append(snake_case) xpaths.append(snake_case) # return as Dict _UpperCAmelCase : Tuple ={'nodes': nodes, 'xpaths': xpaths} _UpperCAmelCase : Union[str, Any] =BatchFeature(data=snake_case , tensor_type=snake_case) return encoded_inputs
366
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ): '''simple docstring''' if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): _UpperCAmelCase : List[Any] =[image] if isinstance(image[0] , PIL.Image.Image ): _UpperCAmelCase : List[Any] =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _UpperCAmelCase : List[str] =np.concatenate(__lowerCamelCase , axis=0 ) _UpperCAmelCase : Optional[Any] =np.array(__lowerCamelCase ).astype(np.floataa ) / 2_55.0 _UpperCAmelCase : List[Any] =image.transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase : str =2.0 * image - 1.0 _UpperCAmelCase : Optional[Any] =torch.from_numpy(__lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _UpperCAmelCase : List[Any] =torch.cat(__lowerCamelCase , dim=0 ) return image def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=0.99_95 ): '''simple docstring''' if not isinstance(__lowerCamelCase , np.ndarray ): _UpperCAmelCase : Optional[Any] =True _UpperCAmelCase : int =va.device _UpperCAmelCase : List[Any] =va.cpu().numpy() _UpperCAmelCase : Tuple =va.cpu().numpy() _UpperCAmelCase : Any =np.sum(va * va / (np.linalg.norm(__lowerCamelCase ) * np.linalg.norm(__lowerCamelCase )) ) if np.abs(__lowerCamelCase ) > DOT_THRESHOLD: _UpperCAmelCase : Union[str, Any] =(1 - t) * va + t * va else: _UpperCAmelCase : Optional[int] =np.arccos(__lowerCamelCase ) _UpperCAmelCase : Tuple =np.sin(__lowerCamelCase ) _UpperCAmelCase : str =theta_a * t _UpperCAmelCase : List[Any] =np.sin(__lowerCamelCase ) _UpperCAmelCase : List[str] =np.sin(theta_a - theta_t ) / sin_theta_a _UpperCAmelCase : str =sin_theta_t / sin_theta_a _UpperCAmelCase : int =sa * va + sa * va if inputs_are_torch: _UpperCAmelCase : Union[str, Any] =torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) return va def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =F.normalize(__lowerCamelCase , dim=-1 ) _UpperCAmelCase : List[Any] =F.normalize(__lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): _UpperCAmelCase : Dict =value class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , clip_model=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , coca_model=snake_case , coca_tokenizer=snake_case , coca_transform=snake_case , ) _UpperCAmelCase : List[Any] =( feature_extractor.size if isinstance(feature_extractor.size , snake_case) else feature_extractor.size['shortest_edge'] ) _UpperCAmelCase : str =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std) set_requires_grad(self.text_encoder , snake_case) set_requires_grad(self.clip_model , snake_case) def lowerCAmelCase ( self , snake_case = "auto") -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Union[str, Any] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case) def lowerCAmelCase ( self) -> int: '''simple docstring''' self.enable_attention_slicing(snake_case) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' set_requires_grad(self.vae , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' set_requires_grad(self.vae , snake_case) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' set_requires_grad(self.unet , snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' set_requires_grad(self.unet , snake_case) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> Tuple: '''simple docstring''' # get the original timestep using init_timestep _UpperCAmelCase : Union[str, Any] =min(int(num_inference_steps * strength) , snake_case) _UpperCAmelCase : Any =max(num_inference_steps - init_timestep , 0) _UpperCAmelCase : int =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None) -> Optional[int]: '''simple docstring''' if not isinstance(snake_case , torch.Tensor): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(snake_case)}") _UpperCAmelCase : str =image.to(device=snake_case , dtype=snake_case) if isinstance(snake_case , snake_case): _UpperCAmelCase : Optional[Any] =[ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(snake_case) ] _UpperCAmelCase : Tuple =torch.cat(snake_case , dim=0) else: _UpperCAmelCase : List[Any] =self.vae.encode(snake_case).latent_dist.sample(snake_case) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Optional[int] =0.1_82_15 * init_latents _UpperCAmelCase : List[str] =init_latents.repeat_interleave(snake_case , dim=0) _UpperCAmelCase : Union[str, Any] =randn_tensor(init_latents.shape , generator=snake_case , device=snake_case , dtype=snake_case) # get latents _UpperCAmelCase : Optional[int] =self.scheduler.add_noise(snake_case , snake_case , snake_case) _UpperCAmelCase : List[Any] =init_latents return latents def lowerCAmelCase ( self , snake_case) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =self.coca_transform(snake_case).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCAmelCase : str =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype)) _UpperCAmelCase : Tuple =self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>' , '').rstrip(' .,') def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.feature_extractor.preprocess(snake_case) _UpperCAmelCase : Optional[Any] =torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _UpperCAmelCase : Dict =self.clip_model.get_image_features(snake_case) _UpperCAmelCase : int =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case) _UpperCAmelCase : List[str] =image_embeddings_clip.repeat_interleave(snake_case , dim=0) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =latents.detach().requires_grad_() _UpperCAmelCase : str =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : int =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _UpperCAmelCase : Optional[int] =self.scheduler.alphas_cumprod[timestep] _UpperCAmelCase : Any =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : str =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCAmelCase : Union[str, Any] =torch.sqrt(snake_case) _UpperCAmelCase : List[str] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , snake_case): _UpperCAmelCase : Optional[int] =self.scheduler.sigmas[index] _UpperCAmelCase : Tuple =latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Tuple =1 / 0.1_82_15 * sample _UpperCAmelCase : Optional[Any] =self.vae.decode(snake_case).sample _UpperCAmelCase : Tuple =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : int =transforms.Resize(self.feature_extractor_size)(snake_case) _UpperCAmelCase : Optional[int] =self.normalize(snake_case).to(latents.dtype) _UpperCAmelCase : str =self.clip_model.get_image_features(snake_case) _UpperCAmelCase : str =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case) _UpperCAmelCase : Optional[int] =spherical_dist_loss(snake_case , snake_case).mean() * clip_guidance_scale _UpperCAmelCase : List[str] =-torch.autograd.grad(snake_case , snake_case)[0] if isinstance(self.scheduler , snake_case): _UpperCAmelCase : Optional[Any] =latents.detach() + grads * (sigma**2) _UpperCAmelCase : str =noise_pred_original else: _UpperCAmelCase : str =noise_pred_original - torch.sqrt(snake_case) * grads return noise_pred, latents @torch.no_grad() def __call__( self , snake_case , snake_case , snake_case = None , snake_case = None , snake_case = 5_1_2 , snake_case = 5_1_2 , snake_case = 0.6 , snake_case = 5_0 , snake_case = 7.5 , snake_case = 1 , snake_case = 0.0 , snake_case = 1_0_0 , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = 0.8 , snake_case = 0.1 , snake_case = 0.1 , ) -> List[str]: '''simple docstring''' if isinstance(snake_case , snake_case) and len(snake_case) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(snake_case)} generators.") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if isinstance(snake_case , torch.Generator) and batch_size > 1: _UpperCAmelCase : List[str] =[generator] + [None] * (batch_size - 1) _UpperCAmelCase : Tuple =[ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _UpperCAmelCase : Tuple =[x[0] for x in coca_is_none if x[1]] _UpperCAmelCase : Union[str, Any] =', '.join(snake_case) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _UpperCAmelCase : Optional[int] =self.get_image_description(snake_case) if style_prompt is None: if len(snake_case): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _UpperCAmelCase : List[str] =self.get_image_description(snake_case) # get prompt text embeddings for content and style _UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Dict =self.text_encoder(content_text_input.input_ids.to(self.device))[0] _UpperCAmelCase : Optional[int] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Tuple =self.text_encoder(style_text_input.input_ids.to(self.device))[0] _UpperCAmelCase : List[Any] =slerp(snake_case , snake_case , snake_case) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Optional[Any] =text_embeddings.repeat_interleave(snake_case , dim=0) # set timesteps _UpperCAmelCase : Any ='offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _UpperCAmelCase : int ={} if accepts_offset: _UpperCAmelCase : Union[str, Any] =1 self.scheduler.set_timesteps(snake_case , **snake_case) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _UpperCAmelCase , _UpperCAmelCase : int =self.get_timesteps(snake_case , snake_case , self.device) _UpperCAmelCase : Dict =timesteps[:1].repeat(snake_case) # Preprocess image _UpperCAmelCase : int =preprocess(snake_case , snake_case , snake_case) _UpperCAmelCase : Tuple =self.prepare_latents( snake_case , snake_case , snake_case , text_embeddings.dtype , self.device , snake_case) _UpperCAmelCase : Optional[Any] =preprocess(snake_case , snake_case , snake_case) _UpperCAmelCase : List[Any] =self.prepare_latents( snake_case , snake_case , snake_case , text_embeddings.dtype , self.device , snake_case) _UpperCAmelCase : List[Any] =slerp(snake_case , snake_case , snake_case) if clip_guidance_scale > 0: _UpperCAmelCase : Optional[int] =self.get_clip_image_embeddings(snake_case , snake_case) _UpperCAmelCase : int =self.get_clip_image_embeddings(snake_case , snake_case) _UpperCAmelCase : Dict =slerp( snake_case , snake_case , snake_case) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase : int =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase : Union[str, Any] =content_text_input.input_ids.shape[-1] _UpperCAmelCase : List[str] =self.tokenizer([''] , padding='max_length' , max_length=snake_case , return_tensors='pt') _UpperCAmelCase : Union[str, Any] =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _UpperCAmelCase : List[Any] =uncond_embeddings.repeat_interleave(snake_case , dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : Any =torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase : str =(batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase : Union[str, Any] =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCAmelCase : int =torch.randn(snake_case , generator=snake_case , device='cpu' , dtype=snake_case).to( self.device) else: _UpperCAmelCase : Optional[int] =torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") _UpperCAmelCase : List[str] =latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase : str =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase : List[str] ='eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase : Union[str, Any] ={} if accepts_eta: _UpperCAmelCase : Optional[int] =eta # check if the scheduler accepts generator _UpperCAmelCase : Union[str, Any] ='generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _UpperCAmelCase : Dict =generator with self.progress_bar(total=snake_case): for i, t in enumerate(snake_case): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Dict =torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[int] =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : Optional[int] =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : int =noise_pred.chunk(2) _UpperCAmelCase : Dict =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCAmelCase : Tuple =( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] =self.cond_fn( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[str] =self.scheduler.step(snake_case , snake_case , snake_case , **snake_case).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Optional[Any] =1 / 0.1_82_15 * latents _UpperCAmelCase : Optional[int] =self.vae.decode(snake_case).sample _UpperCAmelCase : str =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case)
242
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Dict = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __lowercase ( __lowerCamelCase ): """simple docstring""" _UpperCAmelCase : Dict = 'data2vec-audio' def __init__( self : Any , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : Optional[Any]=768 , lowerCAmelCase__ : str=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : Optional[Any]=3072 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : int=1E-5 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__ : int=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ : int=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Tuple=16 , lowerCAmelCase__ : Union[str, Any]=19 , lowerCAmelCase__ : List[str]=5 , lowerCAmelCase__ : Optional[Any]=0.05 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Dict=10 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Tuple="sum" , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=(512, 512, 512, 512, 1500) , lowerCAmelCase__ : List[str]=(5, 3, 3, 1, 1) , lowerCAmelCase__ : Any=(1, 2, 3, 1, 1) , lowerCAmelCase__ : Dict=512 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : int , ): super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_) SCREAMING_SNAKE_CASE_: Tuple = hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] = feat_extract_activation SCREAMING_SNAKE_CASE_: Optional[Any] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Optional[int] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Optional[Any] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Tuple = conv_bias SCREAMING_SNAKE_CASE_: List[str] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_: List[str] = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_: Union[str, Any] = conv_pos_kernel_size SCREAMING_SNAKE_CASE_: Any = len(self.conv_dim) SCREAMING_SNAKE_CASE_: Dict = num_hidden_layers SCREAMING_SNAKE_CASE_: List[str] = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] = hidden_dropout SCREAMING_SNAKE_CASE_: Optional[int] = attention_dropout SCREAMING_SNAKE_CASE_: Tuple = activation_dropout SCREAMING_SNAKE_CASE_: Any = feat_proj_dropout SCREAMING_SNAKE_CASE_: List[str] = final_dropout SCREAMING_SNAKE_CASE_: Optional[Any] = layerdrop SCREAMING_SNAKE_CASE_: Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_: str = initializer_range SCREAMING_SNAKE_CASE_: Tuple = vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," F" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_: List[Any] = mask_time_prob SCREAMING_SNAKE_CASE_: Dict = mask_time_length SCREAMING_SNAKE_CASE_: int = mask_time_min_masks SCREAMING_SNAKE_CASE_: Optional[Any] = mask_feature_prob SCREAMING_SNAKE_CASE_: Any = mask_feature_length SCREAMING_SNAKE_CASE_: Optional[int] = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE_: int = ctc_loss_reduction SCREAMING_SNAKE_CASE_: str = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE_: Optional[int] = add_adapter SCREAMING_SNAKE_CASE_: int = adapter_kernel_size SCREAMING_SNAKE_CASE_: Optional[int] = adapter_stride SCREAMING_SNAKE_CASE_: str = num_adapter_layers SCREAMING_SNAKE_CASE_: List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_: List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_: Optional[int] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Optional[Any] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Any = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Any = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self : str): return math.prod(self.conv_stride)
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" from jiwer import compute_measures import datasets UpperCAmelCase : Tuple = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCAmelCase : Tuple = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" if concatenate_texts: return compute_measures(__UpperCamelCase , __UpperCamelCase)["wer"] else: lowercase_ = 0 lowercase_ = 0 for prediction, reference in zip(__UpperCamelCase , __UpperCamelCase): lowercase_ = compute_measures(__UpperCamelCase , __UpperCamelCase) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
360
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def a_ ( __snake_case : str , __snake_case : str , **__snake_case : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ =AutoConfig.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase_ =AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
75
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =['pixel_values'] def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='''crop_size''' ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ =do_convert_rgb def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(lowerCAmelCase, param_name='''crop_size''', default_to_square=lowerCAmelCase ) lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ =[convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowerCamelCase_ ={'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
75
1
import argparse from collections import defaultdict import yaml lowerCAmelCase : Any = """docs/source/en/_toctree.yml""" def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = defaultdict(_UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE_: List[Any] = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE_: List[Any] = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE_: Dict = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(_UpperCAmelCase ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : s["title"].lower() ) def A_ ( _UpperCAmelCase=False ): with open(_UpperCAmelCase , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_: int = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE_: Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE_: List[Any] = content[api_idx]["sections"] # Then to the model doc SCREAMING_SNAKE_CASE_: Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = api_doc[model_idx]["sections"] SCREAMING_SNAKE_CASE_: Optional[int] = [(idx, section) for idx, section in enumerate(_UpperCAmelCase ) if "sections" in section] SCREAMING_SNAKE_CASE_: List[Any] = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE_: List[str] = modality_doc["sections"] SCREAMING_SNAKE_CASE_: List[Any] = clean_model_doc_toc(_UpperCAmelCase ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE_: Optional[int] = True if overwrite: SCREAMING_SNAKE_CASE_: Union[str, Any] = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE_: str = model_doc SCREAMING_SNAKE_CASE_: str = api_doc with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(_UpperCAmelCase , allow_unicode=_UpperCAmelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : List[str] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
127
import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase : Optional[int] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A_ ( ): SCREAMING_SNAKE_CASE_: List[str] = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(_UpperCAmelCase , "words.txt" ) SCREAMING_SNAKE_CASE_: Dict = "" with open(_UpperCAmelCase ) as f: SCREAMING_SNAKE_CASE_: int = f.readline() SCREAMING_SNAKE_CASE_: Optional[int] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] SCREAMING_SNAKE_CASE_: List[Any] = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
127
1
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(_lowerCAmelCase ), magnitude * sin(_lowerCAmelCase )] return [magnitude * cos(radians(_lowerCAmelCase ) ), magnitude * sin(radians(_lowerCAmelCase ) )] def snake_case_ ( _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : float = 10**-1 ) -> bool: UpperCAmelCase : NDArray[floataa] = cross(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : float = sum(_lowerCAmelCase ) return abs(_lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works UpperCamelCase__: List[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) UpperCamelCase__: NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCamelCase__: Optional[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCamelCase__: int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCamelCase__: List[Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) UpperCamelCase__: List[str] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
23
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=5 ) -> Union[str, Any]: """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 _UpperCamelCase = torch.tensor(tokenizer.encode(__snake_case, add_special_tokens=__snake_case ) ).unsqueeze(0 ) # Batch size 1 _UpperCamelCase = model(__snake_case )[0] # The last hidden-state is the first element of the output tuple _UpperCamelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCamelCase = logits[0, masked_index, :] _UpperCamelCase = logits.softmax(dim=0 ) _UpperCamelCase , _UpperCamelCase = prob.topk(k=__snake_case, dim=0 ) _UpperCamelCase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__snake_case ) )] ) _UpperCamelCase = tokenizer.mask_token _UpperCamelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _UpperCamelCase = predicted_token_bpe.replace('''\u2581''', ''' ''' ) if " {0}".format(__snake_case ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__snake_case ), __snake_case ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__snake_case, __snake_case ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _a = CamembertTokenizer.from_pretrained("""camembert-base""") _a = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() _a = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
194
0
def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> List[str]: return base * power(_lowerCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') _lowerCAmelCase : Tuple = int(input('''Enter the base: ''').strip()) _lowerCAmelCase : Any = int(input('''Enter the exponent: ''').strip()) _lowerCAmelCase : List[Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowerCAmelCase : Union[str, Any] = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
354
from collections.abc import Sequence def __snake_case ( _lowerCAmelCase : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) A_ : Any = nums[0] for i in range(1 , len(_lowerCAmelCase ) ): A_ : Any = nums[i] A_ : List[str] = max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowerCAmelCase : List[Any] = int(input('''Enter number of elements : ''').strip()) _lowerCAmelCase : Dict = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
70
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase_ ( a): def snake_case__ ( self, __a): '''simple docstring''' return 0.0 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 512 _lowerCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCAmelCase : Optional[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : str = np.abs(np.fft.fft(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = 20 * np.logaa(_lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowerCAmelCase : List[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_lowerCamelCase ) plt.show() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : Optional[Any] = [1] + [0] * (size - 1) _lowerCAmelCase : str = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : Optional[Any] = np.angle(np.fft.fft(_lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_lowerCamelCase , -2 * pi ) ) plt.show()
36
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3_6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = embedding_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_hidden_groups __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertForPreTraining(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , sentence_order_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertForMaskedLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertForQuestionAnswering(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = AlbertForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = AlbertForTokenClassification(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = AlbertForMultipleChoice(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : Optional[int] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowercase : List[Any] = True def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False): __SCREAMING_SNAKE_CASE = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if return_labels: if model_class in get_values(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def snake_case_ ( self): __SCREAMING_SNAKE_CASE = AlbertModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained("""albert-base-v2""") __SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4))
100
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = parent def lowerCAmelCase_ ( self : Dict ): return {} def UpperCAmelCase_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' SCREAMING_SNAKE_CASE_ = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MarkupLMFeatureExtractionTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase_ ( self : List[str] ): # Initialize feature_extractor SCREAMING_SNAKE_CASE_ = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE_ = get_html_strings()[0] SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase ) # fmt: off SCREAMING_SNAKE_CASE_ = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] SCREAMING_SNAKE_CASE_ = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , _lowerCAmelCase ) self.assertEqual(encoding.xpaths , _lowerCAmelCase ) # Test batched SCREAMING_SNAKE_CASE_ = get_html_strings() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase ) # fmt: off SCREAMING_SNAKE_CASE_ = expected_nodes + [['My First Heading', 'My first paragraph.']] SCREAMING_SNAKE_CASE_ = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _lowerCAmelCase ) self.assertEqual(encoding.xpaths , _lowerCAmelCase )
350
import random from typing import Any def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> list[Any]: for _ in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
210
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowercase = logging.get_logger(__name__) __lowercase = '''T5Config''' class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''mt5''' UpperCAmelCase_ : Tuple = MTaConfig class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = '''mt5''' UpperCAmelCase_ : int = MTaConfig class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''mt5''' UpperCAmelCase_ : Union[str, Any] = MTaConfig
272
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } lowerCAmelCase_ = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def snake_case( __magic_name__ , __magic_name__=1 , __magic_name__=2_56 ) -> List[Any]: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' with open(__magic_name__ , '''r''' ) as f: return json.load(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' with open(__magic_name__ , '''w''' ) as f: json.dump(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Tuple: '''simple docstring''' os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase : List[Any] = os.path.join(__magic_name__ , '''tmp''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase : List[Any] = read_json(os.path.join(__magic_name__ , '''params.json''' ) ) lowercase : int = NUM_SHARDS[model_size] lowercase : str = params['''n_layers'''] lowercase : Optional[int] = params['''n_heads'''] lowercase : str = n_heads // num_shards lowercase : Dict = params['''dim'''] lowercase : int = dim // n_heads lowercase : List[str] = 1_0_0_0_0.0 lowercase : Optional[Any] = 1.0 / (base ** (torch.arange(0 , __magic_name__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowercase : Optional[Any] = params['''n_kv_heads'''] # for GQA / MQA lowercase : Union[str, Any] = n_heads_per_shard // num_key_value_heads lowercase : Any = dim // num_key_value_heads else: # compatibility with other checkpoints lowercase : Optional[Any] = n_heads lowercase : str = n_heads_per_shard lowercase : Any = dim # permute for sliced rotary def permute(__magic_name__ , __magic_name__=n_heads , __magic_name__=dim , __magic_name__=dim ): return w.view(__magic_name__ , dima // n_heads // 2 , 2 , __magic_name__ ).transpose(1 , 2 ).reshape(__magic_name__ , __magic_name__ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowercase : Tuple = torch.load(os.path.join(__magic_name__ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded lowercase : str = [ torch.load(os.path.join(__magic_name__ , F"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(__magic_name__ ) ] lowercase : Tuple = 0 lowercase : str = {'''weight_map''': {}} for layer_i in range(__magic_name__ ): lowercase : List[Any] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase : int = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowercase : List[Any] = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } lowercase : Tuple = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(__magic_name__ , __magic_name__ , __magic_name__ ) for i in range(__magic_name__ ) ] , dim=0 , ).reshape(__magic_name__ , __magic_name__ ) ) lowercase : Any = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( __magic_name__ , __magic_name__ , __magic_name__ ) for i in range(__magic_name__ ) ] , dim=0 , ).reshape(__magic_name__ , __magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ , ) lowercase : Any = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( __magic_name__ , __magic_name__ , __magic_name__ ) for i in range(__magic_name__ ) ] , dim=0 , ).reshape(__magic_name__ , __magic_name__ ) lowercase : int = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(__magic_name__ )] , dim=1 ) lowercase : str = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(__magic_name__ )] , dim=0 ) lowercase : Any = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(__magic_name__ )] , dim=1 ) lowercase : List[Any] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(__magic_name__ )] , dim=0 ) lowercase : List[Any] = inv_freq for k, v in state_dict.items(): lowercase : Tuple = filename param_count += v.numel() torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) lowercase : Tuple = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase : Optional[int] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: lowercase : Tuple = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(__magic_name__ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(__magic_name__ )] , dim=0 ), } for k, v in state_dict.items(): lowercase : Tuple = filename param_count += v.numel() torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) # Write configs lowercase : Tuple = {'''total_size''': param_count * 2} write_json(__magic_name__ , os.path.join(__magic_name__ , '''pytorch_model.bin.index.json''' ) ) lowercase : Tuple = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 lowercase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 2_56 lowercase : List[Any] = LlamaConfig( hidden_size=__magic_name__ , intermediate_size=compute_intermediate_size(__magic_name__ , __magic_name__ , __magic_name__ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=__magic_name__ , ) config.save_pretrained(__magic_name__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) lowercase : Dict = LlamaForCausalLM.from_pretrained(__magic_name__ , torch_dtype=torch.floataa , low_cpu_mem_usage=__magic_name__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(__magic_name__ , safe_serialization=__magic_name__ ) shutil.rmtree(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : str = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) lowercase : Tuple = tokenizer_class(__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=__magic_name__ , help='''Whether or not to save using `safetensors`.''' ) lowercase : List[str] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowercase : Any = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , __magic_name__ ) if __name__ == "__main__": main()
116
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowercase : str = [p / w for p, w in zip(__magic_name__ , __magic_name__ )] # Creating a copy of the list and sorting profit/weight in ascending order lowercase : str = sorted(__magic_name__ ) # declaring useful variables lowercase : Union[str, Any] = len(__magic_name__ ) lowercase : Optional[int] = 0 lowercase : Optional[int] = 0 lowercase : int = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowercase : Optional[int] = sorted_profit_by_weight[length - i - 1] lowercase : Union[str, Any] = profit_by_weight.index(__magic_name__ ) lowercase : Any = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowerCAmelCase_ = [int(x) for x in input('Input profits separated by spaces: ').split()] lowerCAmelCase_ = [int(x) for x in input('Input weights separated by spaces: ').split()] lowerCAmelCase_ = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
116
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[int] = "funnel" lowerCAmelCase_ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , a__=30_522 , a__=[4, 4, 4] , a__=None , a__=2 , a__=768 , a__=12 , a__=64 , a__=3_072 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.1 , a__=None , a__=1e-9 , a__="mean" , a__="relative_shift" , a__=True , a__=True , a__=True , **a__ , ) -> Optional[int]: '''simple docstring''' snake_case_ = vocab_size snake_case_ = block_sizes snake_case_ = [1] * len(a__ ) if block_repeats is None else block_repeats assert len(a__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case_ = num_decoder_layers snake_case_ = d_model snake_case_ = n_head snake_case_ = d_head snake_case_ = d_inner snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = initializer_range snake_case_ = initializer_std snake_case_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' snake_case_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' snake_case_ = attention_type snake_case_ = separate_cls snake_case_ = truncate_seq snake_case_ = pool_q_only super().__init__(**a__ ) @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
85
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1_000) -> int: '''simple docstring''' __UpperCamelCase : Tuple = 1 __UpperCamelCase : Any = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): __UpperCamelCase : Any = [] __UpperCamelCase : Union[str, Any] = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): __UpperCamelCase : Optional[int] = len(_lowerCamelCase) __UpperCamelCase : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
355
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 22) -> int: '''simple docstring''' __UpperCamelCase : Any = range(1 , _lowerCamelCase) __UpperCamelCase : int = range(1 , _lowerCamelCase) return sum( 1 for power in powers for base in bases if len(str(base**power)) == power) if __name__ == "__main__": print(f"{solution(10, 22) = }")
151
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A = logging.get_logger(__name__) __A = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class _snake_case ( a_ ): snake_case__ = "dpt" def __init__( self : List[str] , UpperCAmelCase : int=768 , UpperCAmelCase : Any=12 , UpperCAmelCase : str=12 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[Any]=1E-12 , UpperCAmelCase : List[str]=384 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=[2, 5, 8, 11] , UpperCAmelCase : Optional[int]="project" , UpperCAmelCase : Union[str, Any]=[4, 2, 1, 0.5] , UpperCAmelCase : int=[96, 192, 384, 768] , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Dict=-1 , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=0.4 , UpperCAmelCase : List[str]=255 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=[1, 1024, 24, 24] , UpperCAmelCase : Dict=[0, 1] , UpperCAmelCase : int=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) __lowerCamelCase : Optional[int] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __lowerCamelCase : Union[str, Any] = BitConfig(**UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): logger.info("Initializing the config with a `BiT` backbone." ) __lowerCamelCase : int = BitConfig(**UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Optional[Any] = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __lowerCamelCase : Optional[int] = backbone_featmap_shape __lowerCamelCase : List[str] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: __lowerCamelCase : List[str] = None __lowerCamelCase : int = None __lowerCamelCase : Any = [] __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : str = hidden_act __lowerCamelCase : Union[str, Any] = hidden_dropout_prob __lowerCamelCase : Optional[int] = attention_probs_dropout_prob __lowerCamelCase : Any = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : str = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Dict = num_channels __lowerCamelCase : List[Any] = qkv_bias __lowerCamelCase : int = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) __lowerCamelCase : List[str] = readout_type __lowerCamelCase : Optional[int] = reassemble_factors __lowerCamelCase : Tuple = neck_hidden_sizes __lowerCamelCase : Any = fusion_hidden_size __lowerCamelCase : str = head_in_index __lowerCamelCase : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowerCamelCase : List[str] = use_auxiliary_head __lowerCamelCase : List[Any] = auxiliary_loss_weight __lowerCamelCase : Dict = semantic_loss_ignore_index __lowerCamelCase : Union[str, Any] = semantic_classifier_dropout def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowerCamelCase : Dict = self.backbone_config.to_dict() __lowerCamelCase : int = self.__class__.model_type return output
135
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self._create_example_records() lowerCAmelCase__ : Tuple = Dataset.from_list(UpperCamelCase ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(UpperCamelCase ): self.assertDictEqual(UpperCamelCase , example_records[i] ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self._create_example_records() lowerCAmelCase__ : Optional[Any] = Dataset.from_list(UpperCamelCase ) lowerCAmelCase__ : int = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: # checks what happens with missing columns """simple docstring""" lowerCAmelCase__ : str = [{"""col_1""": 1}, {"""col_2""": """x"""}] lowerCAmelCase__ : int = Dataset.from_list(UpperCamelCase ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def _lowerCAmelCase ( self : str ) -> Dict: # checks if the type can be inferred from the second record """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] lowerCAmelCase__ : Optional[int] = Dataset.from_list(UpperCamelCase ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = Dataset.from_list([] ) self.assertEqual(len(UpperCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
242
0
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __snake_case = logging.get_logger(__name__) def a ( __a , __a , __a ) -> None: '''simple docstring''' UpperCamelCase__ :Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), f'''{len(UpperCamelCase__ )} != {len(UpperCamelCase__ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __snake_case = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __snake_case = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a ( __a , __a ) -> Tuple: '''simple docstring''' try: UpperCamelCase__ :List[Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(UpperCamelCase__ ) ) def a ( __a , __a ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(UpperCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a ( __a , __a = "student" , __a = None , __a = None , __a=False , __a=None , __a=None , **__a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(UpperCamelCase__ , UpperCamelCase__ ): AutoTokenizer.from_pretrained(UpperCamelCase__ ).save_pretrained(UpperCamelCase__ ) # purely for convenience UpperCamelCase__ :List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).eval() else: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), f'''teacher must be a model or string got type {type(UpperCamelCase__ )}''' UpperCamelCase__ :Any = teacher.config.to_diff_dict() try: UpperCamelCase__ , UpperCamelCase__ :int = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCamelCase__ :str = teacher_e if d is None: UpperCamelCase__ :List[str] = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCamelCase__ :Dict = teacher_e if d is None: UpperCamelCase__ :List[Any] = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(UpperCamelCase__ ) # Copy weights UpperCamelCase__ :Tuple = teacher.config_class(**UpperCamelCase__ ) UpperCamelCase__ :List[Any] = AutoModelForSeqaSeqLM.from_config(UpperCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCamelCase__ :Optional[int] = student.load_state_dict(teacher.state_dict() , strict=UpperCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = list(range(UpperCamelCase__ ) ), list(range(UpperCamelCase__ ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(UpperCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCamelCase__ :Union[str, Any] = pick_layers_to_copy(UpperCamelCase__ , UpperCamelCase__ ) if d_layers_to_copy is None: UpperCamelCase__ :Tuple = pick_layers_to_copy(UpperCamelCase__ , UpperCamelCase__ ) try: if hasattr( UpperCamelCase__ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , UpperCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , UpperCamelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , UpperCamelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , UpperCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , UpperCamelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , UpperCamelCase__ ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) UpperCamelCase__ :Tuple = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(UpperCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
367
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case = get_logger() __snake_case = None class lowercase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' super().__init__(features=UpperCamelCase_ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase_ )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ :Tuple = device if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Optional[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) UpperCamelCase__ :Optional[int] = str(jax.devices()[0] ) UpperCamelCase__ :Tuple = jnp_array_kwargs @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase_ ): device for device in jax.devices()} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase_ , axis=0 ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ :Optional[int] = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ :List[str] = {'''dtype''': jnp.intaa} else: UpperCamelCase__ :Union[str, Any] = {'''dtype''': jnp.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ :Optional[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase__ :str = np.asarray(UpperCamelCase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase_ , '''__array__''' ) and not isinstance(UpperCamelCase_ , jax.Array ): UpperCamelCase__ :int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) UpperCamelCase__ :Dict = self.recursive_tensorize(UpperCamelCase_ ) UpperCamelCase__ :str = self._consolidate(UpperCamelCase_ ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = self.python_features_decoder.decode_batch(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: UpperCamelCase__ :Optional[int] = self._consolidate(batch[column_name] ) return batch
219
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=99 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=36 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Union[str, Any]=6 , UpperCamelCase__ : int=37 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=512 , UpperCamelCase__ : str=16 , UpperCamelCase__ : int=2 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Dict=None , ) -> Any: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = embedding_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_hidden_groups __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowercase ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" __magic_name__ = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" __magic_name__ = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" __magic_name__ = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" __magic_name__ = self.num_choices __magic_name__ = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : int ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a__ = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) a__ = True def _lowercase ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" __magic_name__ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def _lowercase ( self : int ) -> int: """simple docstring""" __magic_name__ = AlbertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Dict ) -> Dict: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = AlbertModel.from_pretrained("""albert-base-v2""" ) __magic_name__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __magic_name__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __magic_name__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) __magic_name__ = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) )
88
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = """switch_transformers""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , a=3_2128 , a=768 , a=64 , a=2048 , a=64 , a=12 , a=3 , a=12 , a=3 , a=12 , a=8 , a=False , a=0.01 , a="float32" , a=False , a=32 , a=128 , a=0.1 , a=1e-6 , a=0.001 , a=0.001 , a=1.0 , a="relu" , a=True , a=False , a=True , a=0 , a=1 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : List[Any] = d_kv lowercase__ : Any = d_ff lowercase__ : Optional[int] = num_sparse_encoder_layers lowercase__ : Tuple = num_layers lowercase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase__ : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: lowercase__ : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase__ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase__ : int = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase__ : List[Any] = num_heads lowercase__ : Union[str, Any] = num_experts lowercase__ : str = expert_capacity lowercase__ : List[Any] = router_bias lowercase__ : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") lowercase__ : str = router_dtype lowercase__ : Optional[int] = router_ignore_padding_tokens lowercase__ : int = relative_attention_num_buckets lowercase__ : Optional[Any] = relative_attention_max_distance lowercase__ : List[str] = dropout_rate lowercase__ : str = layer_norm_epsilon lowercase__ : int = initializer_factor lowercase__ : int = feed_forward_proj lowercase__ : Dict = use_cache lowercase__ : int = add_router_probs lowercase__ : int = router_z_loss_coef lowercase__ : List[Any] = router_aux_loss_coef lowercase__ : int = self.feed_forward_proj.split('-') lowercase__ : Optional[int] = act_info[-1] lowercase__ : Dict = act_info[0] == 'gated' if len(a) > 1 and act_info[0] != "gated" or len(a) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[int] = 'gelu_new' super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , **a , )
214
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['GLPNFeatureExtractor'] _UpperCAmelCase = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 512, } _UpperCAmelCase = logging.get_logger(__name__) class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]="<pad>" , _snake_case : int="</s>" , _snake_case : Any="<unk>" , _snake_case : Union[str, Any]="<mask_2>" , _snake_case : Any="<mask_1>" , _snake_case : Optional[int]=None , _snake_case : List[str]=103 , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[int] , )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F'''additional_special_tokens should be of type {type(_snake_case )}, but is''' F''' {type(_snake_case )}''' ) __lowerCAmelCase : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __lowerCAmelCase : Dict = additional_special_tokens_extended else: __lowerCAmelCase : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] __lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Optional[Any] = mask_token_sent __lowerCAmelCase : Any = vocab_file __lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self : Dict )->Dict[str, int]: '''simple docstring''' __lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.__dict__.copy() __lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self : Any , _snake_case : str )->Any: '''simple docstring''' __lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Dict , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : Tuple , _snake_case : str )->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowerCAmelCase : Any = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def UpperCAmelCase__ ( self : List[Any] , _snake_case : int )->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowerCAmelCase : Optional[int] = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Optional[int] )->List[str]: '''simple docstring''' __lowerCAmelCase : Any = [] __lowerCAmelCase : Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __lowerCAmelCase : int = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Dict=False )->int: '''simple docstring''' return 1 def UpperCAmelCase__ ( self : Tuple , _snake_case : Tuple )->str: '''simple docstring''' __lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self : List[str] , _snake_case : List , _snake_case : Optional[List] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple=None )->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Optional[int] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
232
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase_ = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class lowercase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' a : List[str] = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__( self, __magic_name__, __magic_name__="<s>", __magic_name__="</s>", __magic_name__="</s>", __magic_name__="<s>", __magic_name__="<unk>", __magic_name__="<pad>", __magic_name__="<mask>", __magic_name__ = None, **__magic_name__, ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Optional[int] = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else mask_token UpperCamelCase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_, eos_token=lowercase_, unk_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, sp_model_kwargs=self.sp_model_kwargs, **lowercase_, ) UpperCamelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCamelCase__ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Union[str, Any] = len(self.sp_model ) + self.fairseq_offset UpperCamelCase__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : int = self.__dict__.copy() UpperCamelCase__ : Dict = None UpperCamelCase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self, __magic_name__ ) -> Dict: """simple docstring""" UpperCamelCase__ : List[str] = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): UpperCamelCase__ : List[str] = {} UpperCamelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] UpperCamelCase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_, token_ids_a=lowercase_, already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : int = [self.sep_token_id] UpperCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self, __magic_name__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowercase_, out_type=lowercase_ ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : int = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self, __magic_name__ ) -> Dict: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = ''''''.join(lowercase_ ).replace(lowercase_, ''' ''' ).strip() return out_string def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Optional[Any] = os.path.join( lowercase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_, '''wb''' ) as fi: UpperCamelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
201
"""simple docstring""" class A_ : """simple docstring""" def __init__( self :List[Any] , lowercase_ :int ) -> None: UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return index | (index + 1) @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :int ) -> None: UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(lowercase_ ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = self.get_next(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :int , lowercase_ :int ) -> int: right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(lowercase_ ) if left <= current_left: UpperCAmelCase = max(lowercase_ , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(lowercase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
78
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase_ = """\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ lowerCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ lowerCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[List[List[str]]] , UpperCamelCase : List[List[str]] , UpperCamelCase : int = 1 , UpperCamelCase : int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase_ , hypotheses=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ ) }
365
def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
260
0
"""simple docstring""" from __future__ import annotations def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
292
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Optional[int] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''vivit''' def __init__( self :Optional[Any] , __UpperCamelCase :Dict=2_24 , __UpperCamelCase :int=32 , __UpperCamelCase :Union[str, Any]=[2, 16, 16] , __UpperCamelCase :Optional[Any]=3 , __UpperCamelCase :Optional[Any]=7_68 , __UpperCamelCase :Any=12 , __UpperCamelCase :List[str]=12 , __UpperCamelCase :List[str]=30_72 , __UpperCamelCase :Any="gelu_fast" , __UpperCamelCase :List[Any]=0.0 , __UpperCamelCase :str=0.0 , __UpperCamelCase :Dict=0.02 , __UpperCamelCase :Optional[Any]=1e-06 , __UpperCamelCase :Dict=True , **__UpperCamelCase :Tuple , ): A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = num_frames A = tubelet_size A = num_channels A = qkv_bias super().__init__(**__UpperCamelCase )
292
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case = "mask2former" snake_case = ["swin"] snake_case = {"hidden_size": "hidden_dim"} def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = "relu" , _SCREAMING_SNAKE_CASE = 6 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 2048 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 255 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 2.0 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 1_2544 , _SCREAMING_SNAKE_CASE = 3.0 , _SCREAMING_SNAKE_CASE = 0.7_5 , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->Union[str, Any]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) A_ : Tuple = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_SCREAMING_SNAKE_CASE , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : str = backbone_config.pop('''model_type''' ) A_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(_SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) A_ : Optional[int] = backbone_config A_ : int = feature_size A_ : Tuple = mask_feature_size A_ : List[Any] = hidden_dim A_ : int = encoder_feedforward_dim A_ : Dict = activation_function A_ : Tuple = encoder_layers A_ : str = decoder_layers A_ : List[Any] = num_attention_heads A_ : str = dropout A_ : Optional[Any] = dim_feedforward A_ : Any = pre_norm A_ : Any = enforce_input_projection A_ : Optional[int] = common_stride A_ : List[Any] = ignore_value A_ : List[Any] = num_queries A_ : Optional[Any] = no_object_weight A_ : int = class_weight A_ : Any = mask_weight A_ : Union[str, Any] = dice_weight A_ : Any = train_num_points A_ : Tuple = oversample_ratio A_ : List[Any] = importance_sample_ratio A_ : Any = init_std A_ : Dict = init_xavier_std A_ : List[Any] = use_auxiliary_loss A_ : Optional[Any] = feature_strides A_ : List[str] = output_auxiliary_logits A_ : Dict = decoder_layers super().__init__(**_SCREAMING_SNAKE_CASE ) @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' return cls( backbone_config=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) A_ : Dict = self.backbone_config.to_dict() A_ : int = self.__class__.model_type return output
353
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = tempfile.mkdtemp() A_ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A_ : Tuple = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) A_ : int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Any = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) A_ : Optional[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.prepare_image_inputs() A_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : Union[str, Any] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : List[str] = '''lower newer''' A_ : Tuple = processor(text=_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = '''lower newer''' A_ : List[Any] = self.prepare_image_inputs() A_ : Any = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Tuple = processor.batch_decode(_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : int = '''lower newer''' A_ : Dict = self.prepare_image_inputs() A_ : List[Any] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
65
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ) -> int: A = '' A = '' A = [] A = 0 A = 256 A = 0 A = 0 A = 0 A = 0 def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[str] ) -> int: A = cva.imread(A_ ,0 ) A = copy.deepcopy(self.img ) A , A , A = plt.hist(self.img.ravel() ,256 ,[0, 256] ,label='x' ) A = np.sum(A_ ) for i in range(len(A_ ) ): A = x[i] / self.k self.sk += prk A = (self.L - 1) * self.sk if self.rem != 0: A = int(last % last ) A = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) A = int(np.ma.count(self.img ) / self.img[1].size ) A = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): A = self.img[j][i] if num != self.last_list[num]: A = self.last_list[num] cva.imwrite('output_data/output.jpg' ,self.img ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: plt.hist(self.img.ravel() ,256 ,[0, 256] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: cva.imshow('Output-Image' ,self.img ) cva.imshow('Input-Image' ,self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _lowercase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _lowercase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
74
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __lowerCamelCase ( a_ : str , a_ : Dict , a_ : Any , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = s.rsplit(a_ , a_ ) return new.join(a_ ) def __lowerCamelCase ( a_ : List[str] ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( a_ : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE :Optional[int] = {} __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __SCREAMING_SNAKE_CASE :Optional[Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: __SCREAMING_SNAKE_CASE :str = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.b''' , '''.bias''' , 1 ) __SCREAMING_SNAKE_CASE :Optional[Any] = value.float() return upgrade @torch.no_grad() def __lowerCamelCase ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int]=None , a_ : Dict=True ) -> Union[str, Any]: from dall_e import Encoder __SCREAMING_SNAKE_CASE :int = Encoder() if os.path.exists(a_ ): __SCREAMING_SNAKE_CASE :Dict = torch.load(a_ ) else: __SCREAMING_SNAKE_CASE :List[str] = torch.hub.load_state_dict_from_url(a_ ) if isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :List[str] = ckpt.state_dict() encoder.load_state_dict(a_ ) if config_path is not None: __SCREAMING_SNAKE_CASE :Any = FlavaImageCodebookConfig.from_pretrained(a_ ) else: __SCREAMING_SNAKE_CASE :Optional[int] = FlavaImageCodebookConfig() __SCREAMING_SNAKE_CASE :Tuple = FlavaImageCodebook(a_ ).eval() __SCREAMING_SNAKE_CASE :List[str] = encoder.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = upgrade_state_dict(a_ ) hf_model.load_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = hf_model.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = count_parameters(a_ ) __SCREAMING_SNAKE_CASE :Any = count_parameters(a_ ) assert torch.allclose(a_ , a_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(a_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
191
0
from math import factorial def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: float ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(lowerCAmelCase , lowerCAmelCase ) or not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) _UpperCAmelCase : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _UpperCAmelCase : Any = float(factorial(lowerCAmelCase ) ) coefficient /= factorial(lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
189
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: int=8 ) -> int: _UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a ( UpperCAmelCase ): def __init__( self , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) _UpperCAmelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: _UpperCAmelCase : Any = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase : Optional[int] = latents.to(A_ ) _UpperCAmelCase : Tuple = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Union[str, Any] = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCAmelCase : str = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Dict = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. _UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 100 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ): '''simple docstring''' _UpperCAmelCase : str = self._execution_device _UpperCAmelCase : Tuple = guidance_scale > 1.0 if isinstance(A_ , A_ ): _UpperCAmelCase : Union[str, Any] = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Dict = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Any = torch.cat(A_ , dim=0 ) _UpperCAmelCase : Optional[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Tuple = hint.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) _UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) _UpperCAmelCase : Dict = self.scheduler.timesteps _UpperCAmelCase : Union[str, Any] = self.movq.config.latent_channels _UpperCAmelCase , _UpperCAmelCase : Optional[int] = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent _UpperCAmelCase : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[Any] = {"image_embeds": image_embeds, "hint": hint} _UpperCAmelCase : Optional[int] = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = variance_pred.chunk(2 ) _UpperCAmelCase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing _UpperCAmelCase : Optional[Any] = self.movq.decode(A_ , force_not_quantize=A_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Union[str, Any] = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
189
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __A = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __A = logging.getLogger(__name__) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase=-1 ): '''simple docstring''' lowerCAmelCase__ :Dict = label_idx def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = mode.value lowerCAmelCase__ :List[str] = os.path.join(__UpperCAmelCase , F"{mode}.txt" ) lowerCAmelCase__ :List[str] = 1 lowerCAmelCase__ :Union[str, Any] = [] with open(__UpperCAmelCase , encoding='utf-8' ) as f: lowerCAmelCase__ :str = [] lowerCAmelCase__ :Dict = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=__UpperCAmelCase , labels=__UpperCAmelCase ) ) guid_index += 1 lowerCAmelCase__ :Tuple = [] lowerCAmelCase__ :List[str] = [] else: lowerCAmelCase__ :List[str] = line.split(' ' ) words.append(splits[0] ) if len(__UpperCAmelCase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=__UpperCAmelCase , labels=__UpperCAmelCase ) ) return examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__UpperCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ :Optional[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__UpperCAmelCase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path: with open(__UpperCAmelCase , 'r' ) as f: lowerCAmelCase__ :Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ :Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path: with open(__UpperCAmelCase , 'r' ) as f: lowerCAmelCase__ :str = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ :Optional[Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = mode.value lowerCAmelCase__ :Union[str, Any] = os.path.join(__UpperCAmelCase , F"{mode}.txt" ) lowerCAmelCase__ :Any = 1 lowerCAmelCase__ :Optional[Any] = [] with open(__UpperCAmelCase , encoding='utf-8' ) as f: for sentence in parse_incr(__UpperCAmelCase ): lowerCAmelCase__ :Dict = [] lowerCAmelCase__ :Dict = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=__UpperCAmelCase , labels=__UpperCAmelCase ) ) guid_index += 1 return examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = 0 for sentence in parse_incr(__UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = preds_list[example_id] lowerCAmelCase__ :Tuple = '' for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(__UpperCAmelCase ) example_id += 1 def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path: with open(__UpperCAmelCase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
293
1
from __future__ import annotations from collections.abc import MutableSequence class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) _A = list(lowerCAmelCase_ ) _A = degree def __add__( self , lowerCAmelCase_ ) -> Polynomial: if self.degree > polynomial_a.degree: _A = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: _A = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self , lowerCAmelCase_ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCAmelCase_ ) -> Polynomial: _A = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int | float: _A = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: _A = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self ) -> str: return self.__str__() def UpperCAmelCase ( self ) -> Polynomial: _A = [0] * self.degree for i in range(self.degree ): _A = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ = 0 ) -> Polynomial: _A = [0] * (self.degree + 2) _A = constant for i in range(self.degree + 1 ): _A = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self , lowerCAmelCase_ ) -> bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCAmelCase_ ) -> bool: return not self.__eq__(lowerCAmelCase_ )
81
import colorsys from PIL import Image # type: ignore def snake_case ( snake_case__ :float , snake_case__ :float , snake_case__ :int) -> float: _A = x _A = y for step in range(snake_case__): # noqa: B007 _A = a * a - b * b + x _A = 2 * a * b + y _A = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1)) def snake_case ( snake_case__ :int = 800 , snake_case__ :int = 600 , snake_case__ :float = -0.6 , snake_case__ :float = 0 , snake_case__ :float = 3.2 , snake_case__ :int = 50 , snake_case__ :bool = True , ) -> Image.Image: _A = Image.new("""RGB""" , (image_width, image_height)) _A = img.load() # loop through the image-coordinates for image_x in range(snake_case__): for image_y in range(snake_case__): # determine the figure-coordinates based on the image-coordinates _A = figure_width / image_width * image_height _A = figure_center_x + (image_x / image_width - 0.5) * figure_width _A = figure_center_y + (image_y / image_height - 0.5) * figure_height _A = get_distance(snake_case__ , snake_case__ , snake_case__) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A = get_color_coded_rgb(snake_case__) else: _A = get_black_and_white_rgb(snake_case__) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _SCREAMING_SNAKE_CASE = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
81
1
import copy import re class A : '''simple docstring''' __lowerCamelCase : Dict = '''hp''' __lowerCamelCase : List[str] = {} __lowerCamelCase : Any = None @classmethod def a_ ( cls : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any ) -> List[str]: """simple docstring""" A__ = prefix A__ = defaults cls.build_naming_info() @staticmethod def a_ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> str: """simple docstring""" if len(__lowerCAmelCase ) == 0: return "" A__ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowerCAmelCase ) + 1 ): A__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowerCAmelCase : List[str] ): A__ = """""" while integer != 0: A__ = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s A__ = 0 while True: A__ = word + """#""" + int_to_alphabetic(__lowerCAmelCase ) if sword in info["reverse_short_word"]: continue else: A__ = sword break A__ = short_word A__ = word return short_word @staticmethod def a_ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" A__ = param_name.split("""_""" ) A__ = [TrialShortNamer.shortname_for_word(__lowerCAmelCase , __lowerCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A__ = ["""""", """_"""] for separator in separators: A__ = separator.join(__lowerCAmelCase ) if shortname not in info["reverse_short_param"]: A__ = shortname A__ = param_name return shortname return param_name @staticmethod def a_ ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" A__ = TrialShortNamer.shortname_for_key(__lowerCAmelCase , __lowerCAmelCase ) A__ = short_name A__ = param_name @classmethod def a_ ( cls : Dict ) -> Tuple: """simple docstring""" if cls.NAMING_INFO is not None: return A__ = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } A__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowerCAmelCase , __lowerCAmelCase ) A__ = info @classmethod def a_ ( cls : str , __lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None A__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A__ = cls.NAMING_INFO["""short_param"""][k] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = 1 if v else 0 A__ = """""" if isinstance(__lowerCAmelCase , (int, float) ) else """-""" A__ = f'{key}{sep}{v}' name.append(__lowerCAmelCase ) return "_".join(__lowerCAmelCase ) @classmethod def a_ ( cls : List[str] , __lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" A__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": A__ = [] else: A__ = repr.split("""_""" ) A__ = {} for value in values: if "-" in value: A__ , A__ = value.split("""-""" ) else: A__ = re.sub("""[0-9.]""" , """""" , __lowerCAmelCase ) A__ = float(re.sub("""[^0-9.]""" , """""" , __lowerCAmelCase ) ) A__ = cls.NAMING_INFO["""reverse_short_param"""][p_k] A__ = p_v for k in cls.DEFAULTS: if k not in parameters: A__ = cls.DEFAULTS[k] return parameters
274
from sklearn.metrics import fa_score import datasets A : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A : List[Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def a_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Any="binary" , __lowerCAmelCase : Optional[int]=None ) -> List[Any]: """simple docstring""" A__ = fa_score( __lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase , pos_label=__lowerCAmelCase , average=__lowerCAmelCase , sample_weight=__lowerCAmelCase ) return {"f1": float(__lowerCAmelCase ) if score.size == 1 else score}
274
1
class lowerCamelCase : """simple docstring""" def __init__( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = {} def __A ( self : Tuple ) -> None: print(self.vertex ) for i in self.vertex: print(__magic_name__ , " -> " , " -> ".join([str(__magic_name__ ) for j in self.vertex[i]] ) ) def __A ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__magic_name__ ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def __A ( self : List[Any] ) -> None: # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__magic_name__ , __magic_name__ ) def __A ( self : Tuple , __magic_name__ : int , __magic_name__ : list ) -> None: # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(__magic_name__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__magic_name__ , __magic_name__ ) if __name__ == "__main__": A : Tuple = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
352
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
0
from __future__ import annotations from dataclasses import dataclass @dataclass class A__ : _UpperCAmelCase :float _UpperCAmelCase :TreeNode | None = None _UpperCAmelCase :TreeNode | None = None def A_ ( _lowerCAmelCase ) -> bool: # Validation def is_valid_tree(_lowerCAmelCase ) -> bool: if node is None: return True if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_lowerCAmelCase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _lowerCAmelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _lowerCAmelCase ) ) return is_binary_search_tree_recursive_check(_lowerCAmelCase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __A = logging.getLogger(__name__) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase=-1 ): '''simple docstring''' lowerCAmelCase__ :Dict = label_idx def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = mode.value lowerCAmelCase__ :List[str] = os.path.join(__UpperCAmelCase , F"{mode}.txt" ) lowerCAmelCase__ :List[str] = 1 lowerCAmelCase__ :Union[str, Any] = [] with open(__UpperCAmelCase , encoding='utf-8' ) as f: lowerCAmelCase__ :str = [] lowerCAmelCase__ :Dict = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=__UpperCAmelCase , labels=__UpperCAmelCase ) ) guid_index += 1 lowerCAmelCase__ :Tuple = [] lowerCAmelCase__ :List[str] = [] else: lowerCAmelCase__ :List[str] = line.split(' ' ) words.append(splits[0] ) if len(__UpperCAmelCase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=__UpperCAmelCase , labels=__UpperCAmelCase ) ) return examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__UpperCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ :Optional[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__UpperCAmelCase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path: with open(__UpperCAmelCase , 'r' ) as f: lowerCAmelCase__ :Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ :Union[str, Any] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path: with open(__UpperCAmelCase , 'r' ) as f: lowerCAmelCase__ :str = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ :Optional[Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = mode.value lowerCAmelCase__ :Union[str, Any] = os.path.join(__UpperCAmelCase , F"{mode}.txt" ) lowerCAmelCase__ :Any = 1 lowerCAmelCase__ :Optional[Any] = [] with open(__UpperCAmelCase , encoding='utf-8' ) as f: for sentence in parse_incr(__UpperCAmelCase ): lowerCAmelCase__ :Dict = [] lowerCAmelCase__ :Dict = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=__UpperCAmelCase , labels=__UpperCAmelCase ) ) guid_index += 1 return examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = 0 for sentence in parse_incr(__UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = preds_list[example_id] lowerCAmelCase__ :Tuple = '' for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(__UpperCAmelCase ) example_id += 1 def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if path: with open(__UpperCAmelCase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
293
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE__ = 1 if upper_limit > 0: SCREAMING_SNAKE_CASE__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__UpperCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: __lowerCamelCase : Union[str, Any] = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
204
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) for i in range(length - 1 ): SCREAMING_SNAKE_CASE__ = i for k in range(i + 1 , __UpperCamelCase ): if collection[k] < collection[least]: SCREAMING_SNAKE_CASE__ = k if least != i: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (collection[i], collection[least]) return collection if __name__ == "__main__": __lowerCamelCase : Any = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
204
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ ) -> int: """simple docstring""" if not nums: return 0 UpperCamelCase = nums[0] UpperCamelCase = 0 for num in nums[1:]: UpperCamelCase , UpperCamelCase = ( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if not nums: return 0 SCREAMING_SNAKE_CASE__ : Dict =nums[0] SCREAMING_SNAKE_CASE__ : Optional[int] =0 for num in nums[1:]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( max_excluding + num, max(UpperCamelCase__, UpperCamelCase__ ), ) return max(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
152
0
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = len(lowerCamelCase) for i in range(1, lowerCamelCase): __lowerCAmelCase = collection[i] __lowerCAmelCase = 0 __lowerCAmelCase = i - 1 while low <= high: __lowerCAmelCase = (low + high) // 2 if val < collection[mid]: __lowerCAmelCase = mid - 1 else: __lowerCAmelCase = mid + 1 for j in range(lowerCamelCase, lowerCamelCase, -1): __lowerCAmelCase = collection[j - 1] __lowerCAmelCase = val return collection if __name__ == "__main__": _UpperCAmelCase : Any = input("""Enter numbers separated by a comma:\n""").strip() _UpperCAmelCase : int = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
355
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = torch.nn.Linear(1_0 , 1_0) __SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , 0.1) __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE = accelerator.prepare(lowerCAmelCase__) try: pickle.loads(pickle.dumps(lowerCAmelCase__)) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}") AcceleratorState._reset_state()
100
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase_ : Union[str, Any] = pytest.mark.integration UpperCAmelCase_ : List[Any] = {'comet'} UpperCAmelCase_ : int = importlib.util.find_spec('fairseq') is not None UpperCAmelCase_ : Optional[Any] = {'code_eval'} UpperCAmelCase_ : Optional[int] = os.name == 'nt' UpperCAmelCase_ : Dict = {'bertscore', 'frugalscore', 'perplexity'} UpperCAmelCase_ : Dict = importlib.util.find_spec('transformers') is not None def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _snake_case , _snake_case , _snake_case ) @local class lowercase__ ( parameterized.TestCase ): '''simple docstring''' A_ : Optional[int] = {} A_ : Union[str, Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : str = """[...]""" _SCREAMING_SNAKE_CASE : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __snake_case ) ).module_path ) _SCREAMING_SNAKE_CASE : Optional[int] = datasets.load.import_main_class(metric_module.__name__ , dataset=__snake_case ) # check parameters _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__snake_case , metric_module.__name__ ): with self.use_local_metrics(): try: _SCREAMING_SNAKE_CASE : int = doctest.testmod(__snake_case , verbose=__snake_case , raise_on_error=__snake_case ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = """[...]""" _SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __snake_case ) ).module_path ) # run doctest with self.use_local_metrics(): _SCREAMING_SNAKE_CASE : List[str] = doctest.testmod(__snake_case , verbose=__snake_case , raise_on_error=__snake_case ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase_ ( self , __snake_case , __snake_case ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__snake_case ): yield else: yield @contextmanager def UpperCAmelCase_ ( self ): def load_local_metric(__snake_case , *__snake_case , **__snake_case ): return load_metric(os.path.join("""metrics""" , __snake_case ) , *__snake_case , **__snake_case ) with patch("""datasets.load_metric""" ) as mock_load_metric: _SCREAMING_SNAKE_CASE : Union[str, Any] = load_local_metric yield @classmethod def UpperCAmelCase_ ( cls , __snake_case ): def wrapper(__snake_case ): _SCREAMING_SNAKE_CASE : Any = contextmanager(__snake_case ) _SCREAMING_SNAKE_CASE : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowercase__ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _SCREAMING_SNAKE_CASE : Any = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _SCREAMING_SNAKE_CASE : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE__ ): class lowercase__ : '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case , *__snake_case , **__snake_case ): assert len(__snake_case ) == 2 _SCREAMING_SNAKE_CASE : Dict = [0.19, 0.92] return scores, sum(__snake_case ) / len(__snake_case ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _SCREAMING_SNAKE_CASE : Any = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _SCREAMING_SNAKE_CASE : List[str] = load_from_checkpoint yield def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _SCREAMING_SNAKE_CASE : List[str] = """ERROR""" _SCREAMING_SNAKE_CASE : Tuple = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(SCREAMING_SNAKE_CASE__ , match=re.escape(SCREAMING_SNAKE_CASE__ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE__ )
200
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase__ : str , lowercase__ : List[Any]=7 , lowercase__ : Optional[int]=3 , lowercase__ : Tuple=18 , lowercase__ : Optional[int]=30 , lowercase__ : int=400 , lowercase__ : Union[str, Any]=True , lowercase__ : Tuple=None , lowercase__ : int=True , ): '''simple docstring''' lowerCAmelCase__ = size if size is not None else {'height': 18, 'width': 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize def __snake_case ( self : Dict): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = ImageGPTImageProcessor if is_vision_available() else None def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = ImageGPTImageProcessingTester(self) @property def __snake_case ( self : str): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , 'clusters')) self.assertTrue(hasattr(lowercase__ , 'do_resize')) self.assertTrue(hasattr(lowercase__ , 'size')) self.assertTrue(hasattr(lowercase__ , 'do_normalize')) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict) lowerCAmelCase__ = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(lowercase__ , 'image_processor.json') image_processor_first.to_json_file(lowercase__) lowerCAmelCase__ = self.image_processing_class.from_json_file(lowercase__).to_dict() lowerCAmelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) lowerCAmelCase__ = self.image_processing_class.from_pretrained(lowercase__).to_dict() lowerCAmelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('ImageGPT requires clusters at initialization') def __snake_case ( self : Union[str, Any]): '''simple docstring''' pass def __lowerCamelCase ( ): lowerCAmelCase__ = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) lowerCAmelCase__ = Image.open(dataset[4]['file'] ) lowerCAmelCase__ = Image.open(dataset[5]['file'] ) lowerCAmelCase__ = [imagea, imagea] return images @require_vision @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small') lowerCAmelCase__ = prepare_images() # test non-batched lowerCAmelCase__ = image_processing(images[0] , return_tensors='pt') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_024)) lowerCAmelCase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched lowerCAmelCase__ = image_processing(lowercase__ , return_tensors='pt') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_024)) lowerCAmelCase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
119
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = None UpperCAmelCase_ = 1 UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = None UpperCAmelCase_ = None def __snake_case ( self : Dict): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
119
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''lilt''' def __init__( self : Tuple , lowerCAmelCase__ : Tuple=3_0_5_2_2 , lowerCAmelCase__ : int=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : Optional[Any]=1e-12 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : int="absolute" , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[int]=1_0_2_4 , **lowerCAmelCase__ : Dict , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : int = position_embedding_type _UpperCAmelCase : Any = classifier_dropout _UpperCAmelCase : List[Any] = channel_shrink_ratio _UpperCAmelCase : Optional[int] = max_ad_position_embeddings
145
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase : str = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase : Any = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss _UpperCAmelCase : Dict = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
145
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : int = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self :List[str] , a :Any , a :Tuple=7 , a :Any=3 , a :Tuple=1_8 , a :List[str]=3_0 , a :List[str]=4_0_0 , a :Dict=None , a :Tuple=True , a :List[str]=True , a :Any=None , ) -> List[Any]: __UpperCamelCase : int = size if size is not None else {"height": 2_0, "width": 2_0} __UpperCamelCase : Dict = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : str = num_channels __UpperCamelCase : Optional[Any] = image_size __UpperCamelCase : str = min_resolution __UpperCamelCase : Tuple = max_resolution __UpperCamelCase : int = size __UpperCamelCase : Any = do_normalize __UpperCamelCase : int = do_convert_rgb __UpperCamelCase : int = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __UpperCamelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCamelCase ( self :Optional[Any] ) -> int: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCamelCase ( self :Dict ) -> Optional[int]: __UpperCamelCase : List[str] = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" __UpperCamelCase : Dict = Image.open(requests.get(a , stream=a ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = PixaStructImageProcessor if is_vision_available() else None def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : Dict = PixaStructImageProcessingTester(self ) @property def _lowerCamelCase ( self :Any ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self :Optional[int] ) -> Optional[Any]: __UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_convert_rgb" ) ) def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : str = self.image_processor_tester.prepare_dummy_image() __UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) __UpperCamelCase : List[Any] = 2_0_4_8 __UpperCamelCase : str = image_processor(a , return_tensors="pt" , max_patches=a ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def _lowerCamelCase ( self :Union[str, Any] ) -> List[Any]: # Initialize image_processor __UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input __UpperCamelCase : Optional[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCamelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCamelCase : List[str] = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCamelCase ( self :Union[str, Any] ) -> List[str]: # Initialize image_processor __UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input __UpperCamelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 __UpperCamelCase : Any = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(a ): __UpperCamelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches __UpperCamelCase : List[Any] = "Hello" __UpperCamelCase : List[str] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a , header_text=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCamelCase : List[str] = image_processor( a , return_tensors="pt" , max_patches=a , header_text=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCamelCase ( self :Union[str, Any] ) -> Any: # Initialize image_processor __UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) __UpperCamelCase : Dict = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCamelCase : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCamelCase : str = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCamelCase ( self :Tuple ) -> Union[str, Any]: # Initialize image_processor __UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input __UpperCamelCase : Dict = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCamelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCamelCase : Tuple = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = PixaStructImageProcessor if is_vision_available() else None def _lowerCamelCase ( self :Union[str, Any] ) -> int: __UpperCamelCase : Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) __UpperCamelCase : Union[str, Any] = 3 @property def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self :Tuple ) -> int: __UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_convert_rgb" ) ) def _lowerCamelCase ( self :Tuple ) -> str: # Initialize image_processor __UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input __UpperCamelCase : Tuple = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCamelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCamelCase : int = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
362
import qiskit def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 2) -> qiskit.result.counts.Counts: '''simple docstring''' __UpperCamelCase : List[str] = qubits # Using Aer's simulator __UpperCamelCase : int = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register __UpperCamelCase : List[str] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 , _lowerCamelCase): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCamelCase) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCamelCase)) , list(range(_lowerCamelCase))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __UpperCamelCase : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_000) return job.result().get_counts(_lowerCamelCase) if __name__ == "__main__": print(f"Total count for various states are: {quantum_entanglement(3)}")
151
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __UpperCAmelCase : Any = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __UpperCAmelCase : List[Any] = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __UpperCAmelCase : int = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : int ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def UpperCAmelCase__ ( self : Optional[int] , A : int , A : Any , A : int = CHRF.CHAR_ORDER , A : int = CHRF.WORD_ORDER , A : int = CHRF.BETA , A : bool = False , A : bool = False , A : bool = False , ): __snake_case: Any = len(references[0] ) if any(len(A ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __snake_case: Any = [[refs[i] for refs in references] for i in range(A )] __snake_case: int = CHRF(A , A , A , A , A , A ) __snake_case: List[Any] = sb_chrf.corpus_score(A , A ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
111
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : str = Dict[str, Any] __UpperCAmelCase : int = List[Prediction] @add_end_docstrings(__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , *A : Optional[int] , **A : Optional[int] ): super().__init__(*A , **A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase__ ( self : List[str] , **A : Tuple ): __snake_case: List[str] = {} if "threshold" in kwargs: __snake_case: Optional[Any] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : int , *A : Optional[Any] , **A : Tuple ): return super().__call__(*A , **A ) def UpperCAmelCase__ ( self : Optional[int] , A : str ): __snake_case: Optional[Any] = load_image(A ) __snake_case: Dict = torch.IntTensor([[image.height, image.width]] ) __snake_case: str = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __snake_case: Optional[Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __snake_case: Any = target_size return inputs def UpperCAmelCase__ ( self : Optional[int] , A : Dict ): __snake_case: int = model_inputs.pop("""target_size""" ) __snake_case: int = self.model(**A ) __snake_case: Any = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __snake_case: Optional[int] = model_inputs["""bbox"""] return model_outputs def UpperCAmelCase__ ( self : List[Any] , A : Optional[int] , A : Union[str, Any]=0.9 ): __snake_case: Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __snake_case , __snake_case: Union[str, Any] = target_size[0].tolist() def unnormalize(A : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) __snake_case , __snake_case: Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __snake_case: List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __snake_case: int = [unnormalize(A ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __snake_case: int = ["""score""", """label""", """box"""] __snake_case: List[Any] = [dict(zip(A , A ) ) for vals in zip(scores.tolist() , A , A ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __snake_case: Tuple = self.image_processor.post_process_object_detection(A , A , A ) __snake_case: Optional[Any] = raw_annotations[0] __snake_case: int = raw_annotation["""scores"""] __snake_case: int = raw_annotation["""labels"""] __snake_case: Optional[Any] = raw_annotation["""boxes"""] __snake_case: Union[str, Any] = scores.tolist() __snake_case: List[str] = [self.model.config.idalabel[label.item()] for label in labels] __snake_case: List[str] = [self._get_bounding_box(A ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __snake_case: List[Any] = ["""score""", """label""", """box"""] __snake_case: Dict = [ dict(zip(A , A ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCAmelCase__ ( self : Optional[Any] , A : "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __snake_case , __snake_case , __snake_case , __snake_case: Union[str, Any] = box.int().tolist() __snake_case: Optional[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
111
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = git.Repo(search_parent_directories=UpperCAmelCase__ ) A_ = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(UpperCAmelCase__, """git_log.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=4 ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: if params.n_gpu <= 0: A_ = 0 A_ = -1 A_ = True A_ = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 A_ = int(os.environ["""WORLD_SIZE"""] ) A_ = int(os.environ["""N_GPU_NODE"""] ) A_ = int(os.environ["""RANK"""] ) # number of nodes / node ID A_ = params.world_size // params.n_gpu_per_node A_ = params.global_rank // params.n_gpu_per_node A_ = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 A_ = 1 A_ = 0 A_ = 0 A_ = 0 A_ = 1 A_ = 1 A_ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ = params.node_id == 0 and params.local_rank == 0 A_ = params.n_nodes > 1 # summary A_ = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""", backend="""nccl""", ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
101
1
"""simple docstring""" import datasets lowerCAmelCase_ = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' lowerCAmelCase_ = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' lowerCAmelCase_ = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )}
16
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( lowerCamelCase ): lowercase = (DDPMParallelScheduler,) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def A__ ( self ) -> List[str]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = self.dummy_sample_deter + 0.1 UpperCamelCase = self.dummy_sample_deter - 0.1 UpperCamelCase = samplea.shape[0] UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
321
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class _lowerCAmelCase ( __a ): """simple docstring""" __magic_name__ :Dict = """lilt""" def __init__( self , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=None , __UpperCAmelCase=4 , __UpperCAmelCase=1_0_2_4 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase__ :str = vocab_size lowerCAmelCase__ :Optional[Any] = hidden_size lowerCAmelCase__ :int = num_hidden_layers lowerCAmelCase__ :Tuple = num_attention_heads lowerCAmelCase__ :Dict = hidden_act lowerCAmelCase__ :Dict = intermediate_size lowerCAmelCase__ :Dict = hidden_dropout_prob lowerCAmelCase__ :Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :Any = type_vocab_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :str = layer_norm_eps lowerCAmelCase__ :Optional[int] = position_embedding_type lowerCAmelCase__ :List[str] = classifier_dropout lowerCAmelCase__ :int = channel_shrink_ratio lowerCAmelCase__ :Any = max_ad_position_embeddings
369
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( a , a ): """simple docstring""" __magic_name__ :int = """swin""" __magic_name__ :Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=9_6 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 1_2, 2_4] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=3_2 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :Any = image_size lowerCAmelCase__ :List[Any] = patch_size lowerCAmelCase__ :Optional[int] = num_channels lowerCAmelCase__ :str = embed_dim lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :List[str] = len(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = num_heads lowerCAmelCase__ :List[Any] = window_size lowerCAmelCase__ :List[Any] = mlp_ratio lowerCAmelCase__ :int = qkv_bias lowerCAmelCase__ :Optional[int] = hidden_dropout_prob lowerCAmelCase__ :int = attention_probs_dropout_prob lowerCAmelCase__ :List[Any] = drop_path_rate lowerCAmelCase__ :Any = hidden_act lowerCAmelCase__ :Dict = use_absolute_embeddings lowerCAmelCase__ :int = layer_norm_eps lowerCAmelCase__ :Dict = initializer_range lowerCAmelCase__ :int = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ :str = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) lowerCAmelCase__ :str = ['stem'] + [F"stage{idx}" for idx in range(1 , len(__UpperCAmelCase ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :int = version.parse("""1.11""" ) @property def snake_case ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case ( self ): '''simple docstring''' return 1E-4
254
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : Tuple ='pixel_values' lowercase : Any =False lowercase : int =TimmBackboneConfig def __init__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, '''timm''' ) super().__init__(lowerCAmelCase ) lowerCamelCase_ =config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(lowerCAmelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowerCamelCase_ =getattr(lowerCAmelCase, '''use_pretrained_backbone''', lowerCAmelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase_ =config.out_indices if getattr(lowerCAmelCase, '''out_indices''', lowerCAmelCase ) is not None else (-1,) lowerCamelCase_ =timm.create_model( config.backbone, pretrained=lowerCAmelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCAmelCase, **lowerCAmelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase_ =self._backbone.return_layers lowerCamelCase_ ={layer['''module''']: str(lowerCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase ) @classmethod def lowercase__ ( cls, lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase_ =kwargs.pop('''config''', TimmBackboneConfig() ) lowerCamelCase_ =kwargs.pop('''use_timm_backbone''', lowerCAmelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowerCamelCase_ =kwargs.pop('''num_channels''', config.num_channels ) lowerCamelCase_ =kwargs.pop('''features_only''', config.features_only ) lowerCamelCase_ =kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowerCamelCase_ =kwargs.pop('''out_indices''', config.out_indices ) lowerCamelCase_ =TimmBackboneConfig( backbone=lowerCAmelCase, num_channels=lowerCAmelCase, features_only=lowerCAmelCase, use_pretrained_backbone=lowerCAmelCase, out_indices=lowerCAmelCase, ) return super()._from_config(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" pass def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase_ =self._all_layers lowerCamelCase_ =self._backbone(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =self._return_layers lowerCamelCase_ =tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase_ =self._backbone(lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =None lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =tuple(lowerCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCamelCase_ =(feature_maps,) if output_hidden_states: lowerCamelCase_ =output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase, hidden_states=lowerCAmelCase, attentions=lowerCAmelCase )
75
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
241
0
'''simple docstring''' import math from collections.abc import Callable def _lowerCamelCase ( lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float , lowerCamelCase_ : float ): """simple docstring""" UpperCAmelCase_ : float = xa UpperCAmelCase_ : float = xa while True: if x_n == x_na or function(lowerCamelCase_ ) == function(lowerCamelCase_ ): raise ZeroDivisionError('float division by zero, could not find root' ) UpperCAmelCase_ : float = x_na - ( function(lowerCamelCase_ ) / ((function(lowerCamelCase_ ) - function(lowerCamelCase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCAmelCase_ : List[Any] = x_na UpperCAmelCase_ : Dict = x_na def _lowerCamelCase ( lowerCamelCase_ : float ): """simple docstring""" return math.pow(lowerCamelCase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
"""simple docstring""" import itertools import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = 2 while True: if is_prime(snake_case__ ): yield num num += 1 def UpperCAmelCase__ (snake_case__ : int = 1_00_01 ): """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , snake_case__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
64
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" if len(snake_case__ ) < k or k < 0: raise ValueError("""Invalid Input""" ) _snake_case : Optional[int] = sum(array[:k] ) for i in range(len(snake_case__ ) - k ): _snake_case : Optional[Any] = current_sum - array[i] + array[i + k] _snake_case : List[str] = max(snake_case__ , snake_case__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A_ = [randint(-10_00, 10_00) for i in range(1_00)] A_ = randint(0, 1_10) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
64
1
"""simple docstring""" import random def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: __lowerCAmelCase : Union[str, Any] = a[left_index] __lowerCAmelCase : Union[str, Any] = left_index + 1 for j in range(left_index + 1 ,__snake_case ): if a[j] < pivot: __lowerCAmelCase : Any = a[i], a[j] i += 1 __lowerCAmelCase : Any = a[i - 1], a[left_index] return i - 1 def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: if left < right: __lowerCAmelCase : List[Any] = random.randint(__snake_case ,right - 1 ) __lowerCAmelCase : List[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowerCAmelCase : Tuple = partition(__snake_case ,__snake_case ,__snake_case ) quick_sort_random( __snake_case ,__snake_case ,__snake_case ) # recursive quicksort to the left of the pivot point quick_sort_random( __snake_case ,pivot_index + 1 ,__snake_case ) # recursive quicksort to the right of the pivot point def _lowercase ( ) -> Any: __lowerCAmelCase : Any = input("Enter numbers separated by a comma:\n" ).strip() __lowerCAmelCase : List[Any] = [int(__snake_case ) for item in user_input.split("," )] quick_sort_random(__snake_case ,0 ,len(__snake_case ) ) print(__snake_case ) if __name__ == "__main__": main()
362
"""simple docstring""" __snake_case : Any = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __snake_case : Union[str, Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __snake_case : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __snake_case : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __snake_case : Dict = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __snake_case : Any = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __snake_case : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __snake_case : str = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
58
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : list[list[int]] = [] create_all_state(1 , lowercase__ , lowercase__ , [] , lowercase__ ) return result def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> str: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(lowercase__ , total_number - level + 2 ): current_list.append(lowercase__ ) create_all_state(i + 1 , lowercase__ , level - 1 , lowercase__ , lowercase__ ) current_list.pop() def __lowerCamelCase ( __UpperCamelCase ) -> Optional[int]: """simple docstring""" for i in total_list: print(*lowercase__ ) if __name__ == "__main__": lowercase__ = 4 lowercase__ = 2 lowercase__ = generate_all_combinations(n, k) print_all_state(total_list)
241
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.normalize(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(lowercase__ ) return torch.mm(lowercase__ , normalized_text_embeds.t() ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig SCREAMING_SNAKE_CASE__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self :str , lowerCAmelCase__ :CLIPConfig ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModel(config.vision_config ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase__ ) @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : List[str] = special_cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Any = self.special_care_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : List[str] = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 __SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = special_care * 0.01 __SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
0
def A__ ( __lowerCamelCase = 1, __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 for divide_by_number in range(__lowerCamelCase, digit + 1 ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = divide_by_number else: has_been_divided.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
257
__UpperCAmelCase = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__lowerCamelCase ): if (place + 1 < len(__lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = divmod(__lowerCamelCase, __lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
257
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : Optional[int] ) -> List[str]: UpperCamelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): UpperCamelCase : Any = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): UpperCamelCase : Any = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase : Optional[int] = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(snake_case__ )-1}""" ) if "norm" in key: UpperCamelCase : List[Any] = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase : List[str] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] UpperCamelCase : List[str] = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(snake_case__ )-1}""" ) if "layer_norm1" in key: UpperCamelCase : List[Any] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase : Any = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase : str = key[key.find('block' ) + len('block' )] UpperCamelCase : str = key.replace(F"""block{idx}""" , F"""block.{int(snake_case__ )-1}""" ) if "attn.q" in key: UpperCamelCase : Optional[int] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase : int = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase : str = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase : Tuple = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase : Union[str, Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase : Any = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase : Optional[int] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase : Dict = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase : Optional[Any] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(snake_case__ )-1}""" ) if "bot_conv" in key: UpperCamelCase : Dict = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: UpperCamelCase : Optional[int] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: UpperCamelCase : Tuple = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: UpperCamelCase : Any = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: UpperCamelCase : Optional[int] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: UpperCamelCase : int = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: UpperCamelCase : Any = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): UpperCamelCase : str = key.replace('module.last_layer_depth' , 'head.head' ) UpperCamelCase : str = value return new_state_dict def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Tuple ) -> List[str]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase : Optional[int] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCamelCase : int = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCamelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase : Any = kv_bias[: config.hidden_sizes[i]] UpperCamelCase : str = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase : Union[str, Any] = kv_bias[config.hidden_sizes[i] :] def UpperCamelCase ( ) -> Union[str, Any]: UpperCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=False , snake_case__ : List[str]=None ) -> List[str]: UpperCamelCase : Any = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCamelCase : Dict = GLPNImageProcessor() # prepare image UpperCamelCase : Tuple = prepare_img() UpperCamelCase : Dict = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict UpperCamelCase : Union[str, Any] = torch.load(snake_case__ , map_location=torch.device('cpu' ) ) # rename keys UpperCamelCase : List[Any] = rename_keys(snake_case__ ) # key and value matrices need special treatment read_in_k_v(snake_case__ , snake_case__ ) # create HuggingFace model and load state dict UpperCamelCase : Optional[Any] = GLPNForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # forward pass UpperCamelCase : List[str] = model(snake_case__ ) UpperCamelCase : Dict = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase : Any = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase : int = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCamelCase : Optional[int] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case__ , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=snake_case__ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=snake_case__ , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) __UpperCAmelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
119
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=[10, 20, 30, 40], SCREAMING_SNAKE_CASE_=[2, 2, 3, 2], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"], SCREAMING_SNAKE_CASE_=[2, 3, 4], SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Dict = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : List[Any] = num_stages UpperCamelCase : Any = hidden_sizes UpperCamelCase : Optional[int] = depths UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[str] = use_labels UpperCamelCase : Dict = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : str = initializer_range UpperCamelCase : List[str] = out_features UpperCamelCase : List[str] = out_indices UpperCamelCase : str = scope def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Any: return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Dict = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Optional[int] = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : int = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase : Any = None UpperCamelCase : List[str] = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = config_and_inputs UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = ConvNextModelTester(self ) UpperCamelCase : int = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def snake_case_ ( self ) -> str: pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[Any] = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : str = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Tuple: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> int: UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def snake_case_ ( self ) -> str: UpperCamelCase : Dict = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase , a__ ): UpperCAmelCase__ : Tuple = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase__ : List[str] = ConvNextConfig UpperCAmelCase__ : Tuple = False def snake_case_ ( self ) -> int: UpperCamelCase : List[Any] = ConvNextModelTester(self )
119
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = FunnelTokenizer __lowercase = FunnelTokenizerFast __lowercase = True __lowercase = True def UpperCAmelCase_ ( self :Tuple )-> List[str]: super().setUp() A__ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self :List[Any] , **lowercase_ :Optional[Any] )-> int: return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] , **lowercase_ :Tuple )-> Union[str, Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Dict )-> Optional[int]: A__ = "UNwant\u00E9d,running" A__ = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self :List[Any] )-> Optional[int]: A__ = self.tokenizer_class(self.vocab_file ) A__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowercase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: A__ = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: A__ = tokenizer("UNwant\u00E9d,running" ) A__ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) A__ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
123
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: A__ = 10_24 A__ = 40_96 A__ = 24 A__ = 16 A__ = [5, 11, 17, 23] A__ = [2_56, 5_12, 10_24, 10_24] A__ = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: A__ = 7_68 A__ = [1, 1, 1, 0.5] A__ = [2_56, 5_12, 7_68, 7_68] A__ = 1_50 A__ = 16 A__ = (1, 3_84, 3_84) A__ = False A__ = "project" if "ade" in checkpoint_url: A__ = True A__ = 7_68 A__ = [1, 1, 1, 0.5] A__ = 1_50 A__ = 16 A__ = "huggingface/label-files" A__ = "ade20k-id2label.json" A__ = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): A__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: A__ = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: A__ = name.replace("patch_embed" , "" ) if "pos_embed" in name: A__ = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: A__ = name.replace("proj" , "projection" ) if "blocks" in name: A__ = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: A__ = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: A__ = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: A__ = name.replace("scratch" , "neck" ) if "layer1_rn" in name: A__ = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: A__ = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: A__ = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: A__ = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: A__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: A__ = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: A__ = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: A__ = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: A__ = name.replace("conv1" , "convolution1" ) if "conv2" in name: A__ = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: A__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: A__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: A__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: A__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: A__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: A__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: A__ = name.replace("pretrained" , "dpt" ) if "bn" in name: A__ = name.replace("bn" , "batch_norm" ) if "head" in name: A__ = name.replace("head" , "head.head" ) if "encoder.norm" in name: A__ = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: A__ = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: A__ = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: A__ = name.replace(".." , "." ) if "stem.conv" in name: A__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: A__ = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: A__ = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: A__ = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: A__ = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: A__ = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: A__ = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str ): A__, A__ = get_dpt_config(_lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A__ = torch.load(_lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): A__ = state_dict.pop(_lowerCamelCase ) A__ = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # load HuggingFace model A__ = DPTForSemanticSegmentation(_lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Check outputs on an image A__ = 4_80 if "ade" in checkpoint_url else 3_84 A__ = DPTImageProcessor(size=_lowerCamelCase ) A__ = prepare_img() A__ = image_processor(_lowerCamelCase , return_tensors="pt" ) # forward pass A__ = model(**_lowerCamelCase ).logits if "ade" in checkpoint_url else model(**_lowerCamelCase ).predicted_depth if show_prediction: A__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = '''hf-internal-testing/tiny-random-bert''' __snake_case = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __snake_case = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =cached_file(A_ , A_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A_ , A_ ) ) ) with open(os.path.join(A_ , '''refs''' , '''main''' ) ) as f: UpperCAmelCase : Tuple =f.read() self.assertEqual(A_ , os.path.join(A_ , '''snapshots''' , A_ , A_ ) ) self.assertTrue(os.path.isfile(A_ ) ) # File is cached at the same place the second time. UpperCAmelCase : int =cached_file(A_ , A_ ) self.assertEqual(A_ , A_ ) # Using a specific revision to test the full commit hash. UpperCAmelCase : List[str] =cached_file(A_ , A_ , revision='''9b8c223''' ) self.assertEqual(A_ , os.path.join(A_ , '''snapshots''' , A_ , A_ ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex(A_ , '''is not a valid model identifier''' ): UpperCAmelCase : Any =cached_file('''tiny-random-bert''' , A_ ) with self.assertRaisesRegex(A_ , '''is not a valid git identifier''' ): UpperCAmelCase : List[Any] =cached_file(A_ , A_ , revision='''aaaa''' ) with self.assertRaisesRegex(A_ , '''does not appear to have a file named''' ): UpperCAmelCase : str =cached_file(A_ , '''conf''' ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' with self.assertRaisesRegex(A_ , '''does not appear to have a file named''' ): UpperCAmelCase : Dict =cached_file(A_ , '''conf''' ) with open(os.path.join(A_ , '''refs''' , '''main''' ) ) as f: UpperCAmelCase : Union[str, Any] =f.read() self.assertTrue(os.path.isfile(os.path.join(A_ , '''.no_exist''' , A_ , '''conf''' ) ) ) UpperCAmelCase : Union[str, Any] =cached_file(A_ , '''conf''' , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) UpperCAmelCase : Optional[Any] =cached_file(A_ , '''conf''' , local_files_only=A_ , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) UpperCAmelCase : Optional[int] =mock.Mock() UpperCAmelCase : List[Any] =500 UpperCAmelCase : str ={} UpperCAmelCase : str =HTTPError UpperCAmelCase : List[str] ={} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=A_ ) as mock_head: UpperCAmelCase : List[str] =cached_file(A_ , '''conf''' , _raise_exceptions_for_connection_errors=A_ ) self.assertIsNone(A_ ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , A_ ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A_ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , A_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A_ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , A_ , revision='''ahaha''' ) UpperCAmelCase : List[Any] =get_file_from_repo('''bert-base-cased''' , A_ ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase : Any =json.loads(open(A_ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[str] =Path(A_ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(A_ , '''a.txt''' ) , str(A_ ) ) self.assertIsNone(get_file_from_repo(A_ , '''b.txt''' ) )
348
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
39
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''MCTCTFeatureExtractor''' __SCREAMING_SNAKE_CASE = '''AutoTokenizer''' def __init__( self,__lowerCamelCase,__lowerCamelCase ): super().__init__(__lowerCamelCase,__lowerCamelCase ) A__ = self.feature_extractor A__ = False def __call__( self,*__lowerCamelCase,**__lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) A__ = kwargs.pop('''raw_speech''' ) else: A__ = kwargs.pop('''audio''',__lowerCamelCase ) A__ = kwargs.pop('''sampling_rate''',__lowerCamelCase ) A__ = kwargs.pop('''text''',__lowerCamelCase ) if len(__lowerCamelCase ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: A__ = self.feature_extractor(__lowerCamelCase,*__lowerCamelCase,sampling_rate=__lowerCamelCase,**__lowerCamelCase ) if text is not None: A__ = self.tokenizer(__lowerCamelCase,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase,**__lowerCamelCase ) A__ = kwargs.pop('''input_features''',__lowerCamelCase ) A__ = kwargs.pop('''labels''',__lowerCamelCase ) if len(__lowerCamelCase ) > 0: A__ = args[0] A__ = args[1:] if input_features is not None: A__ = self.feature_extractor.pad(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) if labels is not None: A__ = self.tokenizer.pad(__lowerCamelCase,**__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: A__ = labels['''input_ids'''] return input_features def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @contextmanager def UpperCamelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
39
1
import cmath import math def _A ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): UpperCamelCase :Dict = math.radians(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form UpperCamelCase :Optional[int] = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
259
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ) -> int: UpperCamelCase :List[Any] = parent UpperCamelCase :List[str] = batch_size UpperCamelCase :Optional[Any] = image_size UpperCamelCase :Optional[Any] = patch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Dict = use_labels UpperCamelCase :List[Any] = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :Any = backbone_out_indices UpperCamelCase :int = num_attention_heads UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :Any = backbone_featmap_shape UpperCamelCase :Optional[int] = scope UpperCamelCase :Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase :Tuple = (image_size // patch_size) ** 2 UpperCamelCase :int = num_patches + 1 def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :int = None if self.use_labels: UpperCamelCase :str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase :Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[int] = DPTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :Tuple = self.num_labels UpperCamelCase :Any = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :int = self.num_labels UpperCamelCase :str = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = config_and_inputs UpperCamelCase :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ : Optional[Any] =( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = DPTModelTester(self ) UpperCamelCase :List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Tuple = [*signature.parameters.keys()] UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :int = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase :Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Union[str, Any] = False UpperCamelCase :Dict = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase :Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase :List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase :Tuple = model_class(config=SCREAMING_SNAKE_CASE_ ) # Skip the check for the backbone UpperCamelCase :List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase :Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ) -> Tuple: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase :int = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Optional[Any] = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) def _A ( ): UpperCamelCase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: UpperCamelCase :Any = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCamelCase :int = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = prepare_img() UpperCamelCase :Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = outputs.predicted_depth # verify the predicted depth UpperCamelCase :List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
259
1
def _SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] _UpperCAmelCase = generate_large_matrix() _UpperCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> None: assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] ) -> int: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __lowerCAmelCase : Any = (left + right) // 2 __lowerCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __lowerCAmelCase : Dict = mid + 1 else: __lowerCAmelCase : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : Any = 0 __lowerCAmelCase : Union[str, Any] = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : str = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : List[str] = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def _SCREAMING_SNAKE_CASE ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) __lowerCAmelCase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __lowerCAmelCase : Optional[int] = timeit(F'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
232
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class snake_case_ ( __lowercase ): A_ = 'gptj' A_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , _snake_case : Optional[int]=50400 , _snake_case : Union[str, Any]=2048 , _snake_case : Tuple=4096 , _snake_case : Optional[int]=28 , _snake_case : Tuple=16 , _snake_case : Optional[Any]=64 , _snake_case : Optional[int]=None , _snake_case : str="gelu_new" , _snake_case : str=0.0 , _snake_case : Optional[int]=0.0 , _snake_case : List[str]=0.0 , _snake_case : Tuple=1E-5 , _snake_case : List[str]=0.02 , _snake_case : Optional[int]=True , _snake_case : Optional[Any]=50256 , _snake_case : List[str]=50256 , _snake_case : str=False , **_snake_case : Tuple , )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Any = n_positions __lowerCAmelCase : Optional[Any] = n_embd __lowerCAmelCase : Optional[int] = n_layer __lowerCAmelCase : Optional[int] = n_head __lowerCAmelCase : List[Any] = n_inner __lowerCAmelCase : List[str] = rotary_dim __lowerCAmelCase : int = activation_function __lowerCAmelCase : str = resid_pdrop __lowerCAmelCase : Union[str, Any] = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[Any] = layer_norm_epsilon __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Dict = use_cache __lowerCAmelCase : List[str] = bos_token_id __lowerCAmelCase : List[Any] = eos_token_id super().__init__( bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case ) class snake_case_ ( __lowercase ): def __init__( self : Union[str, Any] , _snake_case : PretrainedConfig , _snake_case : str = "default" , _snake_case : List[PatchingSpec] = None , _snake_case : bool = False , )->str: '''simple docstring''' super().__init__(_snake_case , task=_snake_case , patching_specs=_snake_case , use_past=_snake_case ) if not getattr(self._config , """pad_token_id""" , _snake_case ): # TODO: how to do that better? __lowerCAmelCase : Dict = 0 @property def UpperCAmelCase__ ( self : Tuple )->Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCAmelCase : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_snake_case , direction="""inputs""" ) __lowerCAmelCase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Dict )->int: '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return self._config.n_head def UpperCAmelCase__ ( self : str , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , )->Mapping[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = super(_snake_case , self ).generate_dummy_inputs( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase : Optional[Any] = seqlen + 2 __lowerCAmelCase : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase : Tuple = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(self.num_layers ) ] __lowerCAmelCase : int = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase : List[str] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_snake_case , _snake_case , dtype=_snake_case )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return 13
232
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : Tuple = logging.get_logger(__name__) A_ : int = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class A_ ( _a ): '''simple docstring''' a__ = "table-transformer" a__ = ["past_key_values"] a__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self , lowercase__=True , lowercase__=None , lowercase__=3 , lowercase__=100 , lowercase__=6 , lowercase__=2_048 , lowercase__=8 , lowercase__=6 , lowercase__=2_048 , lowercase__=8 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__="relu" , lowercase__=256 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1.0 , lowercase__=False , lowercase__="sine" , lowercase__="resnet50" , lowercase__=True , lowercase__=False , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=1 , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=0.1 , **lowercase__ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __UpperCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = backbone_config.get('''model_type''' ) __UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase = config_class.from_dict(lowercase__ ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None, None, None __UpperCAmelCase = use_timm_backbone __UpperCAmelCase = backbone_config __UpperCAmelCase = num_channels __UpperCAmelCase = num_queries __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = init_xavier_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = encoder_layers __UpperCAmelCase = auxiliary_loss __UpperCAmelCase = position_embedding_type __UpperCAmelCase = backbone __UpperCAmelCase = use_pretrained_backbone __UpperCAmelCase = dilation # Hungarian matcher __UpperCAmelCase = class_cost __UpperCAmelCase = bbox_cost __UpperCAmelCase = giou_cost # Loss coefficients __UpperCAmelCase = mask_loss_coefficient __UpperCAmelCase = dice_loss_coefficient __UpperCAmelCase = bbox_loss_coefficient __UpperCAmelCase = giou_loss_coefficient __UpperCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model class A_ ( _a ): '''simple docstring''' a__ = version.parse("1.11" ) @property def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def lowerCAmelCase_ (self ) -> float: return 1E-5 @property def lowerCAmelCase_ (self ) -> int: return 12
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def a_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : tuple ,_UpperCAmelCase : Path ,_UpperCAmelCase : int ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[Any]=False ,) -> Optional[Any]: output_path.parent.mkdir(parents=_UpperCAmelCase ,exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase ,_UpperCAmelCase ,f=output_path.as_posix() ,input_names=_UpperCAmelCase ,output_names=_UpperCAmelCase ,dynamic_axes=_UpperCAmelCase ,do_constant_folding=_UpperCAmelCase ,use_external_data_format=_UpperCAmelCase ,enable_onnx_checker=_UpperCAmelCase ,opset_version=_UpperCAmelCase ,) else: export( _UpperCAmelCase ,_UpperCAmelCase ,f=output_path.as_posix() ,input_names=_UpperCAmelCase ,output_names=_UpperCAmelCase ,dynamic_axes=_UpperCAmelCase ,do_constant_folding=_UpperCAmelCase ,opset_version=_UpperCAmelCase ,) @torch.no_grad() def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : int ,_UpperCAmelCase : bool = False ) -> int: __snake_case : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __snake_case : int = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __snake_case : Union[str, Any] = "cpu" __snake_case : int = Path(_UpperCAmelCase ) # VAE DECODER __snake_case : Any = AutoencoderKL.from_pretrained(model_path + '/vae' ) __snake_case : str = vae_decoder.config.latent_channels # forward only through the decoder part __snake_case : Any = vae_decoder.decode onnx_export( _UpperCAmelCase ,model_args=( torch.randn(1 ,_UpperCAmelCase ,25 ,25 ).to(device=_UpperCAmelCase ,dtype=_UpperCAmelCase ), False, ) ,output_path=output_path / 'vae_decoder' / 'model.onnx' ,ordered_input_names=['latent_sample', 'return_dict'] ,output_names=['sample'] ,dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } ,opset=_UpperCAmelCase ,) del vae_decoder if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') A__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
369
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A__ : Tuple = pytest.mark.integration @require_faiss class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : Dict = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() __snake_case : Dict = dset.map( lambda __a , __a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) __snake_case : List[Any] = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __snake_case , __snake_case : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[Any] ) -> Dict: '''simple docstring''' import faiss __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __snake_case , __snake_case : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' from elasticsearch import Elasticsearch __snake_case : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case : Any = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __snake_case : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=__a ) __snake_case , __snake_case : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : str ) -> int: '''simple docstring''' import faiss __snake_case : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __snake_case : Dict = np.zeros(5 , dtype=np.floataa ) __snake_case : List[str] = 1 __snake_case , __snake_case : List[Any] = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __snake_case : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __snake_case , __snake_case : Dict = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def A_ ( self : int ) -> int: '''simple docstring''' import faiss __snake_case : int = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __snake_case : List[str] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): __snake_case : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : str ) -> Dict: '''simple docstring''' import faiss __snake_case : Tuple = faiss.IndexFlat(5 ) __snake_case : List[Any] = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' import faiss __snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) __snake_case : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __snake_case : List[Any] = np.zeros(5 , dtype=np.floataa ) __snake_case : Any = 1 __snake_case , __snake_case : int = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a_ ( _UpperCAmelCase : str ) -> Optional[int]: import faiss __snake_case : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) __snake_case : Dict = 'index.faiss' __snake_case : Any = f'''mock://{index_name}''' index.save(_UpperCAmelCase ,storage_options=mockfs.storage_options ) __snake_case : Any = FaissIndex.load(_UpperCAmelCase ,storage_options=mockfs.storage_options ) __snake_case : Any = np.zeros(5 ,dtype=np.floataa ) __snake_case : Any = 1 __snake_case , __snake_case : Tuple = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case : int = Elasticsearch() __snake_case : Dict = {'acknowledged': True} __snake_case : List[Any] = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __snake_case : Optional[Any] = 'foo' __snake_case : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case : List[Any] = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __snake_case : Dict = 'foo' __snake_case : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case : Optional[Any] = index.search(__a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __snake_case : List[Any] = ['foo', 'bar', 'foobar'] __snake_case : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case : Any = index.search_batch(__a ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout __snake_case : Tuple = ['foo', 'bar', 'foobar'] __snake_case : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case : int = index.search_batch(__a , request_timeout=30 ) __snake_case : Any = [scores[0] for scores in total_scores] __snake_case : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
0
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") A__ : Any = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A__ : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str: with open(UpperCAmelCase_ , 'rb' ) as f: __lowerCamelCase : Optional[Any] = Image.open(UpperCAmelCase_ ) return im.convert('RGB' ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase : Optional[int] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : Optional[int] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase_ ( self ) -> Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCAmelCase )} , ) lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase : str = field(default=_UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase : bool = field( default=_UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase : bool = field( default=_UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Dict: __lowerCamelCase : Dict = torch.stack([example['pixel_values'] for example in examples] ) __lowerCamelCase : Optional[Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def UpperCAmelCase__ ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase : Dict = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCamelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowerCamelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCamelCase : Any = {} if data_args.train_dir is not None: __lowerCamelCase : List[Any] = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: __lowerCamelCase : List[Any] = os.path.join(data_args.validation_dir , '**' ) __lowerCamelCase : List[Any] = load_dataset( 'imagefolder' , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCamelCase : List[Any] = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase_ ) and data_args.train_val_split > 0.0: __lowerCamelCase : Any = dataset['train'].train_test_split(data_args.train_val_split ) __lowerCamelCase : Tuple = split['train'] __lowerCamelCase : Any = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCamelCase : Any = dataset['train'].features['labels'].names __lowerCamelCase , __lowerCamelCase : Any = {}, {} for i, label in enumerate(UpperCAmelCase_ ): __lowerCamelCase : Optional[Any] = str(UpperCAmelCase_ ) __lowerCamelCase : Dict = label # Load the accuracy metric from the datasets package __lowerCamelCase : List[Any] = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase_ : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowerCamelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCAmelCase_ ) , labelaid=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowerCamelCase : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowerCamelCase : Tuple = image_processor.size['shortest_edge'] else: __lowerCamelCase : Dict = (image_processor.size['height'], image_processor.size['width']) __lowerCamelCase : Dict = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowerCamelCase : Dict = Compose( [ RandomResizedCrop(UpperCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowerCamelCase : Union[str, Any] = Compose( [ Resize(UpperCAmelCase_ ), CenterCrop(UpperCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(UpperCAmelCase_ : List[Any] ): __lowerCamelCase : Any = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(UpperCAmelCase_ : int ): __lowerCamelCase : Optional[int] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowerCamelCase : Union[str, Any] = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(UpperCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowerCamelCase : str = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(UpperCAmelCase_ ) # Initalize our trainer __lowerCamelCase : Dict = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , ) # Training if training_args.do_train: __lowerCamelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase : Optional[int] = last_checkpoint __lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCamelCase : Optional[int] = trainer.evaluate() trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) # Write model card and (optionally) push to hub __lowerCamelCase : Any = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) if __name__ == "__main__": main()
185
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A__ : str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A__ : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A__ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[str]: for tf_name, hf_name in patterns: __lowerCamelCase : Optional[int] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> BigBirdPegasusForConditionalGeneration: __lowerCamelCase : int = BigBirdPegasusConfig(**UpperCAmelCase_ ) __lowerCamelCase : Any = BigBirdPegasusForConditionalGeneration(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = torch_model.state_dict() __lowerCamelCase : Tuple = {} # separating decoder weights __lowerCamelCase : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Tuple = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Tuple = DECODER_PATTERNS __lowerCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : str = torch.from_numpy(UpperCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Optional[Any] = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Dict = REMAINING_PATTERNS __lowerCamelCase : List[str] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : List[str] = v.T __lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : Any = mapping['model.embed_positions.weight'] __lowerCamelCase : Union[str, Any] = mapping.pop('model.embed_positions.weight' ) __lowerCamelCase , __lowerCamelCase : List[str] = torch_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __lowerCamelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCamelCase : int = tf.train.list_variables(UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : List[Any] = ['global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Dict = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ : List[str] = parser.parse_args() A__ : Optional[int] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
185
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : str = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCamelCase (_UpperCamelCase ): """simple docstring""" UpperCAmelCase_ = 'perceiver' def __init__( self : Any, _UpperCAmelCase : List[str]=2_5_6, _UpperCAmelCase : List[str]=1_2_8_0, _UpperCAmelCase : int=7_6_8, _UpperCAmelCase : Union[str, Any]=1, _UpperCAmelCase : Optional[Any]=2_6, _UpperCAmelCase : Dict=8, _UpperCAmelCase : Optional[int]=8, _UpperCAmelCase : List[str]=None, _UpperCAmelCase : Any=None, _UpperCAmelCase : int="kv", _UpperCAmelCase : Tuple=1, _UpperCAmelCase : Tuple=1, _UpperCAmelCase : str="gelu", _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : str=0.02, _UpperCAmelCase : Tuple=1E-12, _UpperCAmelCase : str=True, _UpperCAmelCase : Optional[Any]=2_6_2, _UpperCAmelCase : str=2_0_4_8, _UpperCAmelCase : Dict=5_6, _UpperCAmelCase : str=[3_6_8, 4_9_6], _UpperCAmelCase : Any=1_6, _UpperCAmelCase : Optional[int]=1_9_2_0, _UpperCAmelCase : Union[str, Any]=1_6, _UpperCAmelCase : Any=[1, 1_6, 2_2_4, 2_2_4], **_UpperCAmelCase : Any, ) -> Dict: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : str = num_latents SCREAMING_SNAKE_CASE__ : Optional[Any] = d_latents SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : Optional[Any] = num_blocks SCREAMING_SNAKE_CASE__ : Dict = num_self_attends_per_block SCREAMING_SNAKE_CASE__ : str = num_self_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = num_cross_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = qk_channels SCREAMING_SNAKE_CASE__ : List[str] = v_channels SCREAMING_SNAKE_CASE__ : List[str] = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE__ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE__ : str = cross_attention_widening_factor SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE__ : List[str] = image_size # flow attributes SCREAMING_SNAKE_CASE__ : Union[str, Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE__ : Dict = num_frames SCREAMING_SNAKE_CASE__ : int = audio_samples_per_frame SCREAMING_SNAKE_CASE__ : Any = samples_per_patch SCREAMING_SNAKE_CASE__ : Any = output_shape class lowerCamelCase (_UpperCamelCase ): """simple docstring""" @property def A_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def A_ ( self : List[str] ) -> float: """simple docstring""" return 1E-4 def A_ ( self : str, _UpperCAmelCase : str, _UpperCAmelCase : List[str] = -1, _UpperCAmelCase : Dict = -1, _UpperCAmelCase : Optional[Any] = -1, _UpperCAmelCase : Tuple = False, _UpperCAmelCase : List[str] = None, _UpperCAmelCase : Tuple = 3, _UpperCAmelCase : List[Any] = 4_0, _UpperCAmelCase : str = 4_0, ) -> Mapping[str, Any]: """simple docstring""" # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Optional[int] = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Dict = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : int = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : str = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(preprocessor(_SCREAMING_SNAKE_CASE, return_tensors=_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = inputs.pop("input_ids" ) return inputs elif isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Union[str, Any] = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE, fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE__ : Tuple = self._generate_dummy_images(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : str = dict(preprocessor(images=_SCREAMING_SNAKE_CASE, return_tensors=_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ : int = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
368
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : List[Any]=sys.maxsize ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "bilinear" SCREAMING_SNAKE_CASE__ : Optional[int] = max_size SCREAMING_SNAKE_CASE__ : Optional[int] = short_edge_length def __call__( self : Optional[int], _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] for img in imgs: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE__ : List[str] = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE__ : int = size * 1.0 / min(_UpperCAmelCase, _UpperCAmelCase ) if h < w: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size if max(_UpperCAmelCase, _UpperCAmelCase ) > self.max_size: SCREAMING_SNAKE_CASE__ : str = self.max_size * 1.0 / max(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = newh * scale SCREAMING_SNAKE_CASE__ : List[str] = neww * scale SCREAMING_SNAKE_CASE__ : Any = int(neww + 0.5 ) SCREAMING_SNAKE_CASE__ : List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pil_image.resize((neww, newh), PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : str = img.permute(2, 0, 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE__ : Tuple = nn.functional.interpolate( _UpperCAmelCase, (newh, neww), mode=self.interp_method, align_corners=_UpperCAmelCase ).squeeze(0 ) img_augs.append(_UpperCAmelCase ) return img_augs class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE__ : Any = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE__ : List[str] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE__ : List[Any] = cfg.PAD_VALUE SCREAMING_SNAKE_CASE__ : Dict = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE__ : Optional[int] = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE__ : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = lambda _UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def A_ ( self : str, _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = tuple(max(_UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ nn.functional.pad( _UpperCAmelCase, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(_UpperCAmelCase, _UpperCAmelCase ) ] return torch.stack(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) def __call__( self : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = [images] if single_image: assert len(_UpperCAmelCase ) == 1 for i in range(len(_UpperCAmelCase ) ): if isinstance(images[i], torch.Tensor ): images.insert(_UpperCAmelCase, images.pop(_UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i], torch.Tensor ): images.insert( _UpperCAmelCase, torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase ), input_format=self.input_format ) ) .to(self.device ) .float(), ) # resize smallest edge SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE__ : Tuple = self.aug(_UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE__ : List[Any] = [self.normalizer(_UpperCAmelCase ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.pad(_UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.true_divide(_UpperCAmelCase, _UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple[int, int] ) -> List[Any]: '''simple docstring''' assert torch.isfinite(SCREAMING_SNAKE_CASE__ ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ )
191
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Any = {} if "threshold" in kwargs: A: List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: int = load_image(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = torch.IntTensor([[image.height, image.width]] ) A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A: Any = target_size return inputs def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Tuple = model_inputs.pop('''target_size''' ) A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A: Dict = model_inputs['''bbox'''] return model_outputs def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A , A: Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] A: Dict = ['''score''', '''label''', '''box'''] A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[str] = raw_annotations[0] A: List[Any] = raw_annotation['''scores'''] A: List[Any] = raw_annotation['''labels'''] A: int = raw_annotation['''boxes'''] A: Any = scores.tolist() A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels] A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A: Tuple = ['''score''', '''label''', '''box'''] A: str = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A: str = box.int().tolist() A: str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
319
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __a ( __a ): __snake_case : Optional[int] = """gpt_neox""" def __init__( self : List[Any] , UpperCAmelCase : Optional[Any]=5_04_32 , UpperCAmelCase : str=61_44 , UpperCAmelCase : Tuple=44 , UpperCAmelCase : Dict=64 , UpperCAmelCase : List[str]=2_45_76 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Tuple=0.25 , UpperCAmelCase : Any=1_00_00 , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=20_48 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : List[Any] , ): super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : int = rotary_pct lowerCAmelCase_ : str = rotary_emb_base lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Dict = hidden_dropout lowerCAmelCase_ : Optional[int] = classifier_dropout lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Tuple = tie_word_embeddings lowerCAmelCase_ : Any = use_parallel_residual lowerCAmelCase_ : List[str] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def A ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("""type""" , UpperCamelCase__ ) lowerCAmelCase_ : List[str] = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _lowerCAmelCase : List[str] = [ "kernels/rwkv/wkv_cuda.cu", "kernels/rwkv/wkv_op.cpp", "kernels/deformable_detr/ms_deform_attn.h", "kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh", "models/graphormer/algos_graphormer.pyx", ] def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") _lowerCAmelCase : List[Any] = parser.parse_args() if args.check_lib: _lowerCAmelCase : Any = importlib.import_module("transformers") _lowerCAmelCase : List[str] = Path(transformers_module.__file__).parent else: _lowerCAmelCase : Dict = Path.cwd() / "build/lib/transformers" if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
218
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'ctrl' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __snake_case=24_6534 , __snake_case=256 , __snake_case=1280 , __snake_case=8192 , __snake_case=48 , __snake_case=16 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1e-6 , __snake_case=0.02 , __snake_case=True , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' __a =vocab_size __a =n_positions __a =n_embd __a =n_layer __a =n_head __a =dff __a =resid_pdrop __a =embd_pdrop __a =layer_norm_epsilon __a =initializer_range __a =use_cache super().__init__(**__snake_case )
218
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Union[str, Any] = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _UpperCAmelCase ( lowerCAmelCase_ ): a : Dict ="""speech_to_text_2""" a : Any =["""past_key_values"""] a : Optional[Any] ={"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self,__SCREAMING_SNAKE_CASE=1_00_00,__SCREAMING_SNAKE_CASE=6,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=2_56,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=10_24,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = decoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE,bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,decoder_start_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
368
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowercase__: Any = len(_A ) lowercase__: Tuple = len(_A ) lowercase__: List[Any] = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowercase__: int = [] for char_count in range(_A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_A ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
177
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = args.log_outputs lowerCAmelCase_ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowerCAmelCase_ = load_metric('''wer''' ) lowerCAmelCase_ = load_metric('''cer''' ) # compute metrics lowerCAmelCase_ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowerCAmelCase_ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowerCAmelCase_ = f"WER: {wer_result}\nCER: {cer_result}" print(_A ) with open(f"{dataset_id}_eval_results.txt" , '''w''' ) as f: f.write(_A ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase_ = f"log_{dataset_id}_predictions.txt" lowerCAmelCase_ = f"log_{dataset_id}_targets.txt" with open(_A , '''w''' ) as p, open(_A , '''w''' ) as t: # mapping function to write output def write_to_file(_A , _A ): p.write(f"{i}" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"{i}" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_A , with_indices=_A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase_ = re.sub(_A , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase_ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowerCAmelCase_ = ''' '''.join(text.split(_A ) ) return text def __UpperCamelCase ( _A ): # load dataset lowerCAmelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_A ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase_ = feature_extractor.sampling_rate # resample audio lowerCAmelCase_ = dataset.cast_column('''audio''' , Audio(sampling_rate=_A ) ) # load eval pipeline if args.device is None: lowerCAmelCase_ = 0 if torch.cuda.is_available() else -1 lowerCAmelCase_ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_A ): lowerCAmelCase_ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase_ = prediction['''text'''] lowerCAmelCase_ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowerCAmelCase_ = dataset.map(_A , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_A , _A ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) _A = parser.parse_args() main(args)
278
0
from __future__ import annotations def __magic_name__ ( A , A = None , A = None , A = False , ) -> tuple[int, float, str]: snake_case = cipher_alphabet or [chr(A ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) snake_case = { 'a': 0.08_497, 'b': 0.01_492, 'c': 0.02_202, 'd': 0.04_253, 'e': 0.11_162, 'f': 0.02_228, 'g': 0.02_015, 'h': 0.06_094, 'i': 0.07_546, 'j': 0.00_153, 'k': 0.01_292, 'l': 0.04_025, 'm': 0.02_406, 'n': 0.06_749, 'o': 0.07_507, 'p': 0.01_929, 'q': 0.00_095, 'r': 0.07_587, 's': 0.06_327, 't': 0.09_356, 'u': 0.02_758, 'v': 0.00_978, 'w': 0.02_560, 'x': 0.00_150, 'y': 0.01_994, 'z': 0.00_077, } else: # Custom frequencies dictionary snake_case = frequencies_dict if not case_sensitive: snake_case = ciphertext.lower() # Chi squared statistic values snake_case = {} # cycle through all of the shifts for shift in range(len(A ) ): snake_case = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet snake_case = (alphabet_letters.index(letter.lower() ) - shift) % len( A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter snake_case = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: snake_case = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message snake_case = decrypted_with_shift.lower().count(A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message snake_case = decrypted_with_shift.count(A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary snake_case = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(A ) -> tuple[float, str]: return chi_squared_statistic_values[key] snake_case = min( A , key=A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( snake_case ) , ( snake_case ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): _UpperCAmelCase = 'segformer.encoder.' + key if key.startswith('backbone' ): _UpperCAmelCase = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] _UpperCAmelCase = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(__lowerCAmelCase )-1}""" ) if "norm" in key: _UpperCAmelCase = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] _UpperCAmelCase = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(__lowerCAmelCase )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _UpperCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase = key[key.find('block' ) + len('block' )] _UpperCAmelCase = key.replace(F"""block{idx}""" , F"""block.{int(__lowerCAmelCase )-1}""" ) if "attn.q" in key: _UpperCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _UpperCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _UpperCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: _UpperCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: _UpperCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _UpperCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _UpperCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) _UpperCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] _UpperCAmelCase = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(__lowerCAmelCase )-1}""" ) if key.startswith('head' ): _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[str]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase = kv_bias[ config.hidden_sizes[i] : ] def __A ( )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Tuple: """simple docstring""" _UpperCAmelCase = SegformerConfig() _UpperCAmelCase = False # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' if "segformer" in model_name: _UpperCAmelCase = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: _UpperCAmelCase = 150 _UpperCAmelCase = 'ade20k-id2label.json' _UpperCAmelCase = (1, 150, 128, 128) elif "city" in model_name: _UpperCAmelCase = 19 _UpperCAmelCase = 'cityscapes-id2label.json' _UpperCAmelCase = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _UpperCAmelCase = True _UpperCAmelCase = model_name[4:6] _UpperCAmelCase = 1_000 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 256 elif size == "b2": _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 768 _UpperCAmelCase = [3, 4, 6, 3] elif size == "b3": _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 768 _UpperCAmelCase = [3, 4, 18, 3] elif size == "b4": _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 768 _UpperCAmelCase = [3, 8, 27, 3] elif size == "b5": _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 768 _UpperCAmelCase = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__lowerCAmelCase , align=__lowerCAmelCase , do_random_crop=__lowerCAmelCase ) # prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location=torch.device('cpu' ) ) else: _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location=torch.device('cpu' ) )['state_dict'] # rename keys _UpperCAmelCase = rename_keys(__lowerCAmelCase , encoder_only=__lowerCAmelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__lowerCAmelCase , __lowerCAmelCase ) # create HuggingFace model and load state dict if encoder_only: _UpperCAmelCase = False _UpperCAmelCase = SegformerForImageClassification(__lowerCAmelCase ) else: _UpperCAmelCase = SegformerForSemanticSegmentation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # forward pass _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _UpperCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _UpperCAmelCase = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _UpperCAmelCase = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _UpperCAmelCase = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _UpperCAmelCase = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _UpperCAmelCase = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _UpperCAmelCase = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _UpperCAmelCase = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _UpperCAmelCase = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: _UpperCAmelCase = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _a = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
39
class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} # Mapping from char to TrieNode _UpperCAmelCase = False def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: _UpperCAmelCase = TrieNode() _UpperCAmelCase = curr.nodes[char] _UpperCAmelCase = True def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: return False _UpperCAmelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" def _delete(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCAmelCase = False return len(curr.nodes ) == 0 _UpperCAmelCase = word[index] _UpperCAmelCase = curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCAmelCase = _delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" if node.is_leaf: print(__lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" print(str(__lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
39
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __magic_name__ : lowerCamelCase__ = MBartConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ) -> Tuple: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ = prepare_mbart_inputs_dict(__a , __a , __a ) return config, inputs_dict def __a ( self , _a , _a ) -> Tuple: lowerCAmelCase_ = TFMBartModel(config=__a ).get_decoder() lowerCAmelCase_ = inputs_dict["input_ids"] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict["attention_mask"][:1, :] lowerCAmelCase_ = inputs_dict["head_mask"] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() lowerCAmelCase_ = past_key_values[1] def A(__a: Tuple , __a: Tuple , __a: Tuple , __a: Tuple=None , __a: List[str]=None , __a: List[str]=None , __a: int=None , __a: Optional[int]=None , ): if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCamelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self , _a , _a , _a , _a , _a ) -> str: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __a ( self ) -> Any: lowerCAmelCase_ = TFMBartModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=__a ) def __a ( self ) -> Dict: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_sentencepiece @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] lowerCamelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] lowerCamelCase__ = """facebook/mbart-large-en-ro""" @cached_property def __a ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __a ( self , **_a ) -> Tuple: lowerCAmelCase_ = self.translate_src_text(**__a ) self.assertListEqual(self.expected_text , __a ) def __a ( self , **_a ) -> int: lowerCAmelCase_ = self.tokenizer(self.src_text , **__a , return_tensors="tf" ) lowerCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCAmelCase_ = self.tokenizer.batch_decode(__a , skip_special_tokens=__a ) return generated_words @slow def __a ( self ) -> Tuple: self._assert_generated_batch_equal_expected()
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase_ : Union[str, Any] = """""" UpperCAmelCase_ : Any = """""" UpperCAmelCase_ : List[Any] = """""" UpperCAmelCase_ : Tuple = """""" def _A (__a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tweepy.OAuthHandler(__lowerCamelCase , __lowerCamelCase ) auth.set_access_token(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ : int = tweepy.API(__lowerCamelCase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE_ : Dict = api.user_timeline(screen_name=__lowerCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(__lowerCamelCase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__lowerCamelCase ) > 0: print(f'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE_ : List[Any] = api.user_timeline( screen_name=__lowerCamelCase , count=2_00 , max_id=__lowerCamelCase ) # save most recent tweets alltweets.extend(__lowerCamelCase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ : List[Any] = alltweets[-1].id - 1 print(f'...{len(__lowerCamelCase )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE_ : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'new_{screen_name}_tweets.csv' , '''w''' ) as f: SCREAMING_SNAKE_CASE_ : str = csv.writer(__lowerCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__lowerCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
91
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowerCamelCase = TaTokenizerFast __lowerCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowerCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
59
0
import math class lowercase_ : def __init__( self , __UpperCamelCase=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCamelCase_ = n UpperCamelCase_ = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # adjacency matrix for weight UpperCamelCase_ = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = w def lowerCamelCase_ ( self ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCamelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
261
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
261
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowercase : Optional[Any] = 8 def SCREAMING_SNAKE_CASE__ ( __A , __A=BITS ) -> Tuple: _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__A ) _snake_case = rearrange(__A , 'd -> d 1 1' ) _snake_case = rearrange(__A , 'b c h w -> b c 1 h w' ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(__A , 'b c d h w -> b (c d) h w' ) _snake_case = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE__ ( __A , __A=BITS ) -> Optional[int]: _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__A , dtype=torch.intaa ) _snake_case = rearrange(__A , 'd -> d 1 1' ) _snake_case = rearrange(__A , 'b (c d) h w -> b c d h w' , d=8 ) _snake_case = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE__ ( self , __A , __A , __A , __A = 0.0 , __A = True , __A=None , __A = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(__A , -scale , __A ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(__A , __A ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(__A ) else 'cpu' _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__A ).to(__A ) _snake_case = self._get_variance(__A , __A ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__A , pred_original_sample=__A ) def SCREAMING_SNAKE_CASE__ ( self , __A , __A , __A , __A="epsilon" , __A=None , __A = True , ) -> Union[DDPMSchedulerOutput, Tuple]: _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case , _snake_case = torch.split(__A , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(__A , -scale , __A ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__A ).to(model_output.device ) _snake_case = (self._get_variance(__A , predicted_variance=__A ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__A , pred_original_sample=__A ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1.0 , ): """simple docstring""" super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self , lowerCAmelCase_ = 2_56 , lowerCAmelCase_ = 2_56 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) _snake_case = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _snake_case = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": _snake_case = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
42
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ = pytest.mark.integration @require_faiss class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" import faiss a = self._create_dummy_dataset() a = dset.map( lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ) a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" import faiss a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" import faiss a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" from elasticsearch import Elasticsearch a = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} a = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase ) a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" import faiss a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query a = np.zeros(5 , dtype=np.floataa ) a = 1 a , a = index.search(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries a = np.eye(5 , dtype=np.floataa )[::-1] a , a = index.search_batch(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] ) a = [scores[0] for scores in total_scores] a = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" import faiss a = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) a = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__UpperCAmelCase ): a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" import faiss a = faiss.IndexFlat(5 ) a = FaissIndex(custom_index=__UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" import faiss a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) a = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) a = np.zeros(5 , dtype=np.floataa ) a = 1 a , a = index.search(__UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _a ( a :Dict ) -> Any: import faiss a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) a = '''index.faiss''' a = F"""mock://{index_name}""" index.save(a , storage_options=mockfs.storage_options ) a = FaissIndex.load(a , storage_options=mockfs.storage_options ) a = np.zeros(5 , dtype=np.floataa ) a = 1 a , a = index.search(a ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a = Elasticsearch() a = {'''acknowledged''': True} a = ElasticSearchIndex(es_client=__UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query a = '''foo''' a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} a , a = index.search(__UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout a = '''foo''' a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} a , a = index.search(__UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries a = ['''foo''', '''bar''', '''foobar'''] a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} a , a = index.search_batch(__UpperCAmelCase ) a = [scores[0] for scores in total_scores] a = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __UpperCAmelCase ) # batched queries with timeout a = ['''foo''', '''bar''', '''foobar'''] a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 ) a = [scores[0] for scores in total_scores] a = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
0
0
'''simple docstring''' A = 9.8_06_65 def lowerCAmelCase__ ( lowerCamelCase : float ,lowerCamelCase : float ,lowerCamelCase : float = g ): if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
351
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A : Tuple = logging.get_logger(__name__) A : Tuple = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __lowerCamelCase ( a_ ): """simple docstring""" a = "longformer" def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[List[int], int] = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 30522 , SCREAMING_SNAKE_CASE : int = 768 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 3072 , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : float = 1e-12 , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[Any] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[Any] = attention_window _A : int = sep_token_id _A : Tuple = bos_token_id _A : Any = eos_token_id _A : List[str] = vocab_size _A : Any = hidden_size _A : Optional[int] = num_hidden_layers _A : int = num_attention_heads _A : Dict = hidden_act _A : List[Any] = intermediate_size _A : int = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : int = max_position_embeddings _A : Any = type_vocab_size _A : Dict = initializer_range _A : Any = layer_norm_eps _A : List[Any] = onnx_export class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : "PretrainedConfig" , SCREAMING_SNAKE_CASE : str = "default" , SCREAMING_SNAKE_CASE : "List[PatchingSpec]" = None): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Optional[Any] = True @property def A ( self : List[str]): if self.task == "multiple-choice": _A : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ]) @property def A ( self : str): _A : int = super().outputs if self.task == "default": _A : str = {0: 'batch'} return outputs @property def A ( self : List[Any]): return 1e-4 @property def A ( self : Dict): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def A ( self : str , SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ): _A : Union[str, Any] = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _A : Tuple = torch.zeros_like(inputs['input_ids']) # make every second token global _A : Dict = 1 return inputs
227
0
"""simple docstring""" _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = [False] * len(__lowerCAmelCase ) UpperCAmelCase_ : List[Any] = [s] UpperCAmelCase_ : Optional[Any] = True while queue: UpperCAmelCase_ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[int] = u return visited[t] def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = [-1] * (len(__lowerCAmelCase )) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ): UpperCAmelCase_ : Union[str, Any] = float("Inf" ) UpperCAmelCase_ : int = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ : Dict = min(__lowerCAmelCase, graph[parent[s]][s] ) UpperCAmelCase_ : Optional[int] = parent[s] max_flow += path_flow UpperCAmelCase_ : Optional[Any] = sink while v != source: UpperCAmelCase_ : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ : str = parent[v] for i in range(len(__lowerCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure)
231
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =prime_factors(__UpperCamelCase ) if is_square_free(__UpperCamelCase ): return -1 if len(__UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase ='''Encode this sequence.''' __UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens __UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase ='''Encode <mask> sequence''' __UpperCamelCase ='''Encode <mask>sequence''' __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase ='''A, <mask> AllenNLP sentence.''' __UpperCamelCase =tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __UpperCamelCase =tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
85
1
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( enum.Enum ): UpperCAmelCase_ :List[Any] = 0 UpperCAmelCase_ :int = 1 @add_end_docstrings(A__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Union[str, Any] = "generated" def __init__( self , *__A , **__A ) -> int: super().__init__(*__A , **__A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __lowerCAmelCase ( self , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , **__A , ) -> str: lowerCAmelCase_ :List[str] = {} if truncation is not None: lowerCAmelCase_ :List[Any] = truncation lowerCAmelCase_ :Optional[int] = generate_kwargs lowerCAmelCase_ :Optional[int] = {} if return_tensors is not None and return_type is None: lowerCAmelCase_ :Optional[int] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase_ :Any = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase_ :str = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase_ :int = self.tokenizer.encode(__A , add_special_tokens=__A ) if len(__A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCAmelCase_ :Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCAmelCase ( self , __A , __A , __A ) -> Optional[Any]: return True def __lowerCAmelCase ( self , *__A , __A ) -> List[Any]: lowerCAmelCase_ :List[str] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) lowerCAmelCase_ :Dict = ([prefix + arg for arg in args[0]],) lowerCAmelCase_ :Optional[int] = True elif isinstance(args[0] , __A ): lowerCAmelCase_ :Any = (prefix + args[0],) lowerCAmelCase_ :Optional[Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowerCAmelCase_ :List[str] = self.tokenizer(*__A , padding=__A , truncation=__A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__A , **__A ) -> Optional[int]: lowerCAmelCase_ :Any = super().__call__(*__A , **__A ) if ( isinstance(args[0] , __A ) and all(isinstance(__A , __A ) for el in args[0] ) and all(len(__A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __lowerCAmelCase ( self , __A , __A=TruncationStrategy.DO_NOT_TRUNCATE , **__A ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = self._parse_and_tokenize(__A , truncation=__A , **__A ) return inputs def __lowerCAmelCase ( self , __A , **__A ) -> str: if self.framework == "pt": lowerCAmelCase_ , lowerCAmelCase_ :List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = tf.shape(model_inputs["""input_ids"""] ).numpy() lowerCAmelCase_ :Optional[Any] = generate_kwargs.get("""min_length""" , self.model.config.min_length ) lowerCAmelCase_ :Union[str, Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) lowerCAmelCase_ :Optional[Any] = self.model.generate(**__A , **__A ) lowerCAmelCase_ :Optional[Any] = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase_ :str = output_ids.reshape(__A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase_ :Tuple = tf.reshape(__A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __lowerCAmelCase ( self , __A , __A=ReturnType.TEXT , __A=False ) -> List[str]: lowerCAmelCase_ :int = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase_ :Optional[Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase_ :str = { f"""{self.return_name}_text""": self.tokenizer.decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A , ) } records.append(__A ) return records @add_end_docstrings(A__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Any = "summary" def __call__( self , *__A , **__A ) -> Tuple: return super().__call__(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(A__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[str] = "translation" def __lowerCAmelCase ( self , __A , __A , __A ) -> Dict: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def __lowerCAmelCase ( self , *__A , __A=TruncationStrategy.DO_NOT_TRUNCATE , __A=None , __A=None ) -> Union[str, Any]: if getattr(self.tokenizer , """_build_translation_inputs""" , __A ): return self.tokenizer._build_translation_inputs( *__A , return_tensors=self.framework , truncation=__A , src_lang=__A , tgt_lang=__A ) else: return super()._parse_and_tokenize(*__A , truncation=__A ) def __lowerCAmelCase ( self , __A=None , __A=None , **__A ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = super()._sanitize_parameters(**__A ) if src_lang is not None: lowerCAmelCase_ :List[str] = src_lang if tgt_lang is not None: lowerCAmelCase_ :Tuple = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase_ :Dict = kwargs.get("""task""" , self.task ) lowerCAmelCase_ :Any = task.split("""_""" ) if task and len(__A ) == 4: # translation, XX, to YY lowerCAmelCase_ :Optional[int] = items[1] lowerCAmelCase_ :Optional[Any] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__A , **__A ) -> str: return super().__call__(*__A , **__A )
84
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : List[str] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _lowerCamelCase : Optional[int] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _lowerCamelCase : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False ): """simple docstring""" if rouge_types is None: UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase__ , use_stemmer=UpperCamelCase__ ) if use_aggregator: UpperCamelCase = scoring.BootstrapAggregator() else: UpperCamelCase = [] for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = scorer.score(UpperCamelCase__ , UpperCamelCase__ ) if use_aggregator: aggregator.add_scores(UpperCamelCase__ ) else: scores.append(UpperCamelCase__ ) if use_aggregator: UpperCamelCase = aggregator.aggregate() else: UpperCamelCase = {} for key in scores[0]: UpperCamelCase = [score[key] for score in scores] return result
28
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __a ( lowerCamelCase__ ): __snake_case : Dict = 'encoder-decoder' __snake_case : int = True def __init__( self : Dict , **UpperCAmelCase : Optional[int] ): super().__init__(**UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase_ : Tuple = kwargs.pop("""encoder""" ) lowerCAmelCase_ : List[Any] = encoder_config.pop("""model_type""" ) lowerCAmelCase_ : Optional[int] = kwargs.pop("""decoder""" ) lowerCAmelCase_ : Union[str, Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ : List[Any] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : List[str] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : List[str] = True @classmethod def A ( cls : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase ) def A ( self : List[str] ): lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : List[Any] = self.encoder.to_dict() lowerCAmelCase_ : Any = self.decoder.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Dict = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "pegasus" lowercase = ["past_key_values"] lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __UpperCAmelCase=5_0265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self ): '''simple docstring''' return self.d_model
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
# Lint as: python3 import itertools import os import re SCREAMING_SNAKE_CASE :Optional[int] = re.compile(R'([A-Z]+)([A-Z][a-z])') SCREAMING_SNAKE_CASE :Optional[int] = re.compile(R'([a-z\d])([A-Z])') SCREAMING_SNAKE_CASE :List[str] = re.compile(R'(?<!_)_(?!_)') SCREAMING_SNAKE_CASE :Any = re.compile(R'(_{2,})') SCREAMING_SNAKE_CASE :Dict = R'^\w+(\.\w+)*$' SCREAMING_SNAKE_CASE :List[str] = R'<>:/\|?*' def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = _uppercase_uppercase_re.sub(r"\1_\2" , a_ ) __A = _lowercase_uppercase_re.sub(r"\1_\2" , a_ ) return name.lower() def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = _single_underscore_re.split(a_ ) __A = [_multiple_underscores_re.split(a_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(a_ ) if n != "" ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" if os.path.basename(a_ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" if os.path.basename(a_ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , a_ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(a_ )}-{split}''' def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Optional[Any]: """simple docstring""" __A = filename_prefix_for_split(a_ , a_ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' __A = os.path.join(a_ , a_ ) return F'''{filepath}*''' def UpperCAmelCase ( a_ , a_ , a_ , a_=None , a_=None ) -> int: """simple docstring""" __A = filename_prefix_for_split(a_ , a_ ) __A = os.path.join(a_ , a_ ) if shard_lengths: __A = len(a_ ) __A = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(a_ )] if filetype_suffix: __A = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: __A = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
356
import numpy class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : numpy.ndarray ,A : numpy.ndarray ): __A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __A = numpy.random.rand( self.input_array.shape[1] ,4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __A = numpy.random.rand( 4 ,3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __A = numpy.random.rand(3 ,1 ) # Real output values provided. __A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __A = numpy.zeros(output_array.shape ) def UpperCamelCase_ ( self : Optional[Any] ): __A = sigmoid( numpy.dot(self.input_array ,self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer ,self.first_hidden_layer_and_second_hidden_layer_weights ,) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer ,self.second_hidden_layer_and_output_layer_weights ,) ) return self.layer_between_second_hidden_layer_and_output def UpperCamelCase_ ( self : str ): __A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T ,2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,) __A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T ,numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,self.second_hidden_layer_and_output_layer_weights.T ,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) ,) __A = numpy.dot( self.input_array.T ,numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,self.second_hidden_layer_and_output_layer_weights.T ,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) ,self.first_hidden_layer_and_second_hidden_layer_weights.T ,) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) ,) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCamelCase_ ( self : Tuple ,A : numpy.ndarray ,A : int ,A : bool ): for iteration in range(1 ,iterations + 1 ): __A = self.feedforward() self.back_propagation() if give_loss: __A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def UpperCamelCase_ ( self : List[Any] ,A : numpy.ndarray ): __A = input_arr __A = sigmoid( numpy.dot(self.array ,self.input_layer_and_first_hidden_layer_weights ) ) __A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer ,self.first_hidden_layer_and_second_hidden_layer_weights ,) ) __A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer ,self.second_hidden_layer_and_output_layer_weights ,) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase ( a_ ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase ( a_ ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def UpperCAmelCase ( ) -> int: """simple docstring""" __A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __A = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=1_0 , give_loss=a_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
124
0