code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _snake_case ( snake_case__ : Dict ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : int ): A , A = emb.weight.shape A = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) A = emb.weight.data return lin_layer def _snake_case ( snake_case__ : List[str] , snake_case__ : Any="facebook/mbart-large-en-ro" , snake_case__ : Optional[int]=False , snake_case__ : List[str]=False ): A = torch.load(snake_case__ , map_location='cpu' )['model'] remove_ignore_keys_(snake_case__ ) A = state_dict['encoder.embed_tokens.weight'].shape[0] A = MBartConfig.from_pretrained(snake_case__ , vocab_size=snake_case__ ) if mbart_aa and finetuned: A = 'relu' A = state_dict['decoder.embed_tokens.weight'] A = MBartForConditionalGeneration(snake_case__ ) model.model.load_state_dict(snake_case__ ) if finetuned: A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _lowercase = parser.parse_args() _lowercase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
74
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase = 16 _lowercase = 32 def _snake_case ( snake_case__ : Accelerator , snake_case__ : int = 16 , snake_case__ : str = "bert-base-cased" ): A = AutoTokenizer.from_pretrained(snake_case__ ) A = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : Dict ): # max_length=None => use the model max length (it's actually the default) A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(snake_case__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) A = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Optional[int] ): # Initialize accelerator A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A = config['lr'] A = int(config['num_epochs'] ) A = int(config['seed'] ) A = int(config['batch_size'] ) A = args.model_name_or_path set_seed(snake_case__ ) A , A = get_dataloaders(snake_case__ , snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer A = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: A = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A = 1 A = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: A = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over A = 0 # We also need to keep track of the stating epoch so files are named properly A = 0 # Now we train the model A = evaluate.load('glue' , 'mrpc' ) A = 0 A = {} for epoch in range(snake_case__ , snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): A = model(**snake_case__ ) A = outputs.loss A = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A = model(**snake_case__ ) A = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case__ ) - 1: A = predictions[: len(eval_dataloader.dataset ) - samples_seen] A = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case__ ) A = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: A = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(snake_case__ , snake_case__ ) def _snake_case ( ): A = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=snake_case__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=snake_case__ , ) parser.add_argument( '--output_dir' , type=snake_case__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=snake_case__ , default=snake_case__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=snake_case__ , default=3 , help='Number of train epochs.' , ) A = parser.parse_args() A = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
74
1
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowercase__ : Dict = logging.get_logger(__name__) def __lowercase ( _a , _a ): """simple docstring""" def run_func(_a ): @wraps(_a ) def run_in_eager_mode(*_a , **_a ): return func(*_a , **_a ) @wraps(_a ) @tf.function(experimental_compile=_a ) def run_in_graph_mode(*_a , **_a ): return func(*_a , **_a ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __lowercase ( _a , _a , _a ): """simple docstring""" snake_case_ : Tuple = random.Random() snake_case_ : Union[str, Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_a , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : TensorFlowBenchmarkArguments _lowerCAmelCase : PretrainedConfig _lowerCAmelCase : str = "TensorFlow" @property def _snake_case ( self : Optional[int] ): return tf.__version__ def _snake_case ( self : Tuple , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process snake_case_ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case_ : Tuple = self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_inference ) def _snake_case ( self : List[str] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): snake_case_ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case_ : int = self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_train ) def _snake_case ( self : int , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) snake_case_ : Any = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case_ : str = self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_inference ) def _snake_case ( self : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) snake_case_ : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case_ : List[str] = self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_train ) def _snake_case ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): snake_case_ : str = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) snake_case_ : Optional[Any] = ( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case_ : int = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model snake_case_ : Union[str, Any] = __import__('''transformers''' , fromlist=[model_class] ) snake_case_ : int = getattr(lowercase_ , lowercase_ ) snake_case_ : str = model_cls(lowercase_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: snake_case_ : Tuple = TF_MODEL_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently snake_case_ : Union[str, Any] = config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size snake_case_ : str = random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase_ , decoder_input_ids=lowercase_ , training=lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase_ , training=lowercase_ ) snake_case_ : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _snake_case ( self : List[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): snake_case_ : Dict = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) snake_case_ : List[Any] = ( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case_ : str = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model snake_case_ : int = __import__('''transformers''' , fromlist=[model_class] ) snake_case_ : Dict = getattr(lowercase_ , lowercase_ ) snake_case_ : Tuple = model_cls(lowercase_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: snake_case_ : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently snake_case_ : List[Any] = config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size snake_case_ : Dict = random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): snake_case_ : List[str] = model(lowercase_ , decoder_input_ids=lowercase_ , labels=lowercase_ , training=lowercase_ )[0] snake_case_ : List[str] = tf.gradients(lowercase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): snake_case_ : Optional[Any] = model(lowercase_ , labels=lowercase_ , training=lowercase_ )[0] snake_case_ : List[Any] = tf.gradients(lowercase_ , model.trainable_variables ) return gradients snake_case_ : Optional[int] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _snake_case ( self : Tuple , lowercase_ : str ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average snake_case_ : str = timeit.repeat( lowercase_ , repeat=self.args.repeat , number=10 , ) return min(lowercase_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def _snake_case ( self : int , lowercase_ : Callable[[], None] ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) snake_case_ : List[Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) snake_case_ : str = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() snake_case_ : Optional[Any] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) snake_case_ : Dict = nvml.nvmlDeviceGetMemoryInfo(lowercase_ ) snake_case_ : Dict = meminfo.used snake_case_ : Tuple = Memory(lowercase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) snake_case_ : int = None else: snake_case_ : Optional[int] = measure_peak_memory_cpu(lowercase_ ) snake_case_ : Union[str, Any] = Memory(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else memory_bytes if self.args.trace_memory_line_by_line: snake_case_ : Tuple = stop_memory_tracing(lowercase_ ) if memory is None: snake_case_ : Union[str, Any] = summary.total else: snake_case_ : Any = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
363
"""simple docstring""" from math import pow def __lowercase ( _a , _a , _a , _a , _a , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case_ : int = int(pow(_a , _a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case_, snake_case_ : List[Any] = backtrack( _a , _a , current_number + 1 , _a , _a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case_, snake_case_ : str = backtrack( _a , _a , current_number + 1 , _a , _a ) return current_sum, solutions_count def __lowercase ( _a , _a ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(_a , _a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
155
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCamelCase_ ( lowerCAmelCase__ : dict ) -> str: """simple docstring""" return (data["data"], data["target"]) def UpperCamelCase_ ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ) -> Any: """simple docstring""" lowerCAmelCase_ : str = XGBClassifier() classifier.fit(__lowerCamelCase , __lowerCamelCase ) return classifier def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : str = load_iris() lowerCAmelCase_ : List[str] = data_handling(__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = train_test_split( __lowerCamelCase , __lowerCamelCase , test_size=0.25 ) lowerCAmelCase_ : str = iris['''target_names'''] # Create an XGBoost Classifier from the training data lowerCAmelCase_ : List[str] = xgboost(__lowerCamelCase , __lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , display_labels=__lowerCamelCase , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
224
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _lowercase : Tuple = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = ['pixel_values'] def __init__( self : Optional[Any], lowerCamelCase : bool = True, lowerCamelCase : Union[int, float] = 1 / 255, lowerCamelCase : bool = True, lowerCamelCase : int = 8, **lowerCamelCase : Tuple, )-> None: super().__init__(**lowerCamelCase ) lowerCamelCase__ : int =do_rescale lowerCamelCase__ : Dict =rescale_factor lowerCamelCase__ : Union[str, Any] =do_pad lowerCamelCase__ : Union[str, Any] =pad_size def snake_case ( self : int, lowerCamelCase : np.ndarray, lowerCamelCase : float, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : int )-> np.ndarray: return rescale(lowerCamelCase, scale=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase ) def snake_case ( self : Optional[Any], lowerCamelCase : np.ndarray, lowerCamelCase : int, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None )-> List[Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =get_image_size(lowerCamelCase ) lowerCamelCase__ : List[str] =(old_height // size + 1) * size - old_height lowerCamelCase__ : List[str] =(old_width // size + 1) * size - old_width return pad(lowerCamelCase, ((0, pad_height), (0, pad_width)), mode='''symmetric''', data_format=lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : ImageInput, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[float] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST, **lowerCamelCase : Union[str, Any], )-> Dict: lowerCamelCase__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : str =do_pad if do_pad is not None else self.do_pad lowerCamelCase__ : int =pad_size if pad_size is not None else self.pad_size lowerCamelCase__ : Optional[int] =make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : Tuple =[to_numpy_array(lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase__ : Tuple =[self.rescale(image=lowerCamelCase, scale=lowerCamelCase ) for image in images] if do_pad: lowerCamelCase__ : Tuple =[self.pad(lowerCamelCase, size=lowerCamelCase ) for image in images] lowerCamelCase__ : int =[to_channel_dimension_format(lowerCamelCase, lowerCamelCase ) for image in images] lowerCamelCase__ : Dict ={'''pixel_values''': images} return BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase )
238
0
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowercase = data_utils.TransfoXLTokenizer __lowercase = data_utils.TransfoXLCorpus __lowercase = data_utils __lowercase = data_utils def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(a__ , "rb" ) as fp: a : Tuple = pickle.load(a__ , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a : Optional[int] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) a : Optional[Any] = corpus.vocab.__dict__ torch.save(a__ , a__ ) a : int = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , a__ ) a : List[str] = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(a__ , a__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a : Optional[int] = os.path.abspath(a__ ) a : Optional[int] = os.path.abspath(a__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": a : Union[str, Any] = TransfoXLConfig() else: a : List[Any] = TransfoXLConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) a : int = TransfoXLLMHeadModel(a__ ) a : List[Any] = load_tf_weights_in_transfo_xl(a__ , a__ , a__ ) # Save pytorch-model a : int = os.path.join(a__ , a__ ) a : Optional[int] = os.path.join(a__ , a__ ) print(F'''Save PyTorch model to {os.path.abspath(a__ )}''' ) torch.save(model.state_dict() , a__ ) print(F'''Save configuration file to {os.path.abspath(a__ )}''' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
369
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : Optional[int] = TapasConfig.from_json_file(A_ ) # set absolute/relative position embeddings parameter a : str = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a : Dict = TapasForQuestionAnswering(config=A_ ) elif task == "WTQ": # run_task_main.py hparams a : Any = 4 a : Dict = True # hparam_utils.py hparams a : str = 0.6_6_4_6_9_4 a : Optional[int] = 0.2_0_7_9_5_1 a : Optional[Any] = 0.1_2_1_1_9_4 a : Union[str, Any] = True a : int = True a : Tuple = False a : Dict = 0.0_3_5_2_5_1_3 a : List[str] = TapasForQuestionAnswering(config=A_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a : Union[str, Any] = 4 a : List[Any] = False # hparam_utils.py hparams a : Dict = 3_6.4_5_1_9 a : List[str] = 0.9_0_3_4_2_1 a : Optional[Any] = 2_2_2.0_8_8 a : Dict = True a : Union[str, Any] = True a : List[str] = True a : List[str] = 0.7_6_3_1_4_1 a : Any = TapasForQuestionAnswering(config=A_ ) elif task == "TABFACT": a : int = TapasForSequenceClassification(config=A_ ) elif task == "MLM": a : int = TapasForMaskedLM(config=A_ ) elif task == "INTERMEDIATE_PRETRAINING": a : List[Any] = TapasModel(config=A_ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A_ , A_ , A_ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A_ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) a : Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(A_ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
226
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case ): UpperCamelCase =["pixel_values"] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , **UpperCamelCase_ , ) -> None: super().__init__(**UpperCamelCase_ ) __lowercase : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} __lowercase : int = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowercase : Tuple = do_resize __lowercase : List[str] = size __lowercase : Dict = resample __lowercase : Optional[Any] = do_rescale __lowercase : List[str] = rescale_factor __lowercase : Any = do_normalize __lowercase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : str = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Any = do_convert_rgb def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> np.ndarray: __lowercase : Dict = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase : Union[str, Any] = (size['''height'''], size['''width''']) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> List[str]: return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> np.ndarray: return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ) -> PIL.Image.Image: __lowercase : int = do_resize if do_resize is not None else self.do_resize __lowercase : Union[str, Any] = resample if resample is not None else self.resample __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowercase : Any = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : List[Any] = size if size is not None else self.size __lowercase : List[str] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowercase : str = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : List[Any] = [convert_to_rgb(UpperCamelCase_ ) for image in images] # All transformations expect numpy arrays. __lowercase : Optional[int] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __lowercase : Any = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: __lowercase : List[Any] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __lowercase : Any = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __lowercase : List[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowercase : List[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCamelCase_ ) return encoded_outputs
249
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin a_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class UpperCAmelCase_ ( unittest.TestCase , snake_case ): def _lowerCamelCase ( self ) -> int: __lowercase : List[Any] = load_tool('''text-question-answering''' ) self.tool.setup() __lowercase : Any = load_tool('''text-question-answering''' , remote=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Dict = self.tool(UpperCamelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Optional[int] = self.remote_tool(UpperCamelCase_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def _lowerCamelCase ( self ) -> Any: __lowercase : Union[str, Any] = self.tool(text=UpperCamelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = self.remote_tool(text=UpperCamelCase_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase_ , '''launched the BigScience Research Workshop''' )
249
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __A = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __A = { "abeja/gpt-neox-japanese-2.7b": 2048, } def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" with open(__a , "r" , encoding="utf-8" ) as f: lowerCamelCase__: str =json.loads(f.read() ) lowerCamelCase__: Any =collections.OrderedDict() lowerCamelCase__: Optional[int] =collections.OrderedDict() lowerCamelCase__: Dict =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as f: lowerCamelCase__: Tuple =f.readlines() lowerCamelCase__: List[str] =[[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(__a ): lowerCamelCase__: Optional[int] =b lowerCamelCase__: List[str] =idx for wd in b: lowerCamelCase__: str =idx return vocab, raw_vocab, ids_to_tokens, emoji class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any="<|endoftext|>" , UpperCAmelCase_ : Optional[Any]="<|endoftext|>" , UpperCAmelCase_ : Optional[Any]="<|startoftext|>" , UpperCAmelCase_ : Any="<|endoftext|>" , UpperCAmelCase_ : Optional[int]=False , **UpperCAmelCase_ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__( unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , do_clean_text=UpperCAmelCase_ , **UpperCAmelCase_ , ) if not os.path.isfile(UpperCAmelCase_): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(UpperCAmelCase_): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") lowerCamelCase__: Dict =do_clean_text lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =load_vocab_and_emoji(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' return len(self.raw_vocab) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Dict) ->Union[str, Any]: '''simple docstring''' return self.subword_tokenizer.tokenize(UpperCAmelCase_ , clean=self.do_clean_text) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union[str, Any]) ->List[Any]: '''simple docstring''' return self.vocab.get(UpperCAmelCase_ , self.vocab.get(self.unk_token)) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Any) ->Any: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] ="".join(UpperCAmelCase_).strip() return out_string def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "Conversation") ->List[int]: '''simple docstring''' lowerCamelCase__: List[Any] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id]) if len(UpperCAmelCase_) > self.model_max_length: lowerCamelCase__: str =input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =0 if os.path.isdir(UpperCAmelCase_): lowerCamelCase__: List[Any] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: str =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: lowerCamelCase__: Tuple =( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__: List[Any] =( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") lowerCamelCase__: List[Any] =token_index writer.write(",".join(UpperCAmelCase_) + "\n") index += 1 with open(UpperCAmelCase_ , "w" , encoding="utf-8") as writer: json.dump(self.emoji , UpperCAmelCase_) return vocab_file, emoji_file class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =vocab # same as swe lowerCamelCase__: Any =ids_to_tokens # same as bpe lowerCamelCase__: List[Any] =emoji lowerCamelCase__: str =np.max([len(UpperCAmelCase_) for w in self.vocab.keys()]) lowerCamelCase__: Union[str, Any] =re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") lowerCamelCase__: List[Any] =re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") lowerCamelCase__: str =re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") lowerCamelCase__: Optional[int] =re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") lowerCamelCase__: Any =re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") lowerCamelCase__: Any =re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") lowerCamelCase__: Optional[int] ="─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCamelCase__: Optional[int] ="▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCamelCase__: int =str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__(self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' return len(self.ids_to_tokens) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =self.content_repattera.sub("<URL>" , UpperCAmelCase_) lowerCamelCase__: Tuple =self.content_repattera.sub("<EMAIL>" , UpperCAmelCase_) lowerCamelCase__: List[str] =self.content_repattera.sub("<TEL>" , UpperCAmelCase_) lowerCamelCase__: Tuple =self.content_repattera.sub("<DATE>" , UpperCAmelCase_) lowerCamelCase__: List[Any] =self.content_repattera.sub("<DATE>" , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.content_repattera.sub("<PRICE>" , UpperCAmelCase_) lowerCamelCase__: Any =content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: lowerCamelCase__: Dict =content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]=False) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =text.replace(" " , "<SP>") lowerCamelCase__: List[str] =text.replace(" " , "<SP>") lowerCamelCase__: Optional[int] =text.replace("\r\n" , "<BR>") lowerCamelCase__: Any =text.replace("\n" , "<BR>") lowerCamelCase__: List[Any] =text.replace("\r" , "<BR>") lowerCamelCase__: Dict =text.replace("\t" , "<TAB>") lowerCamelCase__: Tuple =text.replace("—" , "ー") lowerCamelCase__: Optional[int] =text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase__: List[str] =text.replace(UpperCAmelCase_ , UpperCAmelCase_) if clean: lowerCamelCase__: Union[str, Any] =self.clean_text(UpperCAmelCase_) def check_simbol(UpperCAmelCase_ : Optional[Any]): lowerCamelCase__: Optional[Any] =x.encode() if len(UpperCAmelCase_) == 1 and len(UpperCAmelCase_) == 2: lowerCamelCase__: Tuple =(int(e[0]) << 8) + int(e[1]) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checkuae(UpperCAmelCase_ : Optional[int]): lowerCamelCase__: Optional[Any] =x.encode() if len(UpperCAmelCase_) == 1 and len(UpperCAmelCase_) == 3: lowerCamelCase__: Optional[Any] =(int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0xE2_8080 and c <= 0xE2_B07F: return True return False lowerCamelCase__: Any =0 lowerCamelCase__: str =[] while pos < len(UpperCAmelCase_): lowerCamelCase__: Tuple =min(len(UpperCAmelCase_) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 lowerCamelCase__: Optional[int] =[] # (token_id, token, pos) for e in range(UpperCAmelCase_ , UpperCAmelCase_ , -1): lowerCamelCase__: List[Any] =text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCAmelCase_) > 2: lowerCamelCase__: Dict =[(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(UpperCAmelCase_) > 0: # the smallest token_id is adopted lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[Any] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x[0])[0] result.append(UpperCAmelCase_) lowerCamelCase__: Tuple =e else: lowerCamelCase__: Union[str, Any] =pos + 1 lowerCamelCase__: str =text[pos:end] if check_simbol(UpperCAmelCase_): result.append("<KIGOU>") elif checkuae(UpperCAmelCase_): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) lowerCamelCase__: str =end return result def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str="\n") ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =[] lowerCamelCase__: List[str] =[] lowerCamelCase__: Any =self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(UpperCAmelCase_) > 0: words.append(bytearray(UpperCAmelCase_).decode("utf-8" , errors="replace")) lowerCamelCase__: Dict =[] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(UpperCAmelCase_) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(UpperCAmelCase_) if len(UpperCAmelCase_) > 0: words.append(bytearray(UpperCAmelCase_).decode("utf-8" , errors="replace")) lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_) return text
273
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : int) ->None: '''simple docstring''' lowerCamelCase__: int =num_of_nodes lowerCamelCase__: list[list[int]] =[] lowerCamelCase__: dict[int, int] ={} def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight]) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int) ->None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: lowerCamelCase__: Dict =self.find_component(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: lowerCamelCase__: Optional[int] =v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_) elif component_size[u_node] >= component_size[v_node]: lowerCamelCase__: Tuple =self.find_component(UpperCAmelCase_) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->None: '''simple docstring''' lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =0 lowerCamelCase__: list[Any] =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) lowerCamelCase__: List[str] =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge lowerCamelCase__: List[Any] =self.m_component[u] lowerCamelCase__: str =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCamelCase__: Union[str, Any] =[u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =edge lowerCamelCase__: str =self.m_component[u] lowerCamelCase__: Any =self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 lowerCamelCase__: Tuple =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def lowerCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
273
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase ( snake_case__ : Tuple ) -> List[str]: UpperCamelCase : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ ( a__ , a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : str = StableDiffusionLatentUpscalePipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } UpperCAmelCase__ : str = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} UpperCAmelCase__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([] ) UpperCAmelCase__ : Optional[int] = True @property def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[Any] = 1 UpperCamelCase : List[str] = 4 UpperCamelCase : List[str] = (16, 16) UpperCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) return image def snake_case_ ( self ) -> int: torch.manual_seed(0 ) UpperCamelCase : int = UNetaDConditionModel( act_fn='gelu', attention_head_dim=8, norm_num_groups=SCREAMING_SNAKE_CASE_, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ), in_channels=8, mid_block_type=SCREAMING_SNAKE_CASE_, only_cross_attention=SCREAMING_SNAKE_CASE_, out_channels=5, resnet_time_scale_shift='scale_shift', time_embedding_type='fourier', timestep_post_act='gelu', up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D'), ) UpperCamelCase : Tuple = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) UpperCamelCase : Tuple = EulerDiscreteScheduler(prediction_type='sample' ) UpperCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='quick_gelu', projection_dim=512, ) UpperCamelCase : Any = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase : Optional[int] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = 'cpu' UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 256, 256, 3) ) UpperCamelCase : List[Any] = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) UpperCamelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_, 1e-3 ) def snake_case_ ( self ) -> List[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def snake_case_ ( self ) -> Tuple: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def snake_case_ ( self ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def snake_case_ ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def snake_case_ ( self ) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def snake_case_ ( self ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def snake_case_ ( self ) -> int: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 2 UpperCamelCase : Optional[Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue UpperCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_, scheduler_enum.name ) UpperCamelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) UpperCamelCase : List[str] = pipe(**SCREAMING_SNAKE_CASE_ )[0] outputs.append(SCREAMING_SNAKE_CASE_ ) assert check_same_shape(SCREAMING_SNAKE_CASE_ ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Dict = torch.manual_seed(33 ) UpperCamelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch.floataa ) pipe.to('cuda' ) UpperCamelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa ) upscaler.to('cuda' ) UpperCamelCase : Union[str, Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' UpperCamelCase : int = pipe(SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, output_type='latent' ).images UpperCamelCase : List[str] = upscaler( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=20, guidance_scale=0, generator=SCREAMING_SNAKE_CASE_, output_type='np', ).images[0] UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def snake_case_ ( self ) -> int: UpperCamelCase : List[Any] = torch.manual_seed(33 ) UpperCamelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa ) upscaler.to('cuda' ) UpperCamelCase : Dict = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) UpperCamelCase : str = upscaler( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=20, guidance_scale=0, generator=SCREAMING_SNAKE_CASE_, output_type='np', ).images[0] UpperCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
119
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = MgpstrTokenizer __snake_case = False __snake_case = {} __snake_case = False def UpperCamelCase__ ( self ): super().setUp() # fmt: off snake_case_ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on snake_case_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) def UpperCamelCase__ ( self , **_UpperCAmelCase ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = '''tester''' snake_case_ = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) snake_case_ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) snake_case_ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def UpperCamelCase__ ( self ): snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ = self.get_input_output_texts(_UpperCAmelCase ) snake_case_ = tokenizer.tokenize(_UpperCAmelCase ) snake_case_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) snake_case_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) snake_case_ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _UpperCAmelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCamelCase__ ( self ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCamelCase__ ( self ): pass
352
from __future__ import annotations import time UpperCAmelCase = list[tuple[int, int]] UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = parent class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = [self.start] snake_case_ = False def UpperCamelCase__ ( self ): while self.node_queue: snake_case_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(_UpperCAmelCase ) snake_case_ = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = False def UpperCamelCase__ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case_ = self.fwd_bfs.node_queue.pop(0 ) snake_case_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case_ = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = current_bwd_node snake_case_ = current_fwd_node snake_case_ = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.fwd_bfs.retrace_path(_UpperCAmelCase ) snake_case_ = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() snake_case_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = BreadthFirstSearch(init, goal) UpperCAmelCase = bfs.search() UpperCAmelCase = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase = bd_bfs.search() UpperCAmelCase = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
267
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase (snake_case__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
155
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, **lowerCamelCase) -> Any: """simple docstring""" super().__init__(**lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self, lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : List[str] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None, lowerCamelCase="This is a photo of {}.") -> Dict: """simple docstring""" _lowercase : Dict = load_image(lowerCamelCase) _lowercase : Optional[int] = self.image_processor(images=[image], return_tensors=self.framework) _lowercase : int = candidate_labels _lowercase : Tuple = [hypothesis_template.format(lowerCamelCase) for x in candidate_labels] _lowercase : Any = self.tokenizer(lowerCamelCase, return_tensors=self.framework, padding=lowerCamelCase) _lowercase : List[Any] = [text_inputs] return inputs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = model_inputs.pop('candidate_labels') _lowercase : List[str] = model_inputs.pop('text_inputs') if isinstance(text_inputs[0], lowerCamelCase): _lowercase : List[str] = text_inputs[0] else: # Batching case. _lowercase : int = text_inputs[0][0] _lowercase : List[Any] = self.model(**lowerCamelCase, **lowerCamelCase) _lowercase : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = model_outputs.pop('candidate_labels') _lowercase : List[str] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[str] = logits.softmax(dim=-1).squeeze(-1) _lowercase : Optional[int] = probs.tolist() if not isinstance(lowerCamelCase, lowerCamelCase): _lowercase : str = [scores] elif self.framework == "tf": _lowercase : List[str] = stable_softmax(lowerCamelCase, axis=-1) _lowercase : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : Any = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase, lowerCamelCase), key=lambda lowerCamelCase: -x[0]) ] return result
361
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE : Tuple = "docs/source/en/_toctree.yml" def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Tuple = defaultdict(lowerCamelCase_ ) _lowercase : int = [] _lowercase : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCamelCase_ ) _lowercase : Optional[int] = new_doc_list _lowercase : str = [key for key, value in counts.items() if value > 1] _lowercase : Union[str, Any] = [] for duplicate_key in duplicates: _lowercase : Optional[Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCamelCase_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowercase : Optional[int] = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCamelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCamelCase_ ) # Sort return overview_doc def UpperCamelCase_( lowerCamelCase_=False ) -> Any: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Tuple = content[api_idx]['sections'] # Then to the model doc _lowercase : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Optional[int] = api_doc[scheduler_idx]['sections'] _lowercase : List[Any] = clean_doc_toc(lowerCamelCase_ ) _lowercase : Optional[Any] = False if new_scheduler_doc != scheduler_doc: _lowercase : Optional[Any] = True if overwrite: _lowercase : str = new_scheduler_doc if diff: if overwrite: _lowercase : Any = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase_( lowerCamelCase_=False ) -> List[str]: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : int = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : str = content[api_idx]['sections'] # Then to the model doc _lowercase : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : Tuple = False _lowercase : Dict = api_doc[pipeline_idx]['sections'] _lowercase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : Union[str, Any] = pipeline_doc['section'] _lowercase : List[str] = clean_doc_toc(lowerCamelCase_ ) if overwrite: _lowercase : str = new_sub_pipeline_doc new_pipeline_docs.append(lowerCamelCase_ ) # sort overall pipeline doc _lowercase : int = clean_doc_toc(lowerCamelCase_ ) if new_pipeline_docs != pipeline_docs: _lowercase : Tuple = True if overwrite: _lowercase : str = new_pipeline_docs if diff: if overwrite: _lowercase : List[str] = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase_ = HUGGINGFACE_HUB_CACHE lowercase_ = """config.json""" lowercase_ = """diffusion_pytorch_model.bin""" lowercase_ = """diffusion_flax_model.msgpack""" lowercase_ = """model.onnx""" lowercase_ = """diffusion_pytorch_model.safetensors""" lowercase_ = """weights.pb""" lowercase_ = """https://huggingface.co""" lowercase_ = default_cache_path lowercase_ = """diffusers_modules""" lowercase_ = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowercase_ = ["""fp16""", """non-ema"""] lowercase_ = """.self_attn"""
58
import glob import os import random from string import ascii_lowercase, digits import cva __A ="" __A ="" __A ="" __A =1 # (0 is vertical, 1 is horizontal) def a ( ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_dataset(_UpperCAmelCase , _UpperCAmelCase ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = update_image_and_anno(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for index, image in enumerate(_UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase : Any = random_chars(32 ) __UpperCAmelCase : List[str] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase : Optional[Any] = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , _UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(_UpperCAmelCase )} with {file_name}' ) __UpperCAmelCase : Optional[Any] = [] for anno in new_annos[index]: __UpperCAmelCase : Union[str, Any] = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(_UpperCAmelCase ) with open(f'/{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( _UpperCAmelCase : str , _UpperCAmelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = [] for label_file in glob.glob(os.path.join(_UpperCAmelCase , '''*.txt''' ) ): __UpperCAmelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_UpperCAmelCase ) as in_file: __UpperCAmelCase : List[str] = in_file.readlines() __UpperCAmelCase : Optional[Any] = os.path.join(_UpperCAmelCase , f'{label_name}.jpg' ) __UpperCAmelCase : str = [] for obj_list in obj_lists: __UpperCAmelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCAmelCase ) labels.append(_UpperCAmelCase ) return img_paths, labels def a ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int = 1 ): '''simple docstring''' __UpperCAmelCase : Dict = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Any = [] for idx in range(len(_UpperCAmelCase ) ): __UpperCAmelCase : Tuple = [] __UpperCAmelCase : List[Any] = img_list[idx] path_list.append(_UpperCAmelCase ) __UpperCAmelCase : str = anno_list[idx] __UpperCAmelCase : str = cva.imread(_UpperCAmelCase ) if flip_type == 1: __UpperCAmelCase : Any = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __UpperCAmelCase : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase : Any = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __UpperCAmelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCAmelCase ) new_imgs_list.append(_UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def a ( _UpperCAmelCase : int = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase : Union[str, Any] = ascii_lowercase + digits return "".join(random.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
226
0
import sys __snake_case = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowercase ( UpperCamelCase_ = N ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = -sys.maxsize - 1 for i in range(len(UpperCamelCase_ ) - 12 ): SCREAMING_SNAKE_CASE__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: SCREAMING_SNAKE_CASE__ = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
169
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case = False try: __snake_case = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowercase__ : def __init__( self : Optional[Any] , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = [] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = choices SCREAMING_SNAKE_CASE__ = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = '*' else: SCREAMING_SNAKE_CASE__ = '➔ ' def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCAmelCase_ ) else: forceWrite(self.choices[index] , UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(UpperCAmelCase_ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def A_ ( self : List[Any] , UpperCAmelCase_ : Direction , UpperCAmelCase_ : int = 1 ): SCREAMING_SNAKE_CASE__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCAmelCase_ ) move_cursor(UpperCAmelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A_ ( self : Optional[Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A_ ( self : List[Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A_ ( self : Dict ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A_ ( self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCAmelCase_ )] for number in range(10 )] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCAmelCase_ ) else: return else: return def A_ ( self : Optional[int] , UpperCAmelCase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) SCREAMING_SNAKE_CASE__ = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCAmelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ = default_choice else: SCREAMING_SNAKE_CASE__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(UpperCAmelCase_ , '\n' ) return choice
169
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[int] = {"tokenizer_file": "tokenizer.json"} __A : Union[str, Any] = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = None def __init__( self , _A=None , _A=None , _A=None , _A="<unk>" , _A="<s>" , _A="</s>" , _A="<pad>" , _A=False , _A=False , **_A , ): '''simple docstring''' super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , add_prefix_space=_A , clean_up_tokenization_spaces=_A , **_A , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: UpperCAmelCase = getattr(_A , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**_A ) UpperCAmelCase = add_prefix_space def _lowercase ( self , *_A , **_A ): '''simple docstring''' UpperCAmelCase = kwargs.get('''is_split_into_words''' , _A ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*_A , **_A ) def _lowercase ( self , *_A , **_A ): '''simple docstring''' UpperCAmelCase = kwargs.get('''is_split_into_words''' , _A ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*_A , **_A ) def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
273
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "model" in orig_key: UpperCAmelCase = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: UpperCAmelCase = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: UpperCAmelCase = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: UpperCAmelCase = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: UpperCAmelCase = orig_key.split('''.''' )[0].split('''_''' )[-1] UpperCAmelCase = orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: UpperCAmelCase = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: UpperCAmelCase = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: UpperCAmelCase = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: UpperCAmelCase = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: UpperCAmelCase = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: UpperCAmelCase = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: UpperCAmelCase = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: UpperCAmelCase = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: UpperCAmelCase = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: UpperCAmelCase = '''yoso.''' + orig_key return orig_key def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(UpperCamelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase = val UpperCAmelCase = orig_state_dict['''cls.predictions.decoder.bias'''] UpperCAmelCase = torch.arange(UpperCamelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model_state_dict'''] UpperCAmelCase = YosoConfig.from_json_file(UpperCamelCase__ ) UpperCAmelCase = YosoForMaskedLM(UpperCamelCase__ ) UpperCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , UpperCamelCase__ ) print(model.load_state_dict(UpperCamelCase__ ) ) model.eval() model.save_pretrained(UpperCamelCase__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A : List[str] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
273
1
def UpperCAmelCase_ ( ) -> int: return 1 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 2_00 ) -> int: return two_pound(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
363
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Tuple ): return str(self.k ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
210
0
'''simple docstring''' import math def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = input("""Enter message: """ ) __SCREAMING_SNAKE_CASE = int(input(F'Enter key [2-{len(a__ ) - 1}]: ' ) ) __SCREAMING_SNAKE_CASE = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): __SCREAMING_SNAKE_CASE = encrypt_message(a__ , a__ ) elif mode.lower().startswith("""d""" ): __SCREAMING_SNAKE_CASE = decrypt_message(a__ , a__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [""""""] * key for col in range(a__ ): __SCREAMING_SNAKE_CASE = col while pointer < len(a__ ): cipher_text[col] += message[pointer] pointer += key return "".join(a__ ) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = math.ceil(len(a__ ) / key ) __SCREAMING_SNAKE_CASE = key __SCREAMING_SNAKE_CASE = (num_cols * num_rows) - len(a__ ) __SCREAMING_SNAKE_CASE = [""""""] * num_cols __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __SCREAMING_SNAKE_CASE = 0 row += 1 return "".join(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
267
'''simple docstring''' def a__ ( a__ , a__ ): """simple docstring""" _enforce_args(a__ , a__ ) if n == 0: return 0 __SCREAMING_SNAKE_CASE = float("""-inf""" ) for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE = max( a__ , prices[i - 1] + naive_cut_rod_recursive(n - i , a__ ) ) return max_revue def a__ ( a__ , a__ ): """simple docstring""" _enforce_args(a__ , a__ ) __SCREAMING_SNAKE_CASE = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __SCREAMING_SNAKE_CASE = float("""-inf""" ) for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE = max( a__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , a__ , a__ ) , ) __SCREAMING_SNAKE_CASE = max_revenue return max_rev[n] def a__ ( a__ , a__ ): """simple docstring""" _enforce_args(a__ , a__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __SCREAMING_SNAKE_CASE = [float("""-inf""" ) for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE = max_rev[i] for j in range(1 , i + 1 ): __SCREAMING_SNAKE_CASE = max(a__ , prices[j - 1] + max_rev[i - j] ) __SCREAMING_SNAKE_CASE = max_revenue_i return max_rev[n] def a__ ( a__ , a__ ): """simple docstring""" if n < 0: __SCREAMING_SNAKE_CASE = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(a__ ) if n > len(a__ ): __SCREAMING_SNAKE_CASE = ( """Each integral piece of rod must have a corresponding price. """ F'Got n = {n} but length of prices = {len(a__ )}' ) raise ValueError(a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = [6, 10, 12, 15, 20, 23] __SCREAMING_SNAKE_CASE = len(a__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __SCREAMING_SNAKE_CASE = 36 __SCREAMING_SNAKE_CASE = top_down_cut_rod(a__ , a__ ) __SCREAMING_SNAKE_CASE = bottom_up_cut_rod(a__ , a__ ) __SCREAMING_SNAKE_CASE = naive_cut_rod_recursive(a__ , a__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
267
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = BlenderbotSmallTokenizer snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() _lowerCamelCase : str = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Any = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : List[str] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Tuple = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Optional[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowerCamelCase : List[str] = '''I am a small frog.''' _lowerCamelCase : str = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Any = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowerCamelCase : Optional[Any] = '''I am a small frog .''' _lowerCamelCase : str = '''.''' _lowerCamelCase : str = tok(__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Dict = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
175
"""simple docstring""" from itertools import permutations def snake_case_ ( A_ : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _lowerCamelCase : Any = [7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case_ ( A_ : int = 10 ): '''simple docstring''' return sum( int(''''''.join(map(A_, A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
175
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''DeiTFeatureExtractor'''] lowerCamelCase_ = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "bert-generation" def __init__( self , __A=5_0358 , __A=1024 , __A=24 , __A=16 , __A=4096 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.0_2 , __A=1E-12 , __A=0 , __A=2 , __A=1 , __A="absolute" , __A=True , **__A , ) -> Tuple: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCAmelCase_ :Any = vocab_size lowerCAmelCase_ :List[Any] = hidden_size lowerCAmelCase_ :Optional[int] = num_hidden_layers lowerCAmelCase_ :int = num_attention_heads lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Optional[Any] = intermediate_size lowerCAmelCase_ :List[Any] = hidden_dropout_prob lowerCAmelCase_ :int = attention_probs_dropout_prob lowerCAmelCase_ :Tuple = max_position_embeddings lowerCAmelCase_ :List[str] = initializer_range lowerCAmelCase_ :Union[str, Any] = layer_norm_eps lowerCAmelCase_ :List[str] = position_embedding_type lowerCAmelCase_ :Optional[int] = use_cache
84
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ = logging.get_logger(__name__) A__ = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class a ( __lowerCamelCase , __lowerCamelCase ): __lowerCAmelCase : Any = """dinat""" __lowerCAmelCase : Dict = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Dict ,__lowercase :Optional[int]=4 ,__lowercase :Union[str, Any]=3 ,__lowercase :List[Any]=6_4 ,__lowercase :int=[3, 4, 6, 5] ,__lowercase :str=[2, 4, 8, 1_6] ,__lowercase :List[str]=7 ,__lowercase :List[str]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] ,__lowercase :Union[str, Any]=3.0 ,__lowercase :Optional[int]=True ,__lowercase :Optional[Any]=0.0 ,__lowercase :Optional[int]=0.0 ,__lowercase :Any=0.1 ,__lowercase :List[Any]="gelu" ,__lowercase :int=0.02 ,__lowercase :Dict=1e-5 ,__lowercase :List[Any]=0.0 ,__lowercase :Dict=None ,__lowercase :Optional[int]=None ,**__lowercase :Dict ,): super().__init__(**__lowercase ) snake_case__ : str = patch_size snake_case__ : int = num_channels snake_case__ : List[str] = embed_dim snake_case__ : Any = depths snake_case__ : Optional[int] = len(__lowercase ) snake_case__ : Any = num_heads snake_case__ : Dict = kernel_size snake_case__ : Union[str, Any] = dilations snake_case__ : int = mlp_ratio snake_case__ : Any = qkv_bias snake_case__ : Dict = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : str = drop_path_rate snake_case__ : str = hidden_act snake_case__ : Optional[Any] = layer_norm_eps snake_case__ : Tuple = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : Any = int(embed_dim * 2 ** (len(__lowercase ) - 1) ) snake_case__ : Tuple = layer_scale_init_value snake_case__ : Optional[Any] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 ,len(__lowercase ) + 1 )] snake_case__ , snake_case__ : Tuple = get_aligned_output_features_output_indices( out_features=__lowercase ,out_indices=__lowercase ,stage_names=self.stage_names )
44
A__ = 0 # The first color of the flag. A__ = 1 # The second color of the flag. A__ = 2 # The third color of the flag. A__ = (red, white, blue) def _lowerCAmelCase ( __lowerCAmelCase ) -> list: """simple docstring""" if not sequence: return [] if len(__lowerCAmelCase ) == 1: return list(__lowerCAmelCase ) snake_case__ : List[Any] = 0 snake_case__ : str = len(__lowerCAmelCase ) - 1 snake_case__ : List[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case__ , snake_case__ : List[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case__ , snake_case__ : int = sequence[high], sequence[mid] high -= 1 else: snake_case__ : List[Any] = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() A__ = input('''Enter numbers separated by commas:\n''').strip() A__ = [int(item.strip()) for item in user_input.split(''',''')] print(f"""{dutch_national_flag_sort(unsorted)}""")
44
1
def lowerCAmelCase ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_0_0, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
169
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
169
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.9 , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = patch_size snake_case_ = tubelet_size snake_case_ = num_frames snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case_ = (image_size // patch_size) ** 2 snake_case_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case_ = int(mask_ratio * self.seq_length ) def UpperCamelCase__ ( self ): snake_case_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = VideoMAEModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = VideoMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case_ = torch.ones((self.num_masks,) ) snake_case_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case_ = mask.expand(self.batch_size , -1 ).bool() snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) # model only returns predictions for masked patches snake_case_ = mask.sum().item() snake_case_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = VideoMAEModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): snake_case_ = copy.deepcopy(_UpperCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case_ = torch.ones((self.model_tester.num_masks,) ) snake_case_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case_ = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case_ = bool_masked_pos.to(_UpperCAmelCase ) if return_labels: if model_class in [ *get_values(_UpperCAmelCase ), ]: snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) @slow def UpperCamelCase__ ( self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = VideoMAEModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase__ ( self ): if not self.has_attentions: pass else: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = self.model_tester.seq_length - self.model_tester.num_masks snake_case_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case_ = len(_UpperCAmelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase__ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) snake_case_ = self.model_tester.seq_length - self.model_tester.num_masks snake_case_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self ): pass def __lowerCAmelCase ()-> Optional[int]: """simple docstring""" snake_case_ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case_ = np.load(SCREAMING_SNAKE_CASE ) return list(SCREAMING_SNAKE_CASE ) @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): snake_case_ = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( _UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_video() snake_case_ = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase ) # verify the logits snake_case_ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): snake_case_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(_UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_video() snake_case_ = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # add boolean mask, indicating which patches to mask snake_case_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case_ = torch.load(_UpperCAmelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase ) # verify the logits snake_case_ = torch.Size([1, 14_08, 15_36] ) snake_case_ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=_UpperCAmelCase ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case_ = torch.tensor([0.5_142] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _UpperCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=_UpperCAmelCase ).to( _UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase ) snake_case_ = torch.tensor(torch.tensor([0.6_469] ) , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _UpperCAmelCase , atol=1E-4 ) )
359
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self , _UpperCAmelCase ): if type(_UpperCAmelCase ) is dict: return {k: self.to_torch(_UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_UpperCAmelCase , device=self.unet.device ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, val in cond.items(): snake_case_ = val.clone() return x_in def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(_UpperCAmelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 ): # normalize the observations and create batch dimension snake_case_ = self.normalize(_UpperCAmelCase , '''observations''' ) snake_case_ = obs[None].repeat(_UpperCAmelCase , axis=0 ) snake_case_ = {0: self.to_torch(_UpperCAmelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(_UpperCAmelCase , device=self.unet.device ) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=_UpperCAmelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(_UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , _UpperCAmelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
267
0
from math import sqrt def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 0 for i in range(1 ,int(sqrt(lowerCamelCase_) + 1)): if n % i == 0 and i != sqrt(lowerCamelCase_): total += i + n // i elif i == sqrt(lowerCamelCase_): total += i return total - n def lowerCAmelCase__ ( lowerCamelCase_ : List[str] = 10000): '''simple docstring''' lowerCAmelCase__ : List[Any] = sum( i for i in range(1 ,lowerCamelCase_) if sum_of_divisors(sum_of_divisors(lowerCamelCase_)) == i and sum_of_divisors(lowerCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
129
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a : Optional[Any] = logging.get_logger(__name__) __a : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) else: return _interleave_iterable_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase ) else: return _concatenate_iterable_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase )
210
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _SCREAMING_SNAKE_CASE = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _SCREAMING_SNAKE_CASE = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __lowerCamelCase ( __lowerCAmelCase : list[list[int]] ) -> list[list[int]]: snake_case = [] for i in range(len(__lowerCamelCase ) ): snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowerCamelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowerCamelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowerCamelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowerCamelCase ) return next_generation def __lowerCamelCase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int ) -> list[Image.Image]: snake_case = [] for _ in range(__lowerCamelCase ): # Create output image snake_case = Image.new("""RGB""" , (len(cells[0] ), len(__lowerCamelCase )) ) snake_case = img.load() # Save cells to image for x in range(len(__lowerCamelCase ) ): for y in range(len(cells[0] ) ): snake_case = 2_55 - cells[y][x] * 2_55 snake_case = (colour, colour, colour) # Save image images.append(__lowerCamelCase ) snake_case = new_generation(__lowerCamelCase ) return images if __name__ == "__main__": _SCREAMING_SNAKE_CASE = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
367
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a_ = logging.get_logger('transformers.models.speecht5') a_ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } a_ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } a_ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } a_ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } a_ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } a_ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } a_ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } a_ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = [] a_ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] a_ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] a_ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] a_ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Tuple ): for attribute in key.split('.' ): UpperCamelCase_ : Any = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: UpperCamelCase_ : Tuple = getattr(lowerCamelCase , lowerCamelCase ).shape else: UpperCamelCase_ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase_ : List[str] = value elif weight_type == "weight_g": UpperCamelCase_ : List[str] = value elif weight_type == "weight_v": UpperCamelCase_ : str = value elif weight_type == "bias": UpperCamelCase_ : List[str] = value elif weight_type == "running_mean": UpperCamelCase_ : Union[str, Any] = value elif weight_type == "running_var": UpperCamelCase_ : List[Any] = value elif weight_type == "num_batches_tracked": UpperCamelCase_ : Dict = value else: UpperCamelCase_ : Optional[int] = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase_, UpperCamelCase_ : int = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any ): UpperCamelCase_ : Any = [] if task == "s2t": UpperCamelCase_ : str = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase_ : str = MAPPING_S2T UpperCamelCase_ : str = IGNORE_KEYS_S2T elif task == "t2s": UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Union[str, Any] = MAPPING_T2S UpperCamelCase_ : str = IGNORE_KEYS_T2S elif task == "s2s": UpperCamelCase_ : List[str] = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase_ : List[Any] = MAPPING_S2S UpperCamelCase_ : Any = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(F"{name} was ignored" ) continue UpperCamelCase_ : List[str] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_ : Any = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCamelCase_, UpperCamelCase_ : Any = key.split('.*.' ) if prefix in name and suffix in name: UpperCamelCase_ : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCamelCase_ : Optional[Any] = True if "*" in mapped_key: UpperCamelCase_ : Tuple = name.split(lowerCamelCase )[0].split('.' )[-2] UpperCamelCase_ : List[Any] = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: UpperCamelCase_ : str = 'weight_g' elif "weight_v" in name: UpperCamelCase_ : Tuple = 'weight_v' elif "bias" in name: UpperCamelCase_ : int = 'bias' elif "weight" in name: UpperCamelCase_ : Tuple = 'weight' elif "running_mean" in name: UpperCamelCase_ : Tuple = 'running_mean' elif "running_var" in name: UpperCamelCase_ : Union[str, Any] = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase_ : Optional[int] = 'num_batches_tracked' else: UpperCamelCase_ : int = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] ): UpperCamelCase_ : Union[str, Any] = full_name.split('conv_layers.' )[-1] UpperCamelCase_ : Dict = name.split('.' ) UpperCamelCase_ : Union[str, Any] = int(items[0] ) UpperCamelCase_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase_ : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase_ : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) UpperCamelCase_ : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase_ : int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def __lowercase ( lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Tuple=None , ): if config_path is not None: UpperCamelCase_ : Tuple = SpeechTaConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_ : int = SpeechTaConfig() if task == "s2t": UpperCamelCase_ : Any = config.max_text_positions UpperCamelCase_ : Optional[Any] = SpeechTaForSpeechToText(lowerCamelCase ) elif task == "t2s": UpperCamelCase_ : Union[str, Any] = 1876 UpperCamelCase_ : List[Any] = 600 UpperCamelCase_ : str = config.max_speech_positions UpperCamelCase_ : List[Any] = SpeechTaForTextToSpeech(lowerCamelCase ) elif task == "s2s": UpperCamelCase_ : List[str] = 1876 UpperCamelCase_ : Optional[int] = config.max_speech_positions UpperCamelCase_ : Optional[Any] = SpeechTaForSpeechToSpeech(lowerCamelCase ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: UpperCamelCase_ : List[Any] = SpeechTaTokenizer(lowerCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCamelCase_ : Optional[Any] = AddedToken('<mask>' , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) UpperCamelCase_ : Any = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) UpperCamelCase_ : Any = SpeechTaFeatureExtractor() UpperCamelCase_ : Union[str, Any] = SpeechTaProcessor(tokenizer=lowerCamelCase , feature_extractor=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) UpperCamelCase_ : Any = torch.load(lowerCamelCase ) recursively_load_weights(fairseq_checkpoint['model'] , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) a_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
175
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ): UpperCamelCase_ : Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] UpperCamelCase_ : Dict = TensorFlowBenchmark(args=lowerCamelCase ) try: UpperCamelCase_ : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase_ : Any = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase_ : Optional[int] = ' '.join(str(lowerCamelCase ).split(' ' )[:-1] ) UpperCamelCase_ : Any = '' UpperCamelCase_ : Any = eval(str(lowerCamelCase ).split(' ' )[-1] ) UpperCamelCase_ : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_ : List[str] = full_error_msg + begin_error_msg + str(lowerCamelCase ) raise ValueError(lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
175
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict[Optional[str], Type[Formatter]] = {} lowerCamelCase__ : Dict[Optional[str], str] = {} lowerCamelCase__ : Dict[Optional[str], Exception] = {} def UpperCAmelCase_ ( __UpperCAmelCase : type , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[List[str]] = None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) SCREAMING_SNAKE_CASE_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) SCREAMING_SNAKE_CASE_ = format_type def UpperCAmelCase_ ( __UpperCAmelCase : Exception , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[List[str]] = None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): SCREAMING_SNAKE_CASE_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCamelCase__ : Optional[int] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCamelCase__ : Dict = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCamelCase__ : Optional[Any] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase_ ( __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : Dict ) -> Formatter: SCREAMING_SNAKE_CASE_ = get_format_type_from_alias(__UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
210
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase__ : Dict = TypeVar('T') def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return (position - 1) // 2 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return (2 * position) + 1 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return (2 * position) + 2 class lowerCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 def __len__( self : Optional[Any] ): return self.elements def __repr__( self : Optional[int] ): return str(self.heap ) def lowerCAmelCase_ ( self : Union[str, Any] ): # Check if the priority queue is empty return self.elements == 0 def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : T , _lowerCAmelCase : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE_ = self.elements self.elements += 1 self._bubble_up(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[0] self._bubble_down(_lowerCAmelCase ) return elem def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : T , _lowerCAmelCase : int ): # Update the weight of the given key SCREAMING_SNAKE_CASE_ = self.position_map[elem] SCREAMING_SNAKE_CASE_ = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE_ = get_parent_position(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : T ): # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE_ = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE_ = get_parent_position(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_up(_lowerCAmelCase ) return None def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : T ): # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE_ = self.position_map[elem] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ = get_child_left_position(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = get_child_right_position(_lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_left_position] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) return None def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # Swap the nodes at the given positions SCREAMING_SNAKE_CASE_ = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE_ = nodea_pos SCREAMING_SNAKE_CASE_ = nodea_pos class lowerCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 def __repr__( self : Optional[int] ): return str(self.connections ) def __len__( self : Tuple ): return self.nodes def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE_ = {} self.nodes += 1 def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : T , _lowerCAmelCase : T , _lowerCAmelCase : int ): # Add an edge between 2 nodes in the graph self.add_node(_lowerCAmelCase ) self.add_node(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def UpperCAmelCase_ ( __UpperCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: SCREAMING_SNAKE_CASE_ = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE_ = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCAmelCase , __UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE_ = priority_queue.extract_min() SCREAMING_SNAKE_CASE_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ = node return dist, parent
210
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase : ClassVar[Features] = Features({"image": Image()} ) _UpperCamelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) _UpperCamelCase : str = "image" _UpperCamelCase : str = "labels" def __A ( self , a__ ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , a__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) _lowerCAmelCase : str = copy.deepcopy(self ) _lowerCAmelCase : Dict = self.label_schema.copy() _lowerCAmelCase : str = features[self.label_column] _lowerCAmelCase : Optional[Any] = label_schema return task_template @property def __A ( self ): return { self.image_column: "image", self.label_column: "labels", }
44
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = XGLMTokenizer _UpperCamelCase : List[Any] = XGLMTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : Tuple = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : List[str] = """<pad>""" _lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(a__ ) , 1008 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __A ( self ): _lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ ) _lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __A ( self ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def __A ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) _lowerCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=a__ ) _lowerCAmelCase : List[str] = pickle.dumps(a__ ) pickle.loads(a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[Any] = tokenizer.tokenize(a__ ) _lowerCAmelCase : Tuple = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : str = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : int = self.get_rust_tokenizer() _lowerCAmelCase : Dict = tokenizer.encode(a__ ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __A ( self ): _lowerCAmelCase : int = """Hello World!""" _lowerCAmelCase : Optional[int] = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): _lowerCAmelCase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off _lowerCAmelCase : List[str] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : List[str] = { """input_ids""": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""facebook/xglm-564M""" , padding=a__ , )
44
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = FunnelTokenizer UpperCamelCase_ : int = FunnelTokenizerFast UpperCamelCase_ : List[Any] = True UpperCamelCase_ : int = True def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase : List[str] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowerCAmelCase ( self : Tuple , **lowerCAmelCase__ : Tuple ) -> Optional[int]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = "UNwant\u00E9d,running" _UpperCAmelCase : Tuple = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 1_0, 8, 9] ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: _UpperCAmelCase : Optional[Any] = tokenizer("UNwant\u00E9d,running" ) _UpperCAmelCase : List[Any] = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) _UpperCAmelCase : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
import random def __UpperCAmelCase ( a_): snake_case_ = num - 1 snake_case_ = 0 while s % 2 == 0: snake_case_ = s // 2 t += 1 for _ in range(5): snake_case_ = random.randrange(2 , num - 1) snake_case_ = pow(a__ , a__ , a__) if v != 1: snake_case_ = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ = i + 1 snake_case_ = (v**2) % num return True def __UpperCAmelCase ( a_): if num < 2: return False snake_case_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a__) def __UpperCAmelCase ( a_ = 10_24): while True: snake_case_ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize)) if is_prime_low_num(a__): return num if __name__ == "__main__": lowercase = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
178
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: UpperCAmelCase : Optional[Any] = None try: import msvcrt except ImportError: UpperCAmelCase : List[Any] = None try: import fcntl except ImportError: UpperCAmelCase : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCAmelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ UpperCAmelCase : List[Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] UpperCAmelCase : Tuple = '3.0.12' UpperCAmelCase : str = None def a__ ( ): """simple docstring""" global _logger __SCREAMING_SNAKE_CASE = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = lock_file return None def __str__( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = lock return None def __enter__( self : List[str] ) -> List[Any]: """simple docstring""" return self.lock def __exit__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" self.lock.release() return None class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __SCREAMING_SNAKE_CASE = self.hash_filename_if_too_long(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # The path to the lock file. __SCREAMING_SNAKE_CASE = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __SCREAMING_SNAKE_CASE = None # The default timeout value. __SCREAMING_SNAKE_CASE = timeout # We use this lock primarily for the lock counter. __SCREAMING_SNAKE_CASE = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __SCREAMING_SNAKE_CASE = 0 return None @property def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" return self._lock_file @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._timeout @timeout.setter def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = float(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" raise NotImplementedError() @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._lock_file_fd is not None def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=0.05 ) -> Optional[Any]: """simple docstring""" if timeout is None: __SCREAMING_SNAKE_CASE = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __SCREAMING_SNAKE_CASE = id(self ) __SCREAMING_SNAKE_CASE = self._lock_file __SCREAMING_SNAKE_CASE = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__SCREAMING_SNAKE_CASE ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __SCREAMING_SNAKE_CASE = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Dict: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __SCREAMING_SNAKE_CASE = id(self ) __SCREAMING_SNAKE_CASE = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() __SCREAMING_SNAKE_CASE = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : str ) -> Union[str, Any]: """simple docstring""" self.release(force=__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.basename(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > max_length and max_length > 0: __SCREAMING_SNAKE_CASE = os.path.dirname(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = str(hash(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = filename[: max_length - len(__SCREAMING_SNAKE_CASE ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return path class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=-1 , __SCREAMING_SNAKE_CASE : Dict=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: try: msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._lock_file_fd __SCREAMING_SNAKE_CASE = None msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_UNLCK , 1 ) os.close(__SCREAMING_SNAKE_CASE ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = os.statvfs(os.path.dirname(__SCREAMING_SNAKE_CASE ) ).f_namemax super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) try: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self._lock_file_fd __SCREAMING_SNAKE_CASE = None fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) os.close(__SCREAMING_SNAKE_CASE ) return None class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" os.close(self._lock_file_fd ) __SCREAMING_SNAKE_CASE = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCAmelCase : Dict = None if msvcrt: UpperCAmelCase : Optional[int] = WindowsFileLock elif fcntl: UpperCAmelCase : Optional[Any] = UnixFileLock else: UpperCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
267
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __A : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Any=64 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Any=[1, 16, 4, 4] , UpperCAmelCase_ : Optional[int]=None , ) ->str: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size snake_case_ = (self.image_size // 32) ** 2 snake_case_ = num_patches + 1 def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase_ , ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" snake_case_ = ViTHybridModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) ->int: """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = ViTHybridForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowercase: int = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __lowercase: Optional[Any] = False __lowercase: List[Any] = False __lowercase: int = False def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = ViTHybridModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" pass def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: snake_case_ = model_class(config=UpperCAmelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": snake_case_ = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTHybridModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> Tuple: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : int ) ->int: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" snake_case_ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow @require_accelerate def lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" snake_case_ = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) snake_case_ = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) snake_case_ = model(**UpperCAmelCase_ ) snake_case_ = outputs.logits # model predicts one of the 1000 ImageNet classes snake_case_ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
233
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case_ = """""" else: snake_case_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = dct.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = val def _a ( ) -> Dict: snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ) -> Any: snake_case_ = ViTConfig() # patch_size if model_name[-1] == "8": snake_case_ = 8 # set labels if required if not base_model: snake_case_ = 1_000 snake_case_ = """huggingface/label-files""" snake_case_ = """imagenet-1k-id2label.json""" snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case_ = 384 snake_case_ = 1_536 snake_case_ = 12 snake_case_ = 6 # load original model from torch hub snake_case_ = torch.hub.load("""facebookresearch/dino:main""" , _SCREAMING_SNAKE_CASE ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = original_model.state_dict() if base_model: remove_classification_head_(_SCREAMING_SNAKE_CASE ) snake_case_ = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model if base_model: snake_case_ = ViTModel(_SCREAMING_SNAKE_CASE , add_pooling_layer=_SCREAMING_SNAKE_CASE ).eval() else: snake_case_ = ViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor snake_case_ = ViTImageProcessor() snake_case_ = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ = encoding["""pixel_values"""] snake_case_ = model(_SCREAMING_SNAKE_CASE ) if base_model: snake_case_ = original_model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: snake_case_ = original_model(_SCREAMING_SNAKE_CASE ) assert logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
233
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ )-> YolosConfig: '''simple docstring''' a : Any = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: a : List[str] = 192 a : int = 768 a : Dict = 12 a : Any = 3 a : List[Any] = [800, 1_333] a : List[str] = False elif yolos_name == "yolos_s_dWr": a : str = 330 a : Optional[int] = 14 a : Dict = 6 a : Union[str, Any] = 1_320 elif "yolos_s" in yolos_name: a : Any = 384 a : List[Any] = 1_536 a : Any = 12 a : List[Any] = 6 elif "yolos_b" in yolos_name: a : Dict = [800, 1_344] a : Tuple = 91 a : Union[str, Any] = "huggingface/label-files" a : str = "coco-detection-id2label.json" a : Union[str, Any] = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : int = {int(A_ ): v for k, v in idalabel.items()} a : List[Any] = idalabel a : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( A_ , A_ , A_ = False )-> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a : Optional[Any] = in_proj_weight[: config.hidden_size, :] a : Any = in_proj_bias[: config.hidden_size] a : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : Any = in_proj_weight[-config.hidden_size :, :] a : str = in_proj_bias[-config.hidden_size :] def lowercase ( A_ )-> str: '''simple docstring''' if "backbone" in name: a : Any = name.replace("backbone" , "vit" ) if "cls_token" in name: a : str = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: a : Union[str, Any] = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: a : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: a : Optional[Any] = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: a : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: a : Optional[int] = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: a : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a : Optional[int] = name.replace("attn" , "attention.self" ) if "norm1" in name: a : List[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a : List[Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a : int = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a : str = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: a : Union[str, Any] = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: a : int = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: a : Union[str, Any] = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( A_ , A_ )-> dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): a : Optional[int] = orig_state_dict.pop(A_ ) if "qkv" in key: a : Optional[Any] = key.split("." ) a : List[str] = int(key_split[2] ) a : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: a : Union[str, Any] = val[:dim, :] a : Union[str, Any] = val[ dim : dim * 2, : ] a : List[str] = val[-dim:, :] else: a : Optional[Any] = val[:dim] a : List[Any] = val[dim : dim * 2] a : int = val[-dim:] else: a : int = val return orig_state_dict def lowercase ( )-> torch.Tensor: '''simple docstring''' a : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" a : str = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase ( A_ , A_ , A_ , A_ = False )-> Any: '''simple docstring''' a : str = get_yolos_config(A_ ) # load original state_dict a : List[str] = torch.load(A_ , map_location="cpu" )["model"] # load 🤗 model a : List[str] = YolosForObjectDetection(A_ ) model.eval() a : Tuple = convert_state_dict(A_ , A_ ) model.load_state_dict(A_ ) # Check outputs on an image, prepared by YolosImageProcessor a : Dict = 800 if yolos_name != "yolos_ti" else 512 a : List[str] = YolosImageProcessor(format="coco_detection" , size=A_ ) a : Optional[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) a : str = model(**A_ ) a , a : Tuple = outputs.logits, outputs.pred_boxes a , a : Dict = None, None if yolos_name == "yolos_ti": a : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) a : int = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": a : Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) a : str = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": a : Optional[Any] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) a : Optional[int] = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": a : List[str] = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) a : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": a : Any = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) a : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , A_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , A_ , atol=1e-4 ) Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if push_to_hub: a : Tuple = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) a : Any = model_mapping[yolos_name] image_processor.push_to_hub(A_ , organization="hustvl" ) model.push_to_hub(A_ , organization="hustvl" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
40
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowercase : Dict = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: A : Union[str, Any] = os.path.abspath(snake_case__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) A : Any = torch.load(snake_case__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean A : Tuple = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var A : Dict = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding A : Any = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 A : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): A : List[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): A : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: A : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} A : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: A : List[str] = flax_model.params['''params'''] else: A : Dict = flax_model.params A : List[Any] = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(snake_case__ ) A : int = {} A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Any = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Dict = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: A : Tuple = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch # Load the index A : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils A : List[str] = torch.load(snake_case__ ) A : int = {k: v.numpy() for k, v in pt_state_dict.items()} A : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : Optional[int] = flax_model.params['''params'''] A : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: A : Dict = flax_model.params A : Tuple = flatten_dict(snake_case__ ) A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Any = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = os.path.abspath(snake_case__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , '''rb''' ) as state_f: try: A : int = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) A : Optional[Any] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A : Union[str, Any] = flatten_dict(snake_case__ ) A : List[Any] = pt_model.state_dict() A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) A : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys A : int = [] A : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: A : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer A : Tuple = flax_key_tuple[:-1] + ('''weight''',) A : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: A : Union[str, Any] = '''.'''.join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. A : int = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: A : Optional[int] = key.split('''.''' ) A : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: A : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: A : List[Any] = key_components[-2] + '''_v''' if name is not None: A : str = key_components[:-3] + [name] A : Optional[Any] = '''.'''.join(snake_case__ ) A : Optional[Any] = key if flax_key in special_pt_names: A : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A : Dict = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A : List[Any] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
3
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __lowercase = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __lowercase = f'''https://www.google.com/search?q={query}&num=100''' __lowercase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __lowercase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __lowercase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
226
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : Union[str, Any] = torch.nn.Linear(2 , 4 ) a : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0 ) a : Union[str, Any] = torch.optim.lr_scheduler.OneCycleLR(A_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) a : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( A_ )-> List[Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A_ ) class _A ( _a ): """simple docstring""" @require_cuda def __snake_case ( self : Any): a : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase): a : Any = Accelerator(cpu=__UpperCAmelCase) def __snake_case ( self : List[Any]): a : str = Accelerator() a : Optional[Any] = GradientState() assert state.num_steps == 1 a : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True a : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __snake_case ( self : str): a : int = Accelerator() a , a , a , a , a : Tuple = create_components() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def __snake_case ( self : Dict): a : Dict = Accelerator() a , a , a , a , a : Any = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def __snake_case ( self : int): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): pass with patch("torch.cuda.set_device" , __UpperCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): a : int = Accelerator() self.assertEqual(str(accelerator.state.device) , "cuda:64") def __snake_case ( self : List[str]): a : Tuple = Accelerator() a , a , a , a , a : Optional[Any] = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Dict = get_signature(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) def __snake_case ( self : Optional[int]): a : str = Accelerator() a , a , a , a , a : Dict = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = get_signature(__UpperCAmelCase) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]): a : Tuple = {"class_name": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , "data.json") , "w") as f: json.dump(__UpperCAmelCase , __UpperCAmelCase) # loading hook def load_config(__UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]): with open(os.path.join(__UpperCAmelCase , "data.json") , "r") as f: a : Optional[Any] = json.load(__UpperCAmelCase) a : Tuple = config["class_name"] a : Optional[int] = accelerator.register_save_state_pre_hook(__UpperCAmelCase) a : Tuple = accelerator.register_load_state_pre_hook(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : int = "random" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : Dict = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def __snake_case ( self : Optional[Any]): a : List[str] = Accelerator() a , a , a , a , a : int = create_components() a : Tuple = None # This should work a , a , a , a , a , a : Any = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(dummy_obj is None) def __snake_case ( self : List[str]): a : str = Accelerator() a , a , a , a , a : List[Any] = create_components() a : Union[str, Any] = [1, 2, 3] # This should work a , a , a , a , a , a : str = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map={"": 0} , ) a : Tuple = Accelerator() # This should work a : List[Any] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Dict = Accelerator() with init_empty_weights(): a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Union[str, Any] = infer_auto_device_map(__UpperCAmelCase) a : str = "cpu" a : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase) # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb @require_multi_gpu def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Union[str, Any] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Any = infer_auto_device_map(__UpperCAmelCase) a : Dict = 1 a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : int = Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __snake_case ( self : Tuple): from transformers import AutoModelForCausalLM with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) a : Tuple = infer_auto_device_map(__UpperCAmelCase) a : str = 1 a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : str = Accelerator() # This should work a : Any = accelerator.prepare(__UpperCAmelCase) @require_cuda def __snake_case ( self : List[Any]): a : Tuple = torch.nn.Linear(10 , 10) a : int = torch.optim.SGD(model.parameters() , lr=0.01) a : Optional[Any] = Accelerator(cpu=__UpperCAmelCase) a : List[str] = accelerator.prepare(__UpperCAmelCase)
226
1
from __future__ import annotations def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = str(lowercase ) return len(lowercase ) == 9 and set(lowercase ) == set('''123456789''' ) def UpperCAmelCase ( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): __lowercase = 100002 * base_num if is_9_pandigital(lowercase ): return candidate for base_num in range(333 , 99 , -1 ): __lowercase = 1002003 * base_num if is_9_pandigital(lowercase ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
210
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCamelCase : """simple docstring""" __a : Tuple = OPTConfig __a : int = {} __a : Dict = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=16 , lowerCAmelCase__=16 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __lowercase = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = TFOPTModel(config=lowerCAmelCase__ ) __lowercase = inputs_dict['''input_ids'''] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['''attention_mask'''][:1, :] __lowercase = 1 # first forward pass __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) @require_tf class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a : Dict = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a : List[str] = False __a : Optional[Any] = False __a : Union[str, Any] = False __a : List[Any] = 10 def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase = model_class(config=lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__ ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__ ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : List[str] = 99 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowercase = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).last_hidden_state __lowercase = (1, 11, 5_12) self.assertEqual(output.shape , lowerCAmelCase__ ) __lowercase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = xla_generate(lowerCAmelCase__ , lowerCAmelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().setUp() __lowercase = '''facebook/opt-350m''' def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''facebook/opt-125m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) __lowercase = '''left''' # use different length sentences to test batching __lowercase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ ) __lowercase = inputs['''input_ids'''] __lowercase = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''] ) __lowercase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowercase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
210
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: int = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __A ( a__ ): def __init__(self : List[Any] , *__a : Dict , **__a : Optional[int] ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _lowercase (self : int , __a : Optional[Any]=None ): UpperCAmelCase_ = {} if top_k is not None: UpperCAmelCase_ = top_k return {}, {}, postprocess_params def __call__(self : Any , __a : Union[str, Any] , **__a : Optional[Any] ): return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def _lowercase (self : Optional[Any] , __a : Optional[int] ): UpperCAmelCase_ = load_image(_lowerCamelCase ) UpperCAmelCase_ = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) return model_inputs def _lowercase (self : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = self.model(**_lowerCamelCase ) return model_outputs def _lowercase (self : List[Any] , __a : Optional[int] , __a : Dict=5 ): if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase_ = probs.topk(_lowerCamelCase ) elif self.framework == "tf": UpperCAmelCase_ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase_ = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
369
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_: Optional[int] ={ 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : List[Any] , __a : Dict , __a : int="<|endoftext|>" , __a : Union[str, Any]="<|endoftext|>" , __a : int="<|startoftext|>" , __a : Tuple="<|endoftext|>" , __a : Optional[int]=False , **__a : int , ): super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _lowercase (self : List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def _lowercase (self : List[Any] , __a : List[str] ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : List[Any] ): return self.subword_tokenizer.convert_id_to_token(__a ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = "".join(__a ).strip() return out_string def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self : int , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = 0 if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : Dict , __a : Any , __a : int ): UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Dict ): return len(self.ids_to_tokens ) def _lowercase (self : str , __a : Union[str, Any] ): UpperCAmelCase_ = self.content_repattera.sub("<URL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , __a ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : str=False ): UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(__a , __a ) if clean: UpperCAmelCase_ = self.clean_text(__a ) def check_simbol(__a : List[Any] ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(__a : Tuple ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(__a ): UpperCAmelCase_ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def _lowercase (self : int , __a : Optional[Any] , __a : Optional[int]="\n" ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(__a ) return text
106
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = FunnelTokenizer __UpperCAmelCase : Optional[int] = FunnelTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : str = True def _lowercase ( self : str ): super().setUp() __lowercase = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowercase = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowercase ( self : List[Any], **UpperCAmelCase__ : int ): return FunnelTokenizer.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], **UpperCAmelCase__ : Union[str, Any] ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def _lowercase ( self : Any, UpperCAmelCase__ : Dict ): __lowercase = "UNwant\u00E9d,running" __lowercase = "unwanted, running" return input_text, output_text def _lowercase ( self : str ): __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase__, ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ), [7, 4, 5, 1_0, 8, 9] ) def _lowercase ( self : Optional[int] ): __lowercase = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: __lowercase = tokenizer("UNwant\u00E9d,running" ) __lowercase = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len ) __lowercase = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len )
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Any = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
72
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger a : Any = get_logger(__name__) a : Union[str, Any] = Path(__file__).parent / 'model_card_template.md' a : List[Any] = uuida().hex a : List[str] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES a : str = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES a : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __magic_name__ ( __UpperCAmelCase = None ) -> str: '''simple docstring''' snake_case_ = F"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"; torch/{_torch_version}" if is_flax_available(): ua += F"; jax/{_jax_version}" ua += F"; flax/{_flax_version}" if is_onnx_available(): ua += F"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''', '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCAmelCase, __UpperCAmelCase ): ua += "; " + "; ".join(F"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(__UpperCAmelCase, __UpperCAmelCase ): ua += "; " + user_agent return ua def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = None, __UpperCAmelCase = None ) -> Optional[Any]: '''simple docstring''' if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(__UpperCAmelCase )['''name'''] return F"{username}/{model_id}" else: return F"{organization}/{model_id}" def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__UpperCAmelCase, '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(__UpperCAmelCase, '''hub_token''' ) else None snake_case_ = get_full_repo_name(__UpperCAmelCase, token=__UpperCAmelCase ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''', license='''apache-2.0''', library_name='''diffusers''', tags=[], datasets=args.dataset_name, metrics=[], ), template_path=__UpperCAmelCase, model_name=__UpperCAmelCase, repo_name=__UpperCAmelCase, dataset_name=args.dataset_name if hasattr(__UpperCAmelCase, '''dataset_name''' ) else None, learning_rate=args.learning_rate, train_batch_size=args.train_batch_size, eval_batch_size=args.eval_batch_size, gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCAmelCase, '''gradient_accumulation_steps''' ) else None ), adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase, '''adam_beta1''' ) else None, adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase, '''adam_beta2''' ) else None, adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCAmelCase, '''adam_weight_decay''' ) else None, adam_epsilon=args.adam_epsilon if hasattr(__UpperCAmelCase, '''adam_epsilon''' ) else None, lr_scheduler=args.lr_scheduler if hasattr(__UpperCAmelCase, '''lr_scheduler''' ) else None, lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCAmelCase, '''lr_warmup_steps''' ) else None, ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCAmelCase, '''ema_inv_gamma''' ) else None, ema_power=args.ema_power if hasattr(__UpperCAmelCase, '''ema_power''' ) else None, ema_max_decay=args.ema_max_decay if hasattr(__UpperCAmelCase, '''ema_max_decay''' ) else None, mixed_precision=args.mixed_precision, ) snake_case_ = os.path.join(args.output_dir, '''README.md''' ) model_card.save(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = None ) -> Optional[Any]: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(__UpperCAmelCase ).as_posix() ) snake_case_ = re.search(r'''snapshots/([^/]+)/''', __UpperCAmelCase ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. a : str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) a : Optional[Any] = os.path.join(hf_cache_home, 'diffusers') def __magic_name__ ( __UpperCAmelCase = None, __UpperCAmelCase = None ) -> None: '''simple docstring''' if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(__UpperCAmelCase ).expanduser() snake_case_ = Path(__UpperCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(__UpperCAmelCase ) new_blob_path.parent.mkdir(parents=__UpperCAmelCase, exist_ok=__UpperCAmelCase ) os.replace(__UpperCAmelCase, __UpperCAmelCase ) try: os.symlink(__UpperCAmelCase, __UpperCAmelCase ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). a : Tuple = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): a : Tuple = 0 else: with open(cache_version_file) as f: try: a : Optional[Any] = int(f.read()) except ValueError: a : List[str] = 0 if cache_version < 1: a : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: a : str = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = None ) -> str: '''simple docstring''' if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(__UpperCAmelCase ) return weights_name def __magic_name__ ( __UpperCAmelCase, *, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None, ) -> int: '''simple docstring''' snake_case_ = str(__UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCAmelCase ): if os.path.isfile(os.path.join(__UpperCAmelCase, __UpperCAmelCase ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) ): snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) return model_file else: raise EnvironmentError( F"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCAmelCase ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( __UpperCAmelCase, filename=_add_variant(__UpperCAmelCase, __UpperCAmelCase ), cache_dir=__UpperCAmelCase, force_download=__UpperCAmelCase, proxies=__UpperCAmelCase, resume_download=__UpperCAmelCase, local_files_only=__UpperCAmelCase, use_auth_token=__UpperCAmelCase, user_agent=__UpperCAmelCase, subfolder=__UpperCAmelCase, revision=revision or commit_hash, ) warnings.warn( F"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.", __UpperCAmelCase, ) return model_file except: # noqa: E722 warnings.warn( F"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCAmelCase, __UpperCAmelCase )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__UpperCAmelCase, __UpperCAmelCase )}' so that the correct variant file can be added.", __UpperCAmelCase, ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( __UpperCAmelCase, filename=__UpperCAmelCase, cache_dir=__UpperCAmelCase, force_download=__UpperCAmelCase, proxies=__UpperCAmelCase, resume_download=__UpperCAmelCase, local_files_only=__UpperCAmelCase, use_auth_token=__UpperCAmelCase, user_agent=__UpperCAmelCase, subfolder=__UpperCAmelCase, revision=revision or commit_hash, ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' F"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( F"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( F"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" F" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" F" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " F"containing a file named {weights_name}" )
72
1
from __future__ import annotations from typing import Any class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Any ) -> None: """simple docstring""" __lowercase : Any = data __lowercase : Node | None = None def __iter__( self : Tuple ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self __lowercase : List[str] = [] while node: if node in visited: raise ContainsLoopError visited.append(__a ) yield node.data __lowercase : Any = node.next_node @property def lowerCAmelCase ( self : int ) -> bool: """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase : Optional[int] = Node(1) lowerCamelCase : List[str] = Node(2) lowerCamelCase : Union[str, Any] = Node(3) lowerCamelCase : Union[str, Any] = Node(4) print(root_node.has_loop) # False lowerCamelCase : List[str] = root_node.next_node print(root_node.has_loop) # True lowerCamelCase : Dict = Node(5) lowerCamelCase : Any = Node(6) lowerCamelCase : Optional[int] = Node(5) lowerCamelCase : Optional[Any] = Node(6) print(root_node.has_loop) # False lowerCamelCase : List[str] = Node(1) print(root_node.has_loop) # False
233
from math import pi def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
233
1
import math def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ): _a = f'Input value of [number={number}] must be an integer' raise TypeError(UpperCamelCase ) if number < 1: _a = f'Input value of [number={number}] must be > 0' raise ValueError(UpperCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: _a = int(math.log(number // 3 , 2 ) ) + 2 _a = [3, 5] _a = 2 _a = 3 for block in range(1 , UpperCamelCase ): for _ in range(UpperCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): _snake_case : Optional[int] = 0 try: _snake_case : int = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
368
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case_ (UpperCamelCase : Dict ): '''simple docstring''' _a = {} _a = job['''started_at'''] _a = job['''completed_at'''] _a = date_parser.parse(UpperCamelCase ) _a = date_parser.parse(UpperCamelCase ) _a = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a = start _a = end _a = duration_in_min return job_info def snake_case_ (UpperCamelCase : int , UpperCamelCase : int=None ): '''simple docstring''' _a = None if token is not None: _a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _a = requests.get(UpperCamelCase , headers=UpperCamelCase ).json() _a = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) _a = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(UpperCamelCase ): _a = requests.get(url + f'&page={i + 2}' , headers=UpperCamelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _snake_case : Tuple = parser.parse_args() _snake_case : int = get_job_time(args.workflow_run_id) _snake_case : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
179
0
from scipy.stats import spearmanr import datasets __A ="\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" __A ="\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" __A =R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def snake_case__ ( self : Dict , a_ : Tuple , a_ : Union[str, Any] , a_ : List[Any]=False ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = spearmanr(a_ , a_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
226
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __UpperCAmelCase : Optional[int] = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels __UpperCAmelCase : Optional[int] = '''huggingface/label-files''' if "o365" in model_name: __UpperCAmelCase : Tuple = 3_66 __UpperCAmelCase : List[str] = '''object365-id2label.json''' else: __UpperCAmelCase : Any = 91 __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = dct.pop(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = val def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCAmelCase : List[Any] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Dict = in_proj_weight[:dim, :] __UpperCAmelCase : List[str] = in_proj_bias[: dim] __UpperCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Any = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : Tuple = in_proj_weight[ -dim :, : ] __UpperCAmelCase : int = in_proj_bias[-dim :] # fmt: on def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : int = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[str] = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCAmelCase : Tuple = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Union[str, Any] = in_proj_weight[:hidden_size, :] __UpperCAmelCase : List[Any] = in_proj_bias[:hidden_size] __UpperCAmelCase : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : str = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : Tuple = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : Optional[Any] = in_proj_bias[-hidden_size:] def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def a ( _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Tuple = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : Dict = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Any = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) __UpperCAmelCase : str = torch.load(_UpperCAmelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys __UpperCAmelCase : int = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : Optional[Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val if "input_proj" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : List[str] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Union[str, Any] = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(_UpperCAmelCase ) # load image processor __UpperCAmelCase : str = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : Optional[int] = processor(images=_UpperCAmelCase , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = encoding['''pixel_values'''] __UpperCAmelCase : List[str] = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : str = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) __UpperCAmelCase : Union[str, Any] = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) __UpperCAmelCase : str = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
1
"""simple docstring""" A: int = {str(digit): digit**5 for digit in range(1_0)} def _snake_case ( UpperCamelCase : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCamelCase ) ) def _snake_case ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(UpperCamelCase ) ) if __name__ == "__main__": print(solution())
76
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _snake_case ( UpperCamelCase : str ): def decorator(UpperCamelCase : Optional[int] ): UpperCAmelCase : List[Any] = getattr(UpperCamelCase , """handle_key""" , [] ) handle += [key] setattr(UpperCamelCase , """handle_key""" , UpperCamelCase ) return func return decorator def _snake_case ( *UpperCamelCase : List[str] ): def decorator(UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase , """handle_key""" , [] ) handle += keys setattr(UpperCamelCase , """handle_key""" , UpperCamelCase ) return func return decorator class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __new__( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] = super().__new__(cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not hasattr(_SCREAMING_SNAKE_CASE , """key_handler""" ): setattr(_SCREAMING_SNAKE_CASE , """key_handler""" , {} ) setattr(_SCREAMING_SNAKE_CASE , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase : List[str] = getattr(_SCREAMING_SNAKE_CASE , """handle_key""" , [] ) for key in handled_keys: UpperCAmelCase : Optional[int] = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE ( cls ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase : List[Any] = ord(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = cls.key_handler.get(_SCREAMING_SNAKE_CASE ) if handler: UpperCAmelCase : int = char return handler(cls ) else: return None def _snake_case ( cls : Union[str, Any] ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
76
1
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = PriorTransformer lowerCAmelCase : int = "hidden_states" @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = 4 lowercase__ : List[Any] = 8 lowercase__ : Any = 7 lowercase__ : int = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : Any = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : int = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : str ,_snake_case : str=0 ) -> Optional[Any]: """simple docstring""" torch.manual_seed(_snake_case ) lowercase__ : Optional[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : Any = 7 lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return (4, 8) @property def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return (4, 8) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } lowercase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : int ) -> int: """simple docstring""" lowercase__ , lowercase__ : Tuple = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_snake_case ) lowercase__ : Optional[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Any = self.prepare_init_args_and_inputs_for_common() lowercase__ : List[str] = self.model_class(**_snake_case ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) lowercase__ : Dict = model.to(_snake_case ) if hasattr(_snake_case ,'''set_default_attn_processor''' ): model.set_default_attn_processor() lowercase__ : Dict = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : Optional[int] = model(**_snake_case )[0] lowercase__ : str = output[0, :5].flatten().cpu() print(_snake_case ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : Optional[Any] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_snake_case ,_snake_case ,rtol=1e-2 ) ) @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ,_snake_case : List[str]=1 ,_snake_case : Tuple=768 ,_snake_case : List[Any]=77 ,_snake_case : Optional[Any]=0 ) -> List[Any]: """simple docstring""" torch.manual_seed(_snake_case ) lowercase__ : Tuple = batch_size lowercase__ : List[str] = embedding_dim lowercase__ : Tuple = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> int: """simple docstring""" lowercase__ : List[Any] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' ,subfolder='''prior''' ) model.to(_snake_case ) lowercase__ : List[str] = self.get_dummy_seed_input(seed=_snake_case ) with torch.no_grad(): lowercase__ : List[str] = model(**_snake_case )[0] assert list(sample.shape ) == [1, 768] lowercase__ : List[str] = sample[0, :8].flatten().cpu() print(_snake_case ) lowercase__ : Optional[Any] = torch.tensor(_snake_case ) assert torch_all_close(_snake_case ,_snake_case ,atol=1e-3 )
16
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : Dict ,lowercase_ : Dict=7 ,lowercase_ : Optional[int]=3 ,lowercase_ : int=3_0 ,lowercase_ : Optional[Any]=4_0_0 ,lowercase_ : Any=True ,lowercase_ : List[str]=None ,lowercase_ : str=True ,lowercase_ : List[Any]=[0.5, 0.5, 0.5] ,lowercase_ : List[str]=[0.5, 0.5, 0.5] ,lowercase_ : Any=True ,lowercase_ : Union[str, Any]=1 / 2_5_5 ,lowercase_ : str=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Optional[Any] = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : str = size lowerCAmelCase__ : Union[str, Any] = do_normalize lowerCAmelCase__ : List[str] = image_mean lowerCAmelCase__ : str = image_std lowerCAmelCase__ : Optional[Any] = do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor lowerCAmelCase__ : Optional[Any] = do_pad def __lowerCAmelCase ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[Any] ,lowercase_ : int=False ): if not batched: lowerCAmelCase__ : Tuple = image_inputs[0] if isinstance(lowercase_ ,Image.Image ): lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = image.size else: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : Any = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase__ : str = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase__ : Union[str, Any] = self.size['''shortest_edge'''] lowerCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase__ : List[str] = self.size['''shortest_edge'''] lowerCAmelCase__ : str = self.size['''shortest_edge'''] else: lowerCAmelCase__ : Optional[Any] = [] for image in image_inputs: lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : List[str] = max(lowercase_ ,key=lambda lowercase_ : item[0] )[0] lowerCAmelCase__ : Any = max(lowercase_ ,key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = DetaImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = DetaImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_rescale''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_pad''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad ,lowercase_ ) def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCAmelCase ( self : Dict ): # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : str = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : str = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def __lowerCAmelCase ( self : Tuple ): # prepare image and target lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : Union[str, Any] = json.loads(f.read() ) lowerCAmelCase__ : str = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase__ : Optional[Any] = DetaImageProcessor() lowerCAmelCase__ : Optional[int] = image_processing(images=lowercase_ ,annotations=lowercase_ ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,lowercase_ ) lowerCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,lowercase_ ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,lowercase_ ) ) # verify boxes lowerCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,lowercase_ ) lowerCAmelCase__ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,lowercase_ ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Optional[int] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,lowercase_ ) ) # verify is_crowd lowerCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,lowercase_ ) ) # verify class_labels lowerCAmelCase__ : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,lowercase_ ) ) # verify orig_size lowerCAmelCase__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,lowercase_ ) ) # verify size lowerCAmelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,lowercase_ ) ) @slow def __lowerCAmelCase ( self : Any ): # prepare image, target and masks_path lowerCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : str = json.loads(f.read() ) lowerCAmelCase__ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase__ : Optional[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase__ : str = DetaImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase__ : Optional[int] = image_processing(images=lowercase_ ,annotations=lowercase_ ,masks_path=lowercase_ ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Any = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,lowercase_ ) lowerCAmelCase__ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,lowercase_ ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Tuple = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,lowercase_ ) ) # verify boxes lowerCAmelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,lowercase_ ) lowerCAmelCase__ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,lowercase_ ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,lowercase_ ) ) # verify is_crowd lowerCAmelCase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,lowercase_ ) ) # verify class_labels lowerCAmelCase__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,lowercase_ ) ) # verify masks lowerCAmelCase__ : Optional[int] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,lowercase_ ) # verify orig_size lowerCAmelCase__ : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,lowercase_ ) ) # verify size lowerCAmelCase__ : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,lowercase_ ) )
106
0
"""simple docstring""" lowerCAmelCase__ = '''Tobias Carryer''' from time import time class __snake_case : def __init__( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=int(time() ) ): # noqa: B008 """simple docstring""" _lowerCamelCase : List[Any] = multiplier _lowerCamelCase : Any = increment _lowerCamelCase : List[str] = modulo _lowerCamelCase : Optional[int] = seed def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Tuple = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowerCAmelCase__ = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
175
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __snake_case ( _lowercase): snake_case__ : torch.FloatTensor class __snake_case ( _lowercase , _lowercase): @register_to_config def __init__( self : int , __lowerCAmelCase : int = 3_2 , __lowerCAmelCase : int = 6_4 , __lowerCAmelCase : int = 2_0 , __lowerCAmelCase : int = 7_6_8 , __lowerCAmelCase : Tuple=7_7 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : str = "silu" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = "linear" , __lowerCAmelCase : Optional[str] = "prd" , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , ): """simple docstring""" super().__init__() _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Optional[int] = attention_head_dim _lowerCamelCase : Dict = num_attention_heads * attention_head_dim _lowerCamelCase : Optional[Any] = additional_embeddings _lowerCamelCase : List[Any] = time_embed_dim or inner_dim _lowerCamelCase : Optional[Any] = embedding_proj_dim or embedding_dim _lowerCamelCase : Tuple = clip_embed_dim or embedding_dim _lowerCamelCase : int = Timesteps(__lowerCAmelCase , __lowerCAmelCase , 0 ) _lowerCamelCase : str = TimestepEmbedding(__lowerCAmelCase , __lowerCAmelCase , out_dim=__lowerCAmelCase , act_fn=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) if embedding_proj_norm_type is None: _lowerCamelCase : Dict = None elif embedding_proj_norm_type == "layer": _lowerCamelCase : Any = nn.LayerNorm(__lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _lowerCamelCase : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) if encoder_hid_proj_type is None: _lowerCamelCase : Any = None elif encoder_hid_proj_type == "linear": _lowerCamelCase : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _lowerCamelCase : Optional[int] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowerCAmelCase ) ) if added_emb_type == "prd": _lowerCamelCase : Optional[Any] = nn.Parameter(torch.zeros(1 , 1 , __lowerCAmelCase ) ) elif added_emb_type is None: _lowerCamelCase : Union[str, Any] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _lowerCamelCase : Tuple = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , activation_fn='''gelu''' , attention_bias=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) if norm_in_type == "layer": _lowerCamelCase : Any = nn.LayerNorm(__lowerCAmelCase ) elif norm_in_type is None: _lowerCamelCase : Any = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) _lowerCamelCase : str = nn.LayerNorm(__lowerCAmelCase ) _lowerCamelCase : List[Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _lowerCamelCase : Dict = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , __lowerCAmelCase , persistent=__lowerCAmelCase ) _lowerCamelCase : int = nn.Parameter(torch.zeros(1 , __lowerCAmelCase ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.zeros(1 , __lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Any = {} def fn_recursive_add_processors(__lowerCAmelCase : str , __lowerCAmelCase : torch.nn.Module , __lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(__lowerCAmelCase , '''set_processor''' ): _lowerCamelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __lowerCAmelCase , __lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return processors def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): """simple docstring""" _lowerCamelCase : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowerCAmelCase : str , __lowerCAmelCase : torch.nn.Module , __lowerCAmelCase : Tuple ): if hasattr(__lowerCAmelCase , '''set_processor''' ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.set_processor(__lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __lowerCAmelCase , __lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[torch.Tensor, float, int] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[torch.BoolTensor] = None , __lowerCAmelCase : bool = True , ): """simple docstring""" _lowerCamelCase : Optional[int] = hidden_states.shape[0] _lowerCamelCase : Union[str, Any] = timestep if not torch.is_tensor(__lowerCAmelCase ): _lowerCamelCase : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _lowerCamelCase : str = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCamelCase : Tuple = timesteps * torch.ones(__lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) _lowerCamelCase : Tuple = self.time_proj(__lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCamelCase : Union[str, Any] = timesteps_projected.to(dtype=self.dtype ) _lowerCamelCase : Any = self.time_embedding(__lowerCAmelCase ) if self.embedding_proj_norm is not None: _lowerCamelCase : str = self.embedding_proj_norm(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.embedding_proj(__lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCamelCase : Optional[Any] = self.encoder_hidden_states_proj(__lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) _lowerCamelCase : str = self.proj_in(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.positional_embedding.to(hidden_states.dtype ) _lowerCamelCase : Tuple = [] _lowerCamelCase : Dict = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCamelCase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCamelCase : Dict = hidden_states[:, None, :] _lowerCamelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCamelCase : int = self.prd_embedding.to(hidden_states.dtype ).expand(__lowerCAmelCase , -1 , -1 ) additional_embeds.append(__lowerCAmelCase ) _lowerCamelCase : str = torch.cat( __lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCamelCase : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCamelCase : List[Any] = F.pad( __lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _lowerCamelCase : Any = hidden_states + positional_embeddings if attention_mask is not None: _lowerCamelCase : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _lowerCamelCase : Tuple = F.pad(__lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) _lowerCamelCase : Any = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCamelCase : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _lowerCamelCase : List[str] = self.norm_in(__lowerCAmelCase ) for block in self.transformer_blocks: _lowerCamelCase : List[str] = block(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.norm_out(__lowerCAmelCase ) if self.prd_embedding is not None: _lowerCamelCase : Any = hidden_states[:, -1] else: _lowerCamelCase : Dict = hidden_states[:, additional_embeddings_len:] _lowerCamelCase : str = self.proj_to_clip_embeddings(__lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
175
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __snake_case ( unittest.TestCase): def __init__( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Dict=1_8 , __lowerCAmelCase : str=3_0 , __lowerCAmelCase : Union[str, Any]=4_0_0 , __lowerCAmelCase : int=True , __lowerCAmelCase : Any=None , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , __lowerCAmelCase : Optional[Any]=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , __lowerCAmelCase : Optional[int]=True , ): """simple docstring""" _lowerCamelCase : Dict = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _lowerCamelCase : Dict = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} _lowerCamelCase : Dict = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : List[Any] = min_resolution _lowerCamelCase : Optional[Any] = max_resolution _lowerCamelCase : Dict = do_resize _lowerCamelCase : List[Any] = size _lowerCamelCase : Tuple = do_center_crop _lowerCamelCase : List[str] = crop_size _lowerCamelCase : Dict = do_normalize _lowerCamelCase : Optional[Any] = image_mean _lowerCamelCase : Dict = image_std _lowerCamelCase : Optional[Any] = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowerCamelCase : Optional[Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _lowerCamelCase : Union[str, Any] = [] for i in range(self.batch_size ): _lowerCamelCase , _lowerCamelCase : Dict = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowerCamelCase : Any = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] if torchify: _lowerCamelCase : List[Any] = [torch.from_numpy(__lowerCAmelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Union[str, Any] = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[str] = ChineseCLIPImageProcessingTester(self , do_center_crop=__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) _lowerCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCamelCase : str = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCamelCase : Optional[int] = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCamelCase : Union[str, Any] = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__lowerCAmelCase ) _lowerCamelCase : List[Any] = 3 @property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCamelCase : str = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
72
"""simple docstring""" def snake_case_ ( A_ : list[int], A_ : str ): '''simple docstring''' _lowerCamelCase : Tuple = int(A_ ) # Initialize Result _lowerCamelCase : Dict = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase__ = [] lowerCAmelCase__ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): lowerCAmelCase__ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowerCAmelCase__ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase__ = [1, 2, 5, 10, 20, 50, 100, 500, 2000] lowerCAmelCase__ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) lowerCAmelCase__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
72
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[Any] = """canine""" def __init__( self , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=1_6384 , a=16 , a=0.02 , a=1e-12 , a=0 , a=0xE_000 , a=0xE_001 , a=4 , a=4 , a=8 , a=1_6384 , a=128 , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) lowercase__ : int = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : Dict = type_vocab_size lowercase__ : Any = layer_norm_eps # Character config: lowercase__ : List[Any] = downsampling_rate lowercase__ : Dict = upsampling_kernel_size lowercase__ : Any = num_hash_functions lowercase__ : Any = num_hash_buckets lowercase__ : Optional[int] = local_transformer_stride
358
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } snake_case_ = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } snake_case_ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Tuple = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , a) != do_lower_case or pre_tok_state.get('strip_accents' , a) != strip_accents ): lowercase__ : Optional[int] = getattr(a , pre_tok_state.pop('type')) lowercase__ : str = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : int = pre_tok_class(**a) lowercase__ : Optional[int] = do_lower_case def __getstate__( self): lowercase__ : str = self.__dict__.copy() lowercase__ : Any = BertPreTokenizer() return state def __setstate__( self , a): lowercase__ : Union[str, Any] = d lowercase__ : int = self.__dict__['_tokenizer'].get_vocab() lowercase__ : List[str] = PreTokenizer.custom(JiebaPreTokenizer(a)) def snake_case_ ( self , a , a=None): lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a , a = None): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , a , a = None): lowercase__ : Optional[Any] = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a , a=None , a=None , a=False , **a , ): lowercase__ : List[str] = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a)
216
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
58
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = jnp.floataa _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setup() __A : List[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = super().__call__(*__lowerCamelCase , **__lowerCamelCase ) __A : Optional[int] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = FlaxBigBirdForNaturalQuestionsModule def __lowercase ( snake_case_ : Tuple ,snake_case_ : Optional[int] ,snake_case_ : int ,snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : Any ) ->List[Any]: '''simple docstring''' def cross_entropy(snake_case_ : str ,snake_case_ : Optional[Any] ,snake_case_ : Tuple=None ): __A : Dict = logits.shape[-1] __A : Dict = (labels[..., None] == jnp.arange(snake_case_ )[None]).astype('''f4''' ) __A : int = jax.nn.log_softmax(snake_case_ ,axis=-1 ) __A : Optional[int] = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: __A : Optional[int] = reduction(snake_case_ ) return loss __A : str = partial(snake_case_ ,reduction=jnp.mean ) __A : Dict = cross_entropy(snake_case_ ,snake_case_ ) __A : List[str] = cross_entropy(snake_case_ ,snake_case_ ) __A : str = cross_entropy(snake_case_ ,snake_case_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = "google/bigbird-roberta-base" _lowerCamelCase = 30_00 _lowerCamelCase = 1_05_00 _lowerCamelCase = 1_28 _lowerCamelCase = 3 _lowerCamelCase = 1 _lowerCamelCase = 5 # tx_args _lowerCamelCase = 3e-5 _lowerCamelCase = 0.0 _lowerCamelCase = 2_00_00 _lowerCamelCase = 0.0_0_9_5 _lowerCamelCase = "bigbird-roberta-natural-questions" _lowerCamelCase = "training-expt" _lowerCamelCase = "data/nq-training.jsonl" _lowerCamelCase = "data/nq-validation.jsonl" def UpperCamelCase__( self ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=__lowerCamelCase ) __A : Dict = os.path.join(self.base_dir , self.save_dir ) __A : Dict = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 40_96 # no dynamic padding on TPUs def __call__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.collate_fn(__lowerCamelCase ) __A : Tuple = jax.tree_util.tree_map(__lowerCamelCase , __lowerCamelCase ) return batch def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A , __A : List[Any] = self.fetch_inputs(features['''input_ids'''] ) __A : Union[str, Any] = { '''input_ids''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = [self._fetch_inputs(__lowerCamelCase ) for ids in input_ids] return zip(*__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = [1 for _ in range(len(__lowerCamelCase ) )] while len(__lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Optional[Any] ,snake_case_ : List[str]=None ) ->Optional[int]: '''simple docstring''' if seed is not None: __A : List[Any] = dataset.shuffle(seed=snake_case_ ) for i in range(len(snake_case_ ) // batch_size ): __A : Tuple = dataset[i * batch_size : (i + 1) * batch_size] yield dict(snake_case_ ) @partial(jax.pmap ,axis_name='''batch''' ) def __lowercase ( snake_case_ : str ,snake_case_ : Union[str, Any] ,**snake_case_ : List[str] ) ->Tuple: '''simple docstring''' def loss_fn(snake_case_ : List[str] ): __A : str = model_inputs.pop('''start_labels''' ) __A : str = model_inputs.pop('''end_labels''' ) __A : int = model_inputs.pop('''pooled_labels''' ) __A : Dict = state.apply_fn(**snake_case_ ,params=snake_case_ ,dropout_rng=snake_case_ ,train=snake_case_ ) __A , __A , __A : Union[str, Any] = outputs return state.loss_fn( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,) __A , __A : int = jax.random.split(snake_case_ ) __A : str = jax.value_and_grad(snake_case_ ) __A , __A : Optional[int] = grad_fn(state.params ) __A : List[str] = jax.lax.pmean({'''loss''': loss} ,axis_name='''batch''' ) __A : List[str] = jax.lax.pmean(snake_case_ ,'''batch''' ) __A : str = state.apply_gradients(grads=snake_case_ ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name='''batch''' ) def __lowercase ( snake_case_ : int ,**snake_case_ : Union[str, Any] ) ->List[str]: '''simple docstring''' __A : Tuple = model_inputs.pop('''start_labels''' ) __A : Dict = model_inputs.pop('''end_labels''' ) __A : int = model_inputs.pop('''pooled_labels''' ) __A : List[str] = state.apply_fn(**snake_case_ ,params=state.params ,train=snake_case_ ) __A , __A , __A : Dict = outputs __A : Optional[int] = state.loss_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = jax.lax.pmean({'''loss''': loss} ,axis_name='''batch''' ) return metrics class __snake_case ( train_state.TrainState ): """simple docstring""" _lowerCamelCase = struct.field(pytree_node=SCREAMING_SNAKE_CASE__ ) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : Tuple = model.params __A : Union[str, Any] = TrainState.create( apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , loss_fn=__lowerCamelCase , ) if ckpt_dir is not None: __A , __A , __A , __A , __A : Optional[Any] = restore_checkpoint(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __A , __A : List[str] = build_tx(**__lowerCamelCase ) __A : int = train_state.TrainState( step=__lowerCamelCase , apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , opt_state=__lowerCamelCase , ) __A : int = args __A : Optional[Any] = data_collator __A : Tuple = lr __A : List[Any] = params __A : Dict = jax_utils.replicate(__lowerCamelCase ) return state def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = self.args __A : Dict = len(__lowerCamelCase ) // args.batch_size __A : List[Any] = jax.random.PRNGKey(0 ) __A : Optional[Any] = jax.random.split(__lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __A : Tuple = jnp.array(0 , dtype=jnp.floataa ) __A : Optional[Any] = get_batched_dataset(__lowerCamelCase , args.batch_size , seed=__lowerCamelCase ) __A : Union[str, Any] = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc=F"""Running EPOCH-{epoch}""" ): __A : Optional[Any] = self.data_collator(__lowerCamelCase ) __A , __A , __A : Union[str, Any] = self.train_step_fn(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __A : Union[str, Any] = jax_utils.unreplicate(state.step ) __A : Optional[int] = running_loss.item() / i __A : List[Any] = self.scheduler_fn(state_step - 1 ) __A : Union[str, Any] = self.evaluate(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(__lowerCamelCase ) ) self.logger.log(__lowerCamelCase , commit=__lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = get_batched_dataset(__lowerCamelCase , self.args.batch_size ) __A : int = len(__lowerCamelCase ) // self.args.batch_size __A : Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) __A : Dict = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc='''Evaluating ... ''' ): __A : List[str] = self.data_collator(__lowerCamelCase ) __A : Union[str, Any] = self.val_step_fn(__lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Dict = jax_utils.unreplicate(__lowerCamelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(__lowerCamelCase , params=state.params ) with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__lowerCamelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , __lowerCamelCase ) print('''DONE''' ) def __lowercase ( snake_case_ : int ,snake_case_ : Dict ) ->Optional[int]: '''simple docstring''' print(F"""RESTORING CHECKPOINT FROM {save_dir}""" ,end=''' ... ''' ) with open(os.path.join(snake_case_ ,'''flax_model.msgpack''' ) ,'''rb''' ) as f: __A : List[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(snake_case_ ,'''opt_state.msgpack''' ) ,'''rb''' ) as f: __A : Optional[int] = from_bytes(state.opt_state ,f.read() ) __A : Tuple = joblib.load(os.path.join(snake_case_ ,'''args.joblib''' ) ) __A : List[str] = joblib.load(os.path.join(snake_case_ ,'''data_collator.joblib''' ) ) with open(os.path.join(snake_case_ ,'''training_state.json''' ) ,'''r''' ) as f: __A : Dict = json.load(snake_case_ ) __A : int = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __lowercase ( snake_case_ : List[str] ,snake_case_ : Any ,snake_case_ : Dict ,snake_case_ : str ) ->List[str]: '''simple docstring''' __A : str = num_train_steps - warmup_steps __A : Union[str, Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=snake_case_ ,transition_steps=snake_case_ ) __A : Optional[Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=1e-7 ,transition_steps=snake_case_ ) __A : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def __lowercase ( snake_case_ : List[str] ,snake_case_ : List[Any] ,snake_case_ : Union[str, Any] ,snake_case_ : List[Any] ,snake_case_ : str ) ->List[str]: '''simple docstring''' def weight_decay_mask(snake_case_ : List[Any] ): __A : List[Any] = traverse_util.flatten_dict(snake_case_ ) __A : int = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(snake_case_ ) __A : List[Any] = scheduler_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = optax.adamw(learning_rate=snake_case_ ,weight_decay=snake_case_ ,mask=snake_case_ ) return tx, lr
179
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCAmelCase_ : List[str] = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' lowerCAmelCase_ : Any = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' lowerCAmelCase_ : Union[str, Any] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCamelCase__ ( self : List[str] , __a : Dict , __a : List[Any] , __a : Dict=4 , __a : int=False ): _a = compute_bleu( reference_corpus=__a , translation_corpus=__a , max_order=__a , smooth=__a ) ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
371
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): lowerCAmelCase_ : str = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase_ : Union[str, Any] = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]: _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = numpy_to_pil(lowercase ) return images def _lowerCamelCase ( lowercase : int ) -> List[Any]: if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: _a = [Image.fromarray(lowercase ) for image in images] return pil_images
346
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline a_ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCamelCase__ ( _a , _a , _a , _a , _a , _a , _a , _a=False , ): output_path.parent.mkdir(parents=_a , exist_ok=_a) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _a , _a , f=output_path.as_posix() , input_names=_a , output_names=_a , dynamic_axes=_a , do_constant_folding=_a , use_external_data_format=_a , enable_onnx_checker=_a , opset_version=_a , ) else: export( _a , _a , f=output_path.as_posix() , input_names=_a , output_names=_a , dynamic_axes=_a , do_constant_folding=_a , opset_version=_a , ) @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a , _a = False): SCREAMING_SNAKE_CASE : str = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Dict = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA") else: SCREAMING_SNAKE_CASE : Tuple = "cpu" SCREAMING_SNAKE_CASE : Any = StableDiffusionPipeline.from_pretrained(_a , torch_dtype=_a).to(_a) SCREAMING_SNAKE_CASE : List[Any] = Path(_a) # TEXT ENCODER SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.tokenizer( "A sample prompt" , padding="max_length" , max_length=pipeline.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_a , dtype=torch.intaa)) , output_path=output_path / "text_encoder" / "model.onnx" , ordered_input_names=["input_ids"] , output_names=["last_hidden_state", "pooler_output"] , dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, } , opset=_a , ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE : Dict = pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE : str = pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = output_path / "unet" / "model.onnx" onnx_export( pipeline.unet , model_args=( torch.randn(2 , _a , _a , _a).to(device=_a , dtype=_a), torch.randn(2).to(device=_a , dtype=_a), torch.randn(2 , _a , _a).to(device=_a , dtype=_a), False, ) , output_path=_a , ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"] , output_names=["out_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, } , opset=_a , use_external_data_format=_a , ) SCREAMING_SNAKE_CASE : List[Any] = str(unet_path.absolute().as_posix()) SCREAMING_SNAKE_CASE : Tuple = os.path.dirname(_a) SCREAMING_SNAKE_CASE : List[Any] = onnx.load(_a) # clean up existing tensor files shutil.rmtree(_a) os.mkdir(_a) # collate external tensor files into one onnx.save_model( _a , _a , save_as_external_data=_a , all_tensors_to_one_file=_a , location="weights.pb" , convert_attribute=_a , ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE : Any = pipeline.vae SCREAMING_SNAKE_CASE : Tuple = vae_encoder.config.in_channels SCREAMING_SNAKE_CASE : Optional[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE : str = lambda _a , _a: vae_encoder.encode(_a , _a)[0].sample() onnx_export( _a , model_args=( torch.randn(1 , _a , _a , _a).to(device=_a , dtype=_a), False, ) , output_path=output_path / "vae_encoder" / "model.onnx" , ordered_input_names=["sample", "return_dict"] , output_names=["latent_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_a , ) # VAE DECODER SCREAMING_SNAKE_CASE : str = pipeline.vae SCREAMING_SNAKE_CASE : Tuple = vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE : str = vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE : List[Any] = vae_encoder.decode onnx_export( _a , model_args=( torch.randn(1 , _a , _a , _a).to(device=_a , dtype=_a), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_a , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE : int = pipeline.safety_checker SCREAMING_SNAKE_CASE : List[str] = safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE : List[Any] = safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE : List[str] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _a , _a , _a , ).to(device=_a , dtype=_a), torch.randn(1 , _a , _a , _a).to(device=_a , dtype=_a), ) , output_path=output_path / "safety_checker" / "model.onnx" , ordered_input_names=["clip_input", "images"] , output_names=["out_images", "has_nsfw_concepts"] , dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, } , opset=_a , ) del pipeline.safety_checker SCREAMING_SNAKE_CASE : Optional[int] = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker") SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.feature_extractor else: SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder") , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder") , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder") , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / "unet") , scheduler=pipeline.scheduler , safety_checker=_a , feature_extractor=_a , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_a) print("ONNX pipeline saved to" , _a) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE : Any = OnnxStableDiffusionPipeline.from_pretrained(_a , provider="CPUExecutionProvider") print("ONNX pipeline is loadable") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') a_ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
76
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = int(np.ceil((x_end - xa) / step_size)) SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,)) SCREAMING_SNAKE_CASE : int = ya SCREAMING_SNAKE_CASE : int = xa for k in range(_a): SCREAMING_SNAKE_CASE : Any = y[k] + step_size * ode_func(_a , y[k]) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
76
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, **lowerCamelCase) -> Any: """simple docstring""" super().__init__(**lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self, lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : List[str] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None, lowerCamelCase="This is a photo of {}.") -> Dict: """simple docstring""" _lowercase : Dict = load_image(lowerCamelCase) _lowercase : Optional[int] = self.image_processor(images=[image], return_tensors=self.framework) _lowercase : int = candidate_labels _lowercase : Tuple = [hypothesis_template.format(lowerCamelCase) for x in candidate_labels] _lowercase : Any = self.tokenizer(lowerCamelCase, return_tensors=self.framework, padding=lowerCamelCase) _lowercase : List[Any] = [text_inputs] return inputs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = model_inputs.pop('candidate_labels') _lowercase : List[str] = model_inputs.pop('text_inputs') if isinstance(text_inputs[0], lowerCamelCase): _lowercase : List[str] = text_inputs[0] else: # Batching case. _lowercase : int = text_inputs[0][0] _lowercase : List[Any] = self.model(**lowerCamelCase, **lowerCamelCase) _lowercase : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = model_outputs.pop('candidate_labels') _lowercase : List[str] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[str] = logits.softmax(dim=-1).squeeze(-1) _lowercase : Optional[int] = probs.tolist() if not isinstance(lowerCamelCase, lowerCamelCase): _lowercase : str = [scores] elif self.framework == "tf": _lowercase : List[str] = stable_softmax(lowerCamelCase, axis=-1) _lowercase : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : Any = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase, lowerCamelCase), key=lambda lowerCamelCase: -x[0]) ] return result
84
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase_( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
84
1
def __lowercase ( lowerCamelCase : Dict ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowercase ( lowerCamelCase : dict[int, list[int]] ): UpperCamelCase_ : str = 0 UpperCamelCase_ : str = len(lowerCamelCase ) # No of vertices in graph UpperCamelCase_ : Optional[int] = [0] * n UpperCamelCase_ : int = [False] * n def dfs(lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) UpperCamelCase_ : Tuple = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCamelCase_ : Optional[Any] = min(low[at] , low[to] ) UpperCamelCase_ : list[tuple[int, int]] = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
175
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any ): UpperCamelCase_ : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase , config=lowerCamelCase ) UpperCamelCase_ : Any = downstream_dict['projector.weight'] UpperCamelCase_ : List[str] = downstream_dict['projector.bias'] UpperCamelCase_ : Tuple = downstream_dict['model.post_net.linear.weight'] UpperCamelCase_ : int = downstream_dict['model.post_net.linear.bias'] return model def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : Any = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase , config=lowerCamelCase ) UpperCamelCase_ : Tuple = downstream_dict['model.linear.weight'] UpperCamelCase_ : Any = downstream_dict['model.linear.bias'] return model def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): UpperCamelCase_ : str = UniSpeechSatForXVector.from_pretrained(lowerCamelCase , config=lowerCamelCase ) UpperCamelCase_ : Optional[Any] = downstream_dict['connector.weight'] UpperCamelCase_ : int = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCamelCase_ : Union[str, Any] = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] UpperCamelCase_ : Tuple = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] UpperCamelCase_ : int = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCamelCase_ : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCamelCase_ : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCamelCase_ : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCamelCase_ : List[Any] = downstream_dict['objective.W'] return model @torch.no_grad() def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : int ): UpperCamelCase_ : int = torch.load(lowerCamelCase , map_location='cpu' ) UpperCamelCase_ : Any = checkpoint['Downstream'] UpperCamelCase_ : Dict = UniSpeechSatConfig.from_pretrained(lowerCamelCase ) UpperCamelCase_ : str = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase , return_attention_mask=lowerCamelCase , do_normalize=lowerCamelCase ) UpperCamelCase_ : int = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): UpperCamelCase_ : Tuple = convert_classification(lowerCamelCase , lowerCamelCase , lowerCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): UpperCamelCase_ : List[str] = convert_diarization(lowerCamelCase , lowerCamelCase , lowerCamelCase ) elif arch.endswith('ForXVector' ): UpperCamelCase_ : Union[str, Any] = convert_xvector(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: UpperCamelCase_ : Tuple = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
175
1
from typing import TYPE_CHECKING from ..utils import _LazyModule A_ : List[Any] = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase (lowercase_: str , lowercase_: Optional[int] ) -> str: A__ : Union[str, Any] = old_name if "patch_embed" in old_name: A__ , A__ , A__ : Any = old_name.split(""".""" ) if layer == "0": A__ : List[Any] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A__ : Optional[int] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A__ : int = old_name.replace("""3""" , """convolution2""" ) else: A__ : Dict = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , lowercase_ ): A__ : str = r"""\b\d{2}\b""" if bool(re.search(lowercase_ , lowercase_ ) ): A__ : Optional[Any] = re.search(r"""\d\.\d\d.""" , lowercase_ ).group() else: A__ : int = re.search(r"""\d\.\d.""" , lowercase_ ).group() if int(match[0] ) < 6: A__ : Optional[Any] = old_name.replace(lowercase_ , """""" ) A__ : Tuple = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A__ : int = """intermediate_stages.""" + trimmed_name else: A__ : Dict = old_name.replace(lowercase_ , """""" ) if int(match[2] ) < num_meta4D_last_stage: A__ : Optional[int] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A__ : Optional[Any] = str(int(match[2] ) - num_meta4D_last_stage ) A__ : Dict = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A__ : str = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A__ : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A__ : List[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A__ : Optional[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) A__ : str = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , lowercase_ ): A__ : List[str] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A__ : Optional[int] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ : Optional[int] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ : int = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A__ : Tuple = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A__ : Optional[int] = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A__ : Optional[Any] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A__ : Optional[Any] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ : Union[str, Any] = new_name.replace("""norm""" , """layernorm""" ) A__ : Union[str, Any] = """efficientformer.""" + new_name else: A__ : int = """efficientformer.encoder.""" + new_name return new_name def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> Tuple: for key in checkpoint.copy().keys(): A__ : List[Any] = checkpoint.pop(lowercase_ ) A__ : Dict = val return checkpoint def UpperCamelCase () -> Optional[int]: A__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : List[str] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image def UpperCamelCase (lowercase_: Path , lowercase_: Path , lowercase_: Path , lowercase_: bool ) -> Tuple: A__ : Any = torch.load(lowercase_ , map_location="""cpu""" )["""model"""] A__ : List[Any] = EfficientFormerConfig.from_json_file(lowercase_ ) A__ : Any = EfficientFormerForImageClassificationWithTeacher(lowercase_ ) A__ : List[str] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A__ : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 A__ : Any = convert_torch_checkpoint(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A__ : Optional[int] = prepare_img() A__ : Optional[Any] = 256 A__ : str = 224 A__ : List[str] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A__ : Tuple = processor(images=lowercase_ , return_tensors="""pt""" ).pixel_values # original processing pipeline A__ : List[Any] = Compose( [ Resize(lowercase_ , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(lowercase_ ), ToTensor(), Normalize(lowercase_ , lowercase_ ), ] ) A__ : Any = image_transforms(lowercase_ ).unsqueeze(0 ) assert torch.allclose(lowercase_ , lowercase_ ) A__ : Optional[int] = model(lowercase_ ) A__ : List[str] = outputs.logits A__ : Tuple = (1, 1000) if "l1" in model_name: A__ : List[str] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ : Union[str, Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add model""" , use_temp_dir=lowercase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add image processor""" , use_temp_dir=lowercase_ , ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) A_ : List[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
141
1
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: # Return True if there is node that has not iterated. UpperCAmelCase__ : Any = [False] * len(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = [] queue.append(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = True while queue: UpperCAmelCase__ : Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase__ ) UpperCAmelCase__ : int = True UpperCAmelCase__ : int = u return visited[t] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # This array is filled by BFS and to store path UpperCAmelCase__ : List[str] = [-1] * (len(lowerCAmelCase__ )) UpperCAmelCase__ : Optional[int] = 0 while bfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = float('''Inf''' ) UpperCAmelCase__ : Optional[int] = sink while s != source: # Find the minimum value in select path UpperCAmelCase__ : Dict = min(lowerCAmelCase__ , graph[parent[s]][s] ) UpperCAmelCase__ : str = parent[s] max_flow += path_flow UpperCAmelCase__ : int = sink while v != source: UpperCAmelCase__ : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase__ : List[str] = parent[v] return max_flow UpperCamelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase__ , UpperCamelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
181
from __future__ import annotations from typing import Any class UpperCamelCase__ : def __init__(self : Union[str, Any] , snake_case_ : int ): __a : Dict = num_of_nodes __a : list[list[int]] = [] __a : dict[int, int] = {} def lowerCAmelCase (self : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase (self : Any , snake_case_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase (self : str , snake_case_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __a : Optional[int] = self.find_component(snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : list[int] , snake_case_ : int , snake_case_ : int ): if component_size[u_node] <= component_size[v_node]: __a : List[str] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_ ) elif component_size[u_node] >= component_size[v_node]: __a : Optional[int] = self.find_component(snake_case_ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : str = [] __a : int = 0 __a : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __a : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __a , __a , __a : Optional[Any] = edge __a : List[str] = self.m_component[u] __a : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __a : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ , snake_case_ ): __a , __a , __a : str = edge __a : Any = self.m_component[u] __a : Any = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ , snake_case_ , snake_case_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __a : Optional[int] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" if not head: return True # split the list to two parts a_ , a_ = head.next, head while fast and fast.next: a_ = fast.next.next a_ = slow.next a_ = slow.next a_ = None # Don't forget here! But forget still works! # reverse the second part a_ = None while second: a_ = second.next a_ = node a_ = second a_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False a_ = node.next a_ = head.next return True def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) a_ = a_ = a_ = head while fast and fast.next: a_ , a_ = fast.next.next, slow.next # 2. Push the second half into the stack a_ = [slow.val] while slow.next: a_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False a_ = cur.next return True def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" if not head or not head.next: return True a_ = {} a_ = 0 while head: if head.val in d: d[head.val].append(UpperCAmelCase ) else: a_ = [pos] a_ = head.next pos += 1 a_ = pos - 1 a_ = 0 for v in d.values(): if len(UpperCAmelCase ) % 2 != 0: middle += 1 else: a_ = 0 for i in range(0 , len(UpperCAmelCase ) ): if v[i] + v[len(UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
303
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( lowerCamelCase__ : Any ) -> Union[str, Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase_ : Optional[Any] =[1, 2, 3] with pytest.raises(lowerCamelCase__ ): with parallel_backend("unsupported backend" ): map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=2 ) with pytest.raises(lowerCamelCase__ ): with parallel_backend("unsupported backend" ): map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def _snake_case ( lowerCamelCase__ : Tuple ) -> Optional[Any]: lowerCamelCase_ : str =[1, 2] lowerCamelCase_ : List[str] ={"a": 1, "b": 2} lowerCamelCase_ : List[str] ={"a": [1, 2], "b": [3, 4]} lowerCamelCase_ : Optional[int] ={"a": {"1": 1}, "b": 2} lowerCamelCase_ : int ={"a": 1, "b": 2, "c": 3, "d": 4} lowerCamelCase_ : Optional[int] =[2, 3] lowerCamelCase_ : List[Any] ={"a": 2, "b": 3} lowerCamelCase_ : int ={"a": [2, 3], "b": [4, 5]} lowerCamelCase_ : str ={"a": {"1": 2}, "b": 3} lowerCamelCase_ : Dict ={"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa
209
"""simple docstring""" import torch def _snake_case ( ) -> Union[str, Any]: if torch.cuda.is_available(): lowerCamelCase_ : int =torch.cuda.device_count() else: lowerCamelCase_ : List[str] =0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
209
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
84
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = "data2vec-text" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.0_2 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> Tuple: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCAmelCase_ :Dict = vocab_size lowerCAmelCase_ :Dict = hidden_size lowerCAmelCase_ :int = num_hidden_layers lowerCAmelCase_ :List[Any] = num_attention_heads lowerCAmelCase_ :Any = hidden_act lowerCAmelCase_ :Optional[int] = intermediate_size lowerCAmelCase_ :str = hidden_dropout_prob lowerCAmelCase_ :Any = attention_probs_dropout_prob lowerCAmelCase_ :str = max_position_embeddings lowerCAmelCase_ :int = type_vocab_size lowerCAmelCase_ :Tuple = initializer_range lowerCAmelCase_ :List[Any] = layer_norm_eps lowerCAmelCase_ :List[Any] = position_embedding_type lowerCAmelCase_ :List[Any] = use_cache lowerCAmelCase_ :List[Any] = classifier_dropout class _SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ :List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ :List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
84
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any]=13 , UpperCamelCase: str=10 , UpperCamelCase: Dict=3 , UpperCamelCase: Any=2 , UpperCamelCase: str=2 , UpperCamelCase: Any=2 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=True , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[int]=5 , UpperCamelCase: Tuple=4 , UpperCamelCase: Optional[int]=37 , UpperCamelCase: Dict="gelu" , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Dict=0.1 , UpperCamelCase: Union[str, Any]=10 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: str=0.9 , UpperCamelCase: Any=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = tubelet_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = mask_ratio A__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A__ = (image_size // patch_size) ** 2 A__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A__ = int(mask_ratio * self.seq_length ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Any , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Tuple ): """simple docstring""" A__ = VideoMAEModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] ): """simple docstring""" A__ = VideoMAEForPreTraining(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A__ = torch.ones((self.num_masks,) ) A__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A__ = mask.expand(self.batch_size , -1 ).bool() A__ = model(UpperCamelCase , UpperCamelCase ) # model only returns predictions for masked patches A__ = mask.sum().item() A__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCAmelCase = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = VideoMAEModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: str , UpperCamelCase: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any]=False ): """simple docstring""" A__ = copy.deepcopy(UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A__ = torch.ones((self.model_tester.num_masks,) ) A__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A__ = mask.expand(self.model_tester.batch_size , -1 ).bool() A__ = bool_masked_pos.to(UpperCamelCase ) if return_labels: if model_class in [ *get_values(UpperCamelCase ), ]: A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def UpperCamelCase ( self: List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def UpperCamelCase ( self: Dict ): """simple docstring""" pass def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) @slow def UpperCamelCase ( self: Tuple ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = VideoMAEModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" if not self.has_attentions: pass else: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length - self.model_tester.num_masks A__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A__ = True A__ = False A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ = len(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] ): A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) A__ = self.model_tester.seq_length - self.model_tester.num_masks A__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" pass def _snake_case ( ): A__ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A__ = np.load(UpperCAmelCase_ ) return list(UpperCAmelCase_ ) @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase ( self: Tuple ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( UpperCamelCase ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase ) # verify the logits A__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(UpperCamelCase ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # add boolean mask, indicating which patches to mask A__ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A__ = torch.load(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase ) # verify the logits A__ = torch.Size([1, 14_08, 15_36] ) A__ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A__ = torch.tensor([0.5_142] , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A__ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=UpperCamelCase ).to( UpperCamelCase ) with torch.no_grad(): A__ = model(**UpperCamelCase ) A__ = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase , atol=1e-4 ) )
69
"""simple docstring""" from typing import Any class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = data A__ = None class a : """simple docstring""" def __init__( self: List[str] ): """simple docstring""" A__ = None def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.head while temp is not None: print(temp.data , end=""" """ ) A__ = temp.next print() def UpperCamelCase ( self: str , UpperCamelCase: Any ): """simple docstring""" A__ = Node(UpperCamelCase ) A__ = self.head A__ = new_node def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" if node_data_a == node_data_a: return else: A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next if node_a is None or node_a is None: return A__ , A__ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
69
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCAmelCase ( A ): lowerCAmelCase_ = "time_series_transformer" lowerCAmelCase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : Optional[Union[str, bool]] = "mean" , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : bool = True , __lowercase : str = "gelu" , __lowercase : int = 64 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.0_2 , __lowercase : Dict=True , **__lowercase : Tuple , ): """simple docstring""" __lowercase =prediction_length __lowercase =context_length or prediction_length __lowercase =distribution_output __lowercase =loss __lowercase =input_size __lowercase =num_time_features __lowercase =lags_sequence __lowercase =scaling __lowercase =num_dynamic_real_features __lowercase =num_static_real_features __lowercase =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowercase =cardinality else: __lowercase =[0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowercase =embedding_dimension else: __lowercase =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowercase =num_parallel_samples # Transformer architecture configuration __lowercase =input_size * len(__lowercase ) + self._number_of_features __lowercase =d_model __lowercase =encoder_attention_heads __lowercase =decoder_attention_heads __lowercase =encoder_ffn_dim __lowercase =decoder_ffn_dim __lowercase =encoder_layers __lowercase =decoder_layers __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =activation_function __lowercase =init_std __lowercase =use_cache super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def snake_case ( self : List[str] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
141
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case ( self : int ): """simple docstring""" return self._get_superresolution_dummy_components() def snake_case ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str]=0 ): """simple docstring""" if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case ( self : int ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self : str ): """simple docstring""" self._test_save_load_local() def snake_case ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
141
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart _lowerCamelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } _lowerCamelCase = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCAmelCase_ : Optional[Any] = bs[:] UpperCAmelCase_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : List[str] = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = set() UpperCAmelCase_ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : List[Any] = char return pairs class _snake_case (__SCREAMING_SNAKE_CASE): __A : str =VOCAB_FILES_NAMES __A : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP __A : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any =["input_ids", "attention_mask"] def __init__( self ,_snake_case ,_snake_case ,_snake_case="replace" ,_snake_case="<s>" ,_snake_case="</s>" ,_snake_case="</s>" ,_snake_case="<s>" ,_snake_case="<unk>" ,_snake_case="<pad>" ,_snake_case="<mask>" ,_snake_case=False ,**_snake_case ,): UpperCAmelCase_ : List[Any] = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else bos_token UpperCAmelCase_ : int = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else eos_token UpperCAmelCase_ : str = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else cls_token UpperCAmelCase_ : Union[str, Any] = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else unk_token UpperCAmelCase_ : str = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Dict = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token super().__init__( errors=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,mask_token=_snake_case ,add_prefix_space=_snake_case ,**_snake_case ,) with open(_snake_case ,encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : Any = json.load(_snake_case ) UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Union[str, Any] = errors # how to handle errors in decoding UpperCAmelCase_ : List[str] = bytes_to_unicode() UpperCAmelCase_ : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(_snake_case ,encoding="utf-8" ) as merges_handle: UpperCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase_ : Any = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Dict = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCamelCase__ ( self ): return len(self.encoder ) def UpperCamelCase__ ( self ): return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase__ ( self ,_snake_case ): if token in self.cache: return self.cache[token] UpperCAmelCase_ : Any = tuple(_snake_case ) UpperCAmelCase_ : List[str] = get_pairs(_snake_case ) if not pairs: return token while True: UpperCAmelCase_ : List[Any] = min(_snake_case ,key=lambda _snake_case : self.bpe_ranks.get(_snake_case ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Tuple = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = 0 while i < len(_snake_case ): try: UpperCAmelCase_ : Any = word.index(_snake_case ,_snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : int = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[Any] = tuple(_snake_case ) UpperCAmelCase_ : Optional[int] = new_word if len(_snake_case ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(_snake_case ) UpperCAmelCase_ : Optional[Any] = " ".join(_snake_case ) UpperCAmelCase_ : Union[str, Any] = word return word def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Tuple = [] for token in re.findall(self.pat ,_snake_case ): UpperCAmelCase_ : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_snake_case ).split(" " ) ) return bpe_tokens def UpperCamelCase__ ( self ,_snake_case ): return self.encoder.get(_snake_case ,self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self ,_snake_case ): return self.decoder.get(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[int] = "".join(_snake_case ) UpperCAmelCase_ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : int = os.path.join( _snake_case ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Optional[Any] = os.path.join( _snake_case ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_snake_case ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_snake_case ,ensure_ascii=_snake_case ) + "\n" ) UpperCAmelCase_ : Union[str, Any] = 0 with open(_snake_case ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase_ : Optional[int] = token_index writer.write(" ".join(_snake_case ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : List[str] = [self.cls_token_id] UpperCAmelCase_ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self ,_snake_case ,_snake_case=False ,**_snake_case ): UpperCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Optional[Any] = " " + text return (text, kwargs)
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : int ="mra" def __init__( self ,_snake_case=5_02_65 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=1 ,_snake_case=0.02 ,_snake_case=1E-5 ,_snake_case="absolute" ,_snake_case=4 ,_snake_case="full" ,_snake_case=0 ,_snake_case=0 ,_snake_case=1 ,_snake_case=0 ,_snake_case=2 ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : Optional[Any] = block_per_row UpperCAmelCase_ : Any = approx_mode UpperCAmelCase_ : Dict = initial_prior_first_n_blocks UpperCAmelCase_ : str = initial_prior_diagonal_n_blocks
67
1
import fire from utils import calculate_rouge, save_json def a__ ( snake_case , snake_case , snake_case=None , **snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [x.strip() for x in open(snake_case ).readlines()] __SCREAMING_SNAKE_CASE : Any = [x.strip() for x in open(snake_case ).readlines()][: len(snake_case )] __SCREAMING_SNAKE_CASE : List[Any] = calculate_rouge(snake_case , snake_case , **snake_case ) if save_path is not None: save_json(snake_case , snake_case , indent=snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _A ( _lowerCamelCase ): """simple docstring""" _UpperCamelCase : Tuple = '''xmod''' def __init__( self : Optional[Any] , _A : Union[str, Any]=30_522 , _A : List[Any]=768 , _A : Optional[Any]=12 , _A : Any=12 , _A : Tuple=3_072 , _A : Optional[int]="gelu" , _A : List[Any]=0.1 , _A : str=0.1 , _A : List[Any]=512 , _A : List[str]=2 , _A : str=0.02 , _A : Any=1E-12 , _A : Union[str, Any]=1 , _A : List[Any]=0 , _A : Dict=2 , _A : int="absolute" , _A : Dict=True , _A : int=None , _A : List[str]=False , _A : Dict=2 , _A : int=False , _A : Optional[int]=True , _A : Any=True , _A : Optional[int]=("en_XX",) , _A : Any=None , **_A : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) lowercase : Optional[Any] = vocab_size lowercase : Union[str, Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Union[str, Any] = hidden_act lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Any = type_vocab_size lowercase : Optional[Any] = initializer_range lowercase : str = layer_norm_eps lowercase : Tuple = position_embedding_type lowercase : Optional[Any] = use_cache lowercase : int = classifier_dropout lowercase : Optional[int] = pre_norm lowercase : Any = adapter_reduction_factor lowercase : Union[str, Any] = adapter_layer_norm lowercase : Optional[int] = adapter_reuse_layer_norm lowercase : Optional[Any] = ln_before_adapter lowercase : Union[str, Any] = list(_A ) lowercase : List[Any] = default_language class _A ( _lowerCamelCase ): """simple docstring""" @property def __a ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
353
from __future__ import annotations import time lowerCAmelCase_ = list[tuple[int, int]] lowerCAmelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _A : def __init__( self : List[Any] , _A : int , _A : int , _A : int , _A : int , _A : Node | None ) -> str: """simple docstring""" lowercase : Any = pos_x lowercase : Union[str, Any] = pos_y lowercase : int = (pos_y, pos_x) lowercase : List[str] = goal_x lowercase : Optional[int] = goal_y lowercase : Union[str, Any] = parent class _A : def __init__( self : Optional[Any] , _A : tuple[int, int] , _A : tuple[int, int] ) -> List[Any]: """simple docstring""" lowercase : int = Node(start[1] , start[0] , goal[1] , goal[0] , _A ) lowercase : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , _A ) lowercase : List[str] = [self.start] lowercase : Optional[int] = False def __a ( self : Dict ) -> Path | None: """simple docstring""" while self.node_queue: lowercase : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowercase : int = True return self.retrace_path(_A ) lowercase : Union[str, Any] = self.get_successors(_A ) for node in successors: self.node_queue.append(_A ) if not self.reached: return [self.start.pos] return None def __a ( self : str , _A : Node ) -> list[Node]: """simple docstring""" lowercase : Union[str, Any] = [] for action in delta: lowercase : List[str] = parent.pos_x + action[1] lowercase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_A , _A , self.target.pos_y , self.target.pos_x , _A ) ) return successors def __a ( self : Any , _A : Node | None ) -> Path: """simple docstring""" lowercase : Optional[int] = node lowercase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : Tuple = current_node.parent path.reverse() return path class _A : def __init__( self : Optional[int] , _A : List[str] , _A : List[str] ) -> int: """simple docstring""" lowercase : str = BreadthFirstSearch(_A , _A ) lowercase : Optional[Any] = BreadthFirstSearch(_A , _A ) lowercase : List[str] = False def __a ( self : Tuple ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase : str = self.fwd_bfs.node_queue.pop(0 ) lowercase : Tuple = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowercase : Optional[Any] = True return self.retrace_bidirectional_path( _A , _A ) lowercase : Optional[int] = current_bwd_node lowercase : Optional[int] = current_fwd_node lowercase : Union[str, Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(_A ), self.bwd_bfs: self.bwd_bfs.get_successors(_A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __a ( self : List[Any] , _A : Node , _A : Node ) -> Path: """simple docstring""" lowercase : Optional[Any] = self.fwd_bfs.retrace_path(_A ) lowercase : Union[str, Any] = self.bwd_bfs.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() lowercase : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCAmelCase_ = (0, 0) lowerCAmelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase_ = time.time() lowerCAmelCase_ = BreadthFirstSearch(init, goal) lowerCAmelCase_ = bfs.search() lowerCAmelCase_ = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) lowerCAmelCase_ = time.time() lowerCAmelCase_ = BidirectionalBreadthFirstSearch(init, goal) lowerCAmelCase_ = bd_bfs.search() lowerCAmelCase_ = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
116
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=6_4 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_choices lowerCamelCase__ = MegatronBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True # test_resize_embeddings = False lowerCAmelCase_ = False def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MegatronBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase ) def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' return torch.tensor( __snake_case ,dtype=torch.long ,device=__snake_case ,) _a = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: lowerCamelCase__ = os.path.join(os.environ['''MYDIR'''] , __lowerCAmelCase ) lowerCamelCase__ = MegatronBertModel.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.half() lowerCamelCase__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ = model(__lowerCAmelCase )[0] lowerCamelCase__ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __lowerCAmelCase ) lowerCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase__ = output[0, ii, jj] lowerCamelCase__ = expected[3 * ii + jj] lowerCamelCase__ = '''ii={} jj={} a={} b={}'''.format(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(math.isclose(__lowerCAmelCase , __lowerCAmelCase , rel_tol=__lowerCAmelCase , abs_tol=__lowerCAmelCase ) , msg=__lowerCAmelCase )
209
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__snake_case ,__snake_case ) if weight_type is not None: lowerCamelCase__ = getattr(__snake_case ,__snake_case ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ = None for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True elif name.split('''.''' )[0] == "proj": lowerCamelCase__ = fairseq_model.proj lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__snake_case ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__snake_case ,__snake_case ,bias=__snake_case ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' with open(__snake_case ,'''r''' ,encoding='''utf-8''' ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.split(''' ''' )[0] for line in lines] lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaConfig.from_pretrained(__snake_case ) lowerCamelCase__ = SpeechaTextaConfig.from_pretrained( __snake_case ,vocab_size=__snake_case ,decoder_layers=__snake_case ,do_stable_layer_norm=__snake_case ) lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__snake_case ,return_attention_mask=__snake_case ,) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase__ = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ = WavaVecaModel(__snake_case ) lowerCamelCase__ = recursively_load_weights_wavaveca(model.encoder ,__snake_case ) lowerCamelCase__ = SpeechaTextaForCausalLM(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCamelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCamelCase__ = SpeechEncoderDecoderModel(encoder=__snake_case ,decoder=__snake_case ) lowerCamelCase__ = False # add projection layer lowerCamelCase__ = nn.Parameter(projection_layer.weight ) lowerCamelCase__ = nn.Parameter(projection_layer.bias ) lowerCamelCase__ = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case ,'''vocab.json''' ) ,'''w''' ) as fp: json.dump(__snake_case ,__snake_case ) lowerCamelCase__ = SpeechaTextaTokenizer(os.path.join(__snake_case ,'''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase__ = hf_wavavec.config.to_dict() lowerCamelCase__ = tokenizer.pad_token_id lowerCamelCase__ = tokenizer.bos_token_id lowerCamelCase__ = tokenizer.eos_token_id lowerCamelCase__ = '''speech_to_text_2''' lowerCamelCase__ = '''wav2vec2''' lowerCamelCase__ = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
209
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''BlipImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = False super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case = None , _snake_case = None , _snake_case = True , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = 0 , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = True , _snake_case = None , **_snake_case , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __a = self.tokenizer __a = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) return text_encoding # add pixel_values __a = self.image_processor(_snake_case , return_tensors=_snake_case ) if text is not None: __a = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) else: __a = None if text_encoding is not None: encoding_image_processor.update(_snake_case ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A( a ): snake_case_ = '''table-transformer''' snake_case_ = ['''past_key_values'''] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return 12
33
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "wav2vec2" def __init__( self, lowerCAmelCase__=32, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-5, lowerCAmelCase__="group", lowerCAmelCase__="gelu", lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512), lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2), lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2), lowerCAmelCase__=False, lowerCAmelCase__=128, lowerCAmelCase__=16, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=0.05, lowerCAmelCase__=10, lowerCAmelCase__=2, lowerCAmelCase__=0.0, lowerCAmelCase__=10, lowerCAmelCase__=0, lowerCAmelCase__=320, lowerCAmelCase__=2, lowerCAmelCase__=0.1, lowerCAmelCase__=100, lowerCAmelCase__=256, lowerCAmelCase__=256, lowerCAmelCase__=0.1, lowerCAmelCase__="sum", lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=256, lowerCAmelCase__=(512, 512, 512, 512, 1500), lowerCAmelCase__=(5, 3, 3, 1, 1), lowerCAmelCase__=(1, 2, 3, 1, 1), lowerCAmelCase__=512, lowerCAmelCase__=0, lowerCAmelCase__=1, lowerCAmelCase__=2, lowerCAmelCase__=False, lowerCAmelCase__=3, lowerCAmelCase__=2, lowerCAmelCase__=3, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> List[Any]: super().__init__(**lowerCAmelCase__, pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size snake_case_ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = xvector_output_dim @property def a_ ( self) -> List[Any]: return functools.reduce(operator.mul, self.conv_stride, 1)
69
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( UpperCamelCase__ ): a : Dict = """Wav2Vec2FeatureExtractor""" a : Optional[Any] = """AutoTokenizer""" def __init__( self , A , A ) -> Union[str, Any]: '''simple docstring''' super().__init__(A , A ) a = self.feature_extractor a = False @classmethod def lowerCAmelCase_ ( cls , A , **A ) -> Tuple: '''simple docstring''' try: return super().from_pretrained(A , **A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , A , ) a = WavaVecaFeatureExtractor.from_pretrained(A , **A ) a = WavaVecaCTCTokenizer.from_pretrained(A , **A ) return cls(feature_extractor=A , tokenizer=A ) def __call__( self , *A , **A ) -> Optional[int]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*A , **A ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) a = kwargs.pop("raw_speech" ) else: a = kwargs.pop("audio" , A ) a = kwargs.pop("sampling_rate" , A ) a = kwargs.pop("text" , A ) if len(A ) > 0: a = args[0] a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: a = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: a = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: a = encodings["input_ids"] return inputs def lowerCAmelCase_ ( self , *A , **A ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*A , **A ) a = kwargs.pop("input_features" , A ) a = kwargs.pop("labels" , A ) if len(A ) > 0: a = args[0] a = args[1:] if input_features is not None: a = self.feature_extractor.pad(A , *A , **A ) if labels is not None: a = self.tokenizer.pad(A , **A ) if labels is None: return input_features elif input_features is None: return labels else: a = labels["input_ids"] return input_features def lowerCAmelCase_ ( self , *A , **A ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*A , **A ) def lowerCAmelCase_ ( self , *A , **A ) -> int: '''simple docstring''' return self.tokenizer.decode(*A , **A ) @contextmanager def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) a = True a = self.tokenizer yield a = self.feature_extractor a = False
180
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : int = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a__ ( UpperCamelCase__ ): a : Optional[Any] = """sew-d""" def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A=2 , A=512 , A=256 , A=True , A=True , A=("p2c", "c2p") , A="layer_norm" , A="gelu_python" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.0_2 , A=1e-7 , A=1e-5 , A="group" , A="gelu" , A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=128 , A=16 , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A="mean" , A=False , A=False , A=256 , A=0 , A=1 , A=2 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) a = hidden_size a = feat_extract_norm a = feat_extract_activation a = list(A ) a = list(A ) a = list(A ) a = conv_bias a = num_conv_pos_embeddings a = num_conv_pos_embedding_groups a = len(self.conv_dim ) a = num_hidden_layers a = intermediate_size a = squeeze_factor a = max_position_embeddings a = position_buckets a = share_att_key a = relative_attention a = norm_rel_ebd a = list(A ) a = hidden_act a = num_attention_heads a = hidden_dropout a = attention_dropout a = activation_dropout a = feat_proj_dropout a = final_dropout a = layer_norm_eps a = feature_layer_norm_eps a = initializer_range a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a = apply_spec_augment a = mask_time_prob a = mask_time_length a = mask_time_min_masks a = mask_feature_prob a = mask_feature_length a = mask_feature_min_masks # ctc loss a = ctc_loss_reduction a = ctc_zero_infinity # sequence classification a = use_weighted_layer_sum a = classifier_proj_size @property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
180
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __lowerCamelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCAmelCase =["gpt2"] __UpperCAmelCase ="gpt2" if is_tf_available(): class a__ ( tf.Module ): def __init__( self : str , a : Union[str, Any] ): """simple docstring""" super().__init__() __lowerCamelCase = tokenizer __lowerCamelCase = AutoConfig.from_pretrained(a ) __lowerCamelCase = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Tuple ): """simple docstring""" __lowerCamelCase = self.tokenizer(a ) __lowerCamelCase = tokenized['''input_ids'''].to_tensor() __lowerCamelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase = self.model(input_ids=a , attention_mask=a )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" super().setUp() __lowerCamelCase = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCamelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCamelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase = python_outputs[key].numpy() __lowerCamelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.function(a ) for test_inputs in self.test_sentences: __lowerCamelCase = tf.constant(a ) __lowerCamelCase = compiled_tokenizer(a ) __lowerCamelCase = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = ModelToSave(tokenizer=a ) __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase = Path(a ) / '''saved.model''' tf.saved_model.save(a , a , signatures={'''serving_default''': model.serving} ) __lowerCamelCase = tf.saved_model.load(a ) __lowerCamelCase = loaded_model.signatures['''serving_default'''](a )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a ) # Build model with some sample inputs __lowerCamelCase = tf_tokenizer.get_config() __lowerCamelCase = TFGPTaTokenizer.from_config(a ) __lowerCamelCase = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a , max_length=a ) __lowerCamelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
67
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( _A , _A , _A , _A , _A=True , _A="pt" ): lowerCAmelCase_ = {'''add_prefix_space''': True} if isinstance(_A , _A ) and not line.startswith(''' ''' ) else {} lowerCAmelCase_ = padding_side return tokenizer( [line] , max_length=_A , padding='''max_length''' if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def __UpperCamelCase ( _A , _A , _A=None , ): lowerCAmelCase_ = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A ( __UpperCAmelCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__="train", UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="", ): """simple docstring""" super().__init__() lowerCAmelCase_ = Path(UpperCamelCase__ ).joinpath(type_path + '''.source''' ) lowerCAmelCase_ = Path(UpperCamelCase__ ).joinpath(type_path + '''.target''' ) lowerCAmelCase_ = self.get_char_lens(self.src_file ) lowerCAmelCase_ = max_source_length lowerCAmelCase_ = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" lowerCAmelCase_ = tokenizer lowerCAmelCase_ = prefix if n_obs is not None: lowerCAmelCase_ = self.src_lens[:n_obs] lowerCAmelCase_ = src_lang lowerCAmelCase_ = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = index + 1 # linecache starts at 1 lowerCAmelCase_ = self.prefix + linecache.getline(str(self.src_file ), UpperCamelCase__ ).rstrip('''\n''' ) lowerCAmelCase_ = linecache.getline(str(self.tgt_file ), UpperCamelCase__ ).rstrip('''\n''' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer, UpperCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer, UpperCamelCase__ ) else self.tokenizer ) lowerCAmelCase_ = self.tokenizer.generator if isinstance(self.tokenizer, UpperCamelCase__ ) else self.tokenizer lowerCAmelCase_ = encode_line(UpperCamelCase__, UpperCamelCase__, self.max_source_length, '''right''' ) lowerCAmelCase_ = encode_line(UpperCamelCase__, UpperCamelCase__, self.max_target_length, '''right''' ) lowerCAmelCase_ = source_inputs['''input_ids'''].squeeze() lowerCAmelCase_ = target_inputs['''input_ids'''].squeeze() lowerCAmelCase_ = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" return [len(UpperCamelCase__ ) for x in Path(UpperCamelCase__ ).open().readlines()] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = torch.stack([x['''input_ids'''] for x in batch] ) lowerCAmelCase_ = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCAmelCase_ = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCAmelCase_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, UpperCamelCase__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, UpperCamelCase__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase_ = trim_batch(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ = trim_batch(UpperCamelCase__, UpperCamelCase__, attention_mask=UpperCamelCase__ ) lowerCAmelCase_ = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch _A = getLogger(__name__) def __UpperCamelCase ( _A ): return list(itertools.chain.from_iterable(_A ) ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = get_git_info() save_json(_A , os.path.join(_A , '''git_log.json''' ) ) def __UpperCamelCase ( _A , _A , _A=4 , **_A ): with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=_A , **_A ) def __UpperCamelCase ( _A ): with open(_A ) as f: return json.load(_A ) def __UpperCamelCase ( ): lowerCAmelCase_ = git.Repo(search_parent_directories=_A ) lowerCAmelCase_ = { '''repo_id''': str(_A ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( _A , _A ): return list(map(_A , _A ) ) def __UpperCamelCase ( _A , _A ): with open(_A , '''wb''' ) as f: return pickle.dump(_A , _A ) def __UpperCamelCase ( _A ): def remove_articles(_A ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): lowerCAmelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = normalize_answer(_A ).split() lowerCAmelCase_ = normalize_answer(_A ).split() lowerCAmelCase_ = Counter(_A ) & Counter(_A ) lowerCAmelCase_ = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase_ = 1.0 * num_same / len(_A ) lowerCAmelCase_ = 1.0 * num_same / len(_A ) lowerCAmelCase_ = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( _A , _A ): return normalize_answer(_A ) == normalize_answer(_A ) def __UpperCamelCase ( _A , _A ): assert len(_A ) == len(_A ) lowerCAmelCase_ = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def __UpperCamelCase ( _A ): return model_prefix.startswith('''rag''' ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase_ = '''dropout_rate''' for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_A ) ) delattr(_A , _A ) continue lowerCAmelCase_ = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
167
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): __snake_case = ['pixel_values'] def __init__( self, UpperCamelCase__ = True, UpperCamelCase__ = 32, UpperCamelCase__=PILImageResampling.BILINEAR, UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize lowerCAmelCase_ = do_rescale lowerCAmelCase_ = size_divisor lowerCAmelCase_ = resample super().__init__(**UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase_ = height // size_divisor * size_divisor lowerCAmelCase_ = width // size_divisor * size_divisor lowerCAmelCase_ = resize(UpperCamelCase__, (new_h, new_w), resample=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) return image def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" return rescale(image=UpperCamelCase__, scale=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__=None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = ChannelDimension.FIRST, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowerCAmelCase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: lowerCAmelCase_ = [self.resize(UpperCamelCase__, size_divisor=UpperCamelCase__, resample=UpperCamelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(UpperCamelCase__, scale=1 / 255 ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(UpperCamelCase__, UpperCamelCase__ ) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__, tensor_type=UpperCamelCase__ )
167
1
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(_lowerCAmelCase ) ) snake_case : Tuple = [list(_lowerCAmelCase ) for char in range(len(_lowerCAmelCase ) )] for index in range(len(_lowerCAmelCase ) ): num_transpositions[index].pop(_lowerCAmelCase ) return max( int("".join(list(_lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
59
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : Any = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) A : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A : Tuple = tokenizer("""Hello there""", return_tensors="""tf""" ).input_ids A : Optional[int] = tokenizer("""Hi I am""", return_tensors="""tf""" ).input_ids A : List[Any] = model(lowerCamelCase__, labels=lowerCamelCase__ ).loss A : str = -tf.math.reduce_mean(lowerCamelCase__ ).numpy() A : Tuple = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
116
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = None if token is not None: _lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : Tuple = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _lowerCAmelCase : str = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json() _lowerCAmelCase : Optional[Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _lowerCAmelCase : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase_ ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=UpperCamelCase_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None if token is not None: _lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _lowerCAmelCase : Optional[int] = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json() _lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _lowerCAmelCase : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase_ ): _lowerCAmelCase : List[str] = requests.get(url + F"&page={i + 2}" , headers=UpperCamelCase_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ): '''simple docstring''' _lowerCAmelCase : str = None if token is not None: _lowerCAmelCase : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : List[str] = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ , allow_redirects=UpperCamelCase_ ) _lowerCAmelCase : List[str] = result.headers["""Location"""] _lowerCAmelCase : List[Any] = requests.get(UpperCamelCase_ , allow_redirects=UpperCamelCase_ ) _lowerCAmelCase : int = os.path.join(UpperCamelCase_ , F"{artifact_name}.zip" ) with open(UpperCamelCase_ , """wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]=None ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : Any = [] _lowerCAmelCase : Union[str, Any] = None with zipfile.ZipFile(UpperCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCamelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCamelCase_ ) as f: for line in f: _lowerCAmelCase : List[str] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase : Union[str, Any] = line[: line.index(""": """ )] _lowerCAmelCase : Union[str, Any] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _lowerCAmelCase : Tuple = line[len("""FAILED """ ) :] failed_tests.append(UpperCamelCase_ ) elif filename == "job_name.txt": _lowerCAmelCase : str = line if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase_ )} for `errors` " F"and {len(UpperCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) _lowerCAmelCase : int = None if job_name and job_links: _lowerCAmelCase : Optional[int] = job_links.get(UpperCamelCase_ , UpperCamelCase_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase : Tuple = [x + [y] + [job_link] for x, y in zip(UpperCamelCase_ , UpperCamelCase_ )] return result def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for p in os.listdir(UpperCamelCase_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCamelCase_ , job_links=UpperCamelCase_ ) ) return errors def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase : Dict = counter.most_common() _lowerCAmelCase : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase : Union[str, Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase : int = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=UpperCamelCase_ ) ) return r def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' _lowerCAmelCase : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _lowerCAmelCase : Optional[Any] = test.split("""/""" )[2] else: _lowerCAmelCase : Union[str, Any] = None return test def _UpperCAmelCase (UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict=None ): '''simple docstring''' _lowerCAmelCase : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase : List[str] = [x for x in logs if x[2] is not None] _lowerCAmelCase : int = {x[2] for x in logs} _lowerCAmelCase : str = {} for test in tests: _lowerCAmelCase : Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase : List[Any] = counter.most_common() _lowerCAmelCase : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase : List[str] = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase : int = {"""count""": n_errors, """errors""": error_counts} _lowerCAmelCase : Dict = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=UpperCamelCase_ ) ) return r def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = """| no. | error | status |""" _lowerCAmelCase : List[Any] = """|-:|:-|:-|""" _lowerCAmelCase : str = [header, sep] for error in reduced_by_error: _lowerCAmelCase : Optional[Any] = reduced_by_error[error]["""count"""] _lowerCAmelCase : int = F"| {count} | {error[:100]} | |" lines.append(UpperCamelCase_ ) return "\n".join(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : List[str] ): '''simple docstring''' _lowerCAmelCase : str = """| model | no. of errors | major error | count |""" _lowerCAmelCase : Any = """|-:|-:|-:|-:|""" _lowerCAmelCase : str = [header, sep] for model in reduced_by_model: _lowerCAmelCase : Union[str, Any] = reduced_by_model[model]["""count"""] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = list(reduced_by_model[model]["""errors"""].items() )[0] _lowerCAmelCase : str = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(UpperCamelCase_ ) return "\n".join(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _lowerCamelCase : Tuple = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowerCamelCase : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) _lowerCamelCase : int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowerCamelCase : Optional[Any] = k.find(" / ") _lowerCamelCase : Tuple = k[index + len(" / ") :] _lowerCamelCase : List[Any] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowerCamelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowerCamelCase : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowerCamelCase : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowerCamelCase : Union[str, Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowerCamelCase : str = reduce_by_error(errors) _lowerCamelCase : Tuple = reduce_by_model(errors) _lowerCamelCase : List[str] = make_github_table(reduced_by_error) _lowerCamelCase : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
159
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case (_a ): lowerCAmelCase__ = "ibert" def __init__( self : int , _UpperCAmelCase : Optional[int]=3_0522 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any="none" , **_UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : str = position_embedding_type _lowerCAmelCase : int = quant_mode _lowerCAmelCase : str = force_dequant class __snake_case (_a ): @property def SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
159
1
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __A : Any = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __A : Union[str, Any] = parser.parse_args() if args.model_type == "roberta": __A : Any = RobertaForMaskedLM.from_pretrained(args.model_name) __A : Optional[Any] = '''roberta''' elif args.model_type == "gpt2": __A : Tuple = GPTaLMHeadModel.from_pretrained(args.model_name) __A : List[Any] = '''transformer''' __A : Any = model.state_dict() __A : Any = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __A : Optional[int] = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __A : Tuple = F"""{prefix}.embeddings.{w}.weight""" __A : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: __A : Union[str, Any] = F"""{prefix}.embeddings.LayerNorm.{w}""" __A : List[str] = state_dict[param_name] # Transformer Blocks # __A : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __A : Union[str, Any] = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __A : int = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __A : Optional[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __A : List[str] = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __A : List[str] = state_dict[F"""lm_head.dense.{w}"""] __A : Optional[int] = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __A : Union[str, Any] = state_dict[F"""{prefix}.ln_f.{w}"""] __A : Optional[int] = state_dict['''lm_head.weight'''] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
33
"""simple docstring""" from __future__ import annotations __A : List[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __A : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = [] lowercase_ : List[Any] = len(__snake_case ) for i in range(__snake_case ): lowercase_ : float = -1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: lowercase_ : List[str] = arr[j] break result.append(__snake_case ) return result def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = [] for i, outer in enumerate(__snake_case ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : List[Any] = inner break result.append(__snake_case ) return result def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = len(__snake_case ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __A : int = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
33
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a__ ( snake_case_ ): def __init__( self : List[Any] , a : int , a : Tuple=None , a : Optional[int]=True , a : List[Any]=None , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = config_class __lowerCamelCase = has_text_modality __lowerCamelCase = kwargs __lowerCamelCase = common_properties def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.config_class(**self.inputs_dict ) __lowerCamelCase = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_A , _A ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(_A ): try: setattr(_A , _A , _A ) self.parent.assertEqual( getattr(_A , _A ) , _A , msg=f"""`{name} value {idx} expected, but was {getattr(_A , _A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_A ): try: __lowerCamelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_A , _A ) , _A , msg=f"""`{name} value {idx} expected, but was {getattr(_A , _A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.config_class(**self.inputs_dict ) __lowerCamelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _A ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(_A , '''config.json''' ) config_first.to_json_file(_A ) __lowerCamelCase = self.config_class.from_json_file(_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_A ) __lowerCamelCase = self.config_class.from_pretrained(_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.config_class(**self.inputs_dict ) __lowerCamelCase = 'test' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(_A , _A ) config_first.save_pretrained(_A ) __lowerCamelCase = self.config_class.from_pretrained(_A , subfolder=_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __lowerCamelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" if self.config_class.is_composition: return __lowerCamelCase = self.config_class() self.parent.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = copy.deepcopy(_A ) __lowerCamelCase = self.config_class(**_A ) __lowerCamelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_A , _A ) != value: wrong_values.append((key, getattr(_A , _A ), value) ) if len(_A ) > 0: __lowerCamelCase = '\n'.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
350
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowerCamelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCamelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
237
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy-config.json') class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: _A = 0 def UpperCAmelCase ( self ) -> Union[str, Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def UpperCAmelCase ( self ) -> Tuple: _A = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: _A = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _A = os.path.join(lowerCAmelCase_ , """fake-roberta""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertEqual(type(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: try: AutoConfig.register("""custom""" , lowerCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoConfig.register("""model""" , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoConfig.register("""bert""" , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _A = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase_ ) _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCAmelCase ( self ) -> List[str]: with self.assertRaisesRegex( lowerCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): _A = AutoConfig.from_pretrained("""bert-base""" ) def UpperCAmelCase ( self ) -> str: with self.assertRaisesRegex( lowerCAmelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _A = AutoConfig.from_pretrained(lowerCAmelCase_ , revision="""aaaaaa""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase_ , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): _A = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def UpperCAmelCase ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase_ ): _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase_ ) _A = AutoConfig.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def UpperCAmelCase ( self ) -> List[str]: class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''new-model''' try: AutoConfig.register("""new-model""" , lowerCAmelCase_ ) # If remote code is not set, the default is to use local _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
180
from math import isqrt def snake_case ( snake_case__ :int) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__) + 1)) def snake_case ( snake_case__ :int = 10**6) -> int: _A = 0 _A = 1 _A = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
180
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __UpperCamelCase : lowercase : List[str] lowercase : Optional[str] =None # Automatically constructed lowercase : ClassVar[str] ="dict" lowercase : ClassVar[Any] =None lowercase : str =field(default='Translation' , init=lowerCamelCase__ , repr=lowerCamelCase__ ) def __call__( self ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self ): """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __UpperCamelCase : lowercase : Optional[List] =None lowercase : Optional[int] =None lowercase : Optional[str] =None # Automatically constructed lowercase : ClassVar[str] ="dict" lowercase : ClassVar[Any] =None lowercase : str =field(default='TranslationVariableLanguages' , init=lowerCamelCase__ , repr=lowerCamelCase__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ =len(self.languages ) if self.languages else None def __call__( self ): """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( f'''Some languages in example ({', '.join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(lowerCAmelCase )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ =[] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase, lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_, lowerCamelCase_ =zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase__ ( self ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
6
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Tuple = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase): def a_ ( self : List[str] ): """simple docstring""" A_ : Tuple = tempfile.mkdtemp() # fmt: off A_ : List[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A_ : Tuple = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] A_ : Tuple = {'''unk_token''': '''<unk>'''} A_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) A_ : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } A_ : str = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def a_ ( self : Any , **_lowerCamelCase : Dict ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : Dict , **_lowerCamelCase : Optional[int] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : List[str] , **_lowerCamelCase : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : List[str] ): """simple docstring""" A_ : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A_ : Dict = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ): """simple docstring""" A_ : int = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[Any] = self.get_image_processor() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : List[str] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : Optional[int] = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : int = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : int = processor(text=_lowerCamelCase ) A_ : Any = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : Tuple = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : Optional[Any] = self.prepare_image_inputs() A_ : Dict = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : Any = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Tuple = self.prepare_image_inputs() A_ : Optional[int] = processor(images=_lowerCamelCase , visual_prompt=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : List[str] = processor.batch_decode(_lowerCamelCase ) A_ : str = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
167
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Optional[Any] , a : Any , a : Tuple=7 , a : List[Any]=3 , a : Optional[int]=18 , a : Any=30 , a : int=400 , a : List[str]=True , a : Optional[Any]=None , a : Union[str, Any]=True , a : int=False , a : Union[str, Any]=True , a : int=True , a : Dict=[0.5, 0.5, 0.5] , a : str=[0.5, 0.5, 0.5] , )-> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'''height''': 18, '''width''': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (__lowerCAmelCase , unittest.TestCase ): _UpperCamelCase : Tuple = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_thumbnail' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_pad' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> str: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Any: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(lowerCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
357
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _UpperCamelCase : ClassVar[Features] = Features({} ) _UpperCamelCase : str = "text" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
269
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _lowerCAmelCase ( )->Optional[int]: '''simple docstring''' snake_case_ = torch.nn.Linear(2 , 4 ) snake_case_ = torch.optim.AdamW(model.parameters() , lr=1.0 ) snake_case_ = torch.optim.lr_scheduler.OneCycleLR(lowerCAmelCase_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) snake_case_ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) snake_case_ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Dict: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] )->List[str]: '''simple docstring''' snake_case_ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCAmelCase_ ) class __lowerCAmelCase ( a ): """simple docstring""" @require_cuda def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowerCAmelCase ): snake_case_ = Accelerator(cpu=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" snake_case_ = Accelerator() snake_case_ = GradientState() assert state.num_steps == 1 snake_case_ = 4 assert state.num_steps == 4 assert state.sync_gradients is True snake_case_ = False assert state.sync_gradients is False GradientState._reset_state() def lowerCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ = Accelerator() snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = create_components() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowerCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ = Accelerator() snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowerCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): pass with patch("torch.cuda.set_device" , _lowerCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): snake_case_ = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def lowerCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" snake_case_ = Accelerator() snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case_ = get_signature(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) def lowerCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case_ = Accelerator() snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case_ = get_signature(_lowerCAmelCase ) # saving hook def save_config(_lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ): snake_case_ = {"class_name": models[0].__class__.__name__} with open(os.path.join(_lowerCAmelCase , "data.json" ) , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # loading hook def load_config(_lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): with open(os.path.join(_lowerCAmelCase , "data.json" ) , "r" ) as f: snake_case_ = json.load(_lowerCAmelCase ) snake_case_ = config["class_name"] snake_case_ = accelerator.register_save_state_pre_hook(_lowerCAmelCase ) snake_case_ = accelerator.register_load_state_pre_hook(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match with hooks load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded snake_case_ = "random" # make sure loaded weights match with hooks accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded snake_case_ = "random" # make sure loaded weights match with hooks removed accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowerCAmelCase__ ( self : str ) -> int: """simple docstring""" snake_case_ = Accelerator() snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = create_components() snake_case_ = None # This should work snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(dummy_obj is None ) def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ = Accelerator() snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = create_components() snake_case_ = [1, 2, 3] # This should work snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def lowerCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" from transformers import AutoModelForCausalLM snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map={"": 0} , ) snake_case_ = Accelerator() # This should work snake_case_ = accelerator.prepare(_lowerCAmelCase ) @slow @require_bnb def lowerCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" from transformers import AutoModelForCausalLM snake_case_ = Accelerator() with init_empty_weights(): snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() snake_case_ = infer_auto_device_map(_lowerCAmelCase ) snake_case_ = "cpu" snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=_lowerCAmelCase , load_in_abit=_lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=_lowerCAmelCase ) # This should not work and get value error with self.assertRaises(_lowerCAmelCase ): snake_case_ = accelerator.prepare(_lowerCAmelCase ) @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" from transformers import AutoModelForCausalLM snake_case_ = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() snake_case_ = infer_auto_device_map(_lowerCAmelCase ) snake_case_ = 1 snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) snake_case_ = Accelerator() # This should not work and get value error with self.assertRaises(_lowerCAmelCase ): snake_case_ = accelerator.prepare(_lowerCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) snake_case_ = infer_auto_device_map(_lowerCAmelCase ) snake_case_ = 1 snake_case_ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) snake_case_ = Accelerator() # This should work snake_case_ = accelerator.prepare(_lowerCAmelCase ) @require_cuda def lowerCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case_ = torch.nn.Linear(1_0 , 1_0 ) snake_case_ = torch.optim.SGD(model.parameters() , lr=0.01 ) snake_case_ = Accelerator(cpu=_lowerCAmelCase ) snake_case_ = accelerator.prepare(_lowerCAmelCase )
159
from typing import Union import fire import torch from tqdm import tqdm def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str = "cpu" , lowerCAmelCase_ :Union[str, None] = None )->None: '''simple docstring''' snake_case_ = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) snake_case_ = v.half() if save_path is None: # overwrite src_path snake_case_ = src_path torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
159
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Any = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase ( _UpperCAmelCase ): lowercase : List[Any] = 'umt5' lowercase : Union[str, Any] = ['past_key_values'] def __init__( self , SCREAMING_SNAKE_CASE_=25_0112 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=128 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1e-6 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_="gated-gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="T5Tokenizer" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ , ): super().__init__( is_encoder_decoder=SCREAMING_SNAKE_CASE_ , tokenizer_class=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Union[str, Any] = d_model UpperCamelCase : List[Any] = d_kv UpperCamelCase : List[str] = d_ff UpperCamelCase : Optional[int] = num_layers UpperCamelCase : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase : Tuple = num_heads UpperCamelCase : Tuple = relative_attention_num_buckets UpperCamelCase : Union[str, Any] = relative_attention_max_distance UpperCamelCase : Tuple = dropout_rate UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : List[Any] = initializer_factor UpperCamelCase : int = feed_forward_proj UpperCamelCase : Any = use_cache UpperCamelCase : Any = self.feed_forward_proj.split("""-""" ) UpperCamelCase : Optional[int] = act_info[-1] UpperCamelCase : Union[str, Any] = act_info[0] == """gated""" if len(SCREAMING_SNAKE_CASE_ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": UpperCamelCase : List[str] = """gelu_new""" @property def a_ ( self ): return self.d_model @property def a_ ( self ): return self.num_heads @property def a_ ( self ): return self.num_layers class lowerCamelCase ( _UpperCAmelCase ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a_ ( self ): UpperCamelCase : Any = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: UpperCamelCase : Tuple = """past_encoder_sequence + sequence""" UpperCamelCase : Optional[Any] = {0: """batch"""} UpperCamelCase : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCamelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} UpperCamelCase : int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a_ ( self ): return 13 @property def a_ ( self ): return 5e-4
27
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ): UpperCamelCase : Dict = tokenizer UpperCamelCase : Optional[Any] = tokenizer.bos_token_id UpperCamelCase : Any = dataset UpperCamelCase : List[str] = seq_length UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self ): UpperCamelCase : Dict = iter(self.dataset ) UpperCamelCase : Union[str, Any] = True while more_examples: UpperCamelCase , UpperCamelCase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: UpperCamelCase : Dict = False break UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] UpperCamelCase : str = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ): UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length: yield torch.tensor(SCREAMING_SNAKE_CASE_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' UpperCamelCase : Dict = {"""streaming""": True} UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ ) UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length ) UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size ) return eval_dataloader def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' model.eval() UpperCamelCase : Dict = [] for step, batch in enumerate(snake_case_ ): with torch.no_grad(): UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ ) UpperCamelCase : Any = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(snake_case_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) ) try: UpperCamelCase : Dict = torch.exp(snake_case_ ) except OverflowError: UpperCamelCase : Optional[int] = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator __A : List[Any] = Accelerator() # Parse configuration __A : str = HfArgumentParser(EvaluationArguments) __A : List[Any] = parser.parse_args() set_seed(args.seed) # Logging __A : Any = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer __A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __A : int = create_dataloader(args) # Prepare everything with our `accelerator`. __A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') __A , __A : Tuple = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
27
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
'''simple docstring''' import functools def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = len(_lowerCamelCase ) A__ = len(_lowerCamelCase ) @functools.cache def min_distance(_lowerCamelCase : int , _lowerCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
237
0
"""simple docstring""" import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __magic_name__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Any , snake_case_ : str ) -> Dict: '''simple docstring''' A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=__snake_case , predictions=__snake_case ) return score
353
"""simple docstring""" SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
230
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A: snake_case_ = 42 snake_case_ = None # Automatically constructed snake_case_ = "dict" snake_case_ = None snake_case_ = field(default='''Translation''' , init=a , repr=a ) def __call__( self ) -> Tuple: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A: snake_case_ = None snake_case_ = None snake_case_ = None # Automatically constructed snake_case_ = "dict" snake_case_ = None snake_case_ = field(default='''TranslationVariableLanguages''' , init=a , repr=a ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = sorted(set(self.languages ) ) if self.languages else None __a = len(self.languages ) if self.languages else None def __call__( self ) -> Any: '''simple docstring''' return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( F"""Some languages in example ({', '.join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({', '.join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __a = [] for lang, text in translation_dict.items(): if isinstance(_snake_case , _snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __a , __a = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
6
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : List[Any] ={ '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] =['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] =[ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCamelCase : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Any = len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ : Optional[int] = i + 1 else: UpperCamelCase__ : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
196
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Union[str, Any] = logging.get_logger(__name__) _a : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _a : Optional[int] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _a : Tuple = {'facebook/blenderbot-3B': 128} class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] _UpperCamelCase : Optional[int] = BlenderbotTokenizer def __init__( self , a__=None , a__=None , a__=None , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , a__=True , **a__ , ): super().__init__( a__ , a__ , tokenizer_file=a__ , errors=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , trim_offsets=a__ , **a__ , ) _lowerCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , a__ ) != add_prefix_space: _lowerCAmelCase : int = getattr(a__ , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase : Optional[Any] = add_prefix_space _lowerCAmelCase : List[Any] = pre_tok_class(**a__ ) _lowerCAmelCase : List[str] = add_prefix_space _lowerCAmelCase : Dict = """post_processor""" _lowerCAmelCase : List[Any] = getattr(self.backend_tokenizer , a__ , a__ ) if tokenizer_component_instance: _lowerCAmelCase : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : List[Any] = tuple(state["""sep"""] ) if "cls" in state: _lowerCAmelCase : Tuple = tuple(state["""cls"""] ) _lowerCAmelCase : Union[str, Any] = False if state.get("""add_prefix_space""" , a__ ) != add_prefix_space: _lowerCAmelCase : Any = add_prefix_space _lowerCAmelCase : Optional[Any] = True if state.get("""trim_offsets""" , a__ ) != trim_offsets: _lowerCAmelCase : Any = trim_offsets _lowerCAmelCase : List[str] = True if changes_to_apply: _lowerCAmelCase : Union[str, Any] = getattr(a__ , state.pop("""type""" ) ) _lowerCAmelCase : Union[str, Any] = component_class(**a__ ) setattr(self.backend_tokenizer , a__ , a__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __A ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else value _lowerCAmelCase : List[str] = value def __A ( self , *a__ , **a__ ): _lowerCAmelCase : int = kwargs.get("""is_split_into_words""" , a__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): _lowerCAmelCase : str = kwargs.get("""is_split_into_words""" , a__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ , **a__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ = None ): return token_ids_a + [self.eos_token_id] def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(a__ ) _lowerCAmelCase : Union[str, Any] = """ """.join(a__ ) _lowerCAmelCase : Tuple = self.encode(a__ ) if len(a__ ) > self.model_max_length: _lowerCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
44
"""simple docstring""" import os from math import logaa def _lowercase ( __snake_case = "base_exp.txt" ) -> int: __lowerCAmelCase : float = 0 __lowerCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) ,__snake_case ) ) ): __lowerCAmelCase , __lowerCAmelCase : List[str] = list(map(__snake_case ,line.split("," ) ) ) if x * logaa(__snake_case ) > largest: __lowerCAmelCase : Tuple = x * logaa(__snake_case ) __lowerCAmelCase : Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
269
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "roberta" def __init__( self , snake_case__=5_0265 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Optional[int] = position_embedding_type _lowerCAmelCase : Optional[Any] = use_cache _lowerCAmelCase : Dict = classifier_dropout class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def a ( self ): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowercase : Union[str, Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowercase : int = TaTokenizerFast __lowercase : int = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowercase : Optional[int] = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Tuple = logging.get_logger(__name__) __lowercase : List[Any] = torch.device('cpu') def lowerCamelCase (): __a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : int = dct.pop(_SCREAMING_SNAKE_CASE ) __a : Tuple = val def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Dict = [] for k in state_dict.keys(): __a : List[Any] = k if ".pwconv" in k: __a : List[Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __a : Optional[int] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __a : List[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __a : Union[str, Any] = k_new.split('.' ) if ls[2].isdigit(): __a : Union[str, Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __a : Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __a : List[str] = 1_000 __a : Tuple = 'huggingface/label-files' __a : str = 'imagenet-1k-id2label.json' __a : Dict = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __a : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a : Any = idalabel __a : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __a : Dict = [3, 3, 6, 4] __a : int = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __a : Dict = [3, 3, 9, 6] __a : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __a : Dict = [4, 3, 10, 5] __a : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __a : Tuple = [4, 4, 12, 6] __a : Dict = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __a : List[Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=_SCREAMING_SNAKE_CASE ) else: __a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) __a : Optional[Any] = checkpoint __a : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model __a : Tuple = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs __a : Tuple = prepare_img() __a : str = ViTImageProcessor.from_pretrained('preprocessor_config' ) __a : Tuple = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models __a : List[Any] = get_expected_output(_SCREAMING_SNAKE_CASE ) __a : Dict = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') __lowercase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
27
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path snake_case__ : Dict = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) snake_case__ : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} snake_case__ : Any = '''zero2''' snake_case__ : Optional[Any] = '''zero3''' snake_case__ : Any = [ZEROa, ZEROa] def _snake_case ( _snake_case : List[str] , _snake_case : Tuple , _snake_case : Union[str, Any] ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowerCAmelCase : Dict = parameterized.to_safe_name('''_'''.join(str(_snake_case ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test snake_case__ : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_( a__ ): @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , ): lowerCAmelCase : List[str] = models[model] lowerCAmelCase : Dict = self.run_trainer( stage=UpperCamelCase_ , model_name=UpperCamelCase_ , eval_steps=UpperCamelCase_ , num_train_epochs=1 , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) self.do_checks(UpperCamelCase_ ) return output_dir def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , ): lowerCAmelCase : int = self.get_auto_remove_tmp_dir('''./xxx''' , after=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCamelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCAmelCase : Optional[Any] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() lowerCAmelCase : Any = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] lowerCAmelCase : Dict = self.get_launcher(UpperCamelCase_ ) lowerCAmelCase : List[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) return output_dir def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Dict=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) lowerCAmelCase : List[str] = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
314
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" return x + 2 class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Any = '''x = 3''' snake_case__ : Any = {} snake_case__ : Optional[int] = evaluate(__lowercase ,{} ,state=__lowercase ) assert result == 3 self.assertDictEqual(__lowercase ,{'''x''': 3} ) snake_case__ : Dict = '''x = y''' snake_case__ : int = {'''y''': 5} snake_case__ : Dict = evaluate(__lowercase ,{} ,state=__lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowercase ,{'''x''': 5, '''y''': 5} ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[str] = '''y = add_two(x)''' snake_case__ : List[str] = {'''x''': 3} snake_case__ : Optional[Any] = evaluate(__lowercase ,{'''add_two''': add_two} ,state=__lowercase ) assert result == 5 self.assertDictEqual(__lowercase ,{'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case__ : Union[str, Any] = evaluate(__lowercase ,{} ,state=__lowercase ) assert result is None assert "tried to execute add_two" in out.out def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = '''x = 3''' snake_case__ : List[str] = {} snake_case__ : str = evaluate(__lowercase ,{} ,state=__lowercase ) assert result == 3 self.assertDictEqual(__lowercase ,{'''x''': 3} ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Tuple = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case__ : Union[str, Any] = {'''x''': 3} snake_case__ : List[str] = evaluate(__lowercase ,{'''add_two''': add_two} ,state=__lowercase ) self.assertDictEqual(__lowercase ,{'''x''': 3, '''y''': 5} ) self.assertDictEqual(__lowercase ,{'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[Any] = '''x = 3\ny = 5''' snake_case__ : Optional[Any] = {} snake_case__ : str = evaluate(__lowercase ,{} ,state=__lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowercase ,{'''x''': 3, '''y''': 5} ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Any = '''text = f\'This is x: {x}.\'''' snake_case__ : Optional[int] = {'''x''': 3} snake_case__ : Optional[int] = evaluate(__lowercase ,{} ,state=__lowercase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__lowercase ,{'''x''': 3, '''text''': '''This is x: 3.'''} ) def __lowerCamelCase ( self :str ): snake_case__ : Any = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case__ : List[Any] = {'''x''': 3} snake_case__ : List[str] = evaluate(__lowercase ,{} ,state=__lowercase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__lowercase ,{'''x''': 3, '''y''': 2} ) snake_case__ : Dict = {'''x''': 8} snake_case__ : Optional[Any] = evaluate(__lowercase ,{} ,state=__lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowercase ,{'''x''': 8, '''y''': 5} ) def __lowerCamelCase ( self :Dict ): snake_case__ : Dict = '''test_list = [x, add_two(x)]''' snake_case__ : Dict = {'''x''': 3} snake_case__ : str = evaluate(__lowercase ,{'''add_two''': add_two} ,state=__lowercase ) self.assertListEqual(__lowercase ,[3, 5] ) self.assertDictEqual(__lowercase ,{'''x''': 3, '''test_list''': [3, 5]} ) def __lowerCamelCase ( self :str ): snake_case__ : List[Any] = '''y = x''' snake_case__ : List[Any] = {'''x''': 3} snake_case__ : str = evaluate(__lowercase ,{} ,state=__lowercase ) assert result == 3 self.assertDictEqual(__lowercase ,{'''x''': 3, '''y''': 3} ) def __lowerCamelCase ( self :str ): snake_case__ : Dict = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case__ : Optional[Any] = {'''x''': 3} snake_case__ : Any = evaluate(__lowercase ,{'''add_two''': add_two} ,state=__lowercase ) assert result == 5 self.assertDictEqual(__lowercase ,{'''x''': 3, '''test_list''': [3, 5]} ) snake_case__ : List[str] = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case__ : Dict = {'''x''': 3} snake_case__ : Union[str, Any] = evaluate(__lowercase ,{'''add_two''': add_two} ,state=__lowercase ) assert result == 5 self.assertDictEqual(__lowercase ,{'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Tuple = '''x = 0\nfor i in range(3):\n x = i''' snake_case__ : Tuple = {} snake_case__ : List[Any] = evaluate(__lowercase ,{'''range''': range} ,state=__lowercase ) assert result == 2 self.assertDictEqual(__lowercase ,{'''x''': 2, '''i''': 2} )
230
import random from .binary_exp_mod import bin_exp_mod def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=1000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ : Tuple = n - 1 snake_case__ : Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ : List[str] = 0 while count < prec: snake_case__ : List[str] = random.randint(2 , n - 1 ) snake_case__ : Optional[Any] = bin_exp_mod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if b != 1: snake_case__ : List[Any] = True for _ in range(__lowerCAmelCase ): if b == n - 1: snake_case__ : List[str] = False break snake_case__ : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
1
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _A (__a = "isbn/0140328726" ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: SCREAMING_SNAKE_CASE_ : Optional[int] = f'{olid} is not a valid Open Library olid' raise ValueError(lowercase__ ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def _A (__a ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } SCREAMING_SNAKE_CASE_ : Any = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ : int = [ get_openlibrary_data(author['''key'''] )["""name"""] for author in data["""Authors"""] ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : int = """, """.join(lowercase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase_ : Optional[int] = input("""\nEnter the ISBN code to search (or \'quit\' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: UpperCAmelCase_ : int = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("""\n""".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
351
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = max_length SCREAMING_SNAKE_CASE_ : Dict = vocab SCREAMING_SNAKE_CASE_ : Dict = merges SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'detr' SCREAMING_SNAKE_CASE : List[Any] = ['past_key_values'] SCREAMING_SNAKE_CASE : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[Any]=3 ,lowercase__ : Optional[Any]=1_0_0 ,lowercase__ : Optional[Any]=6 ,lowercase__ : Optional[int]=2_0_4_8 ,lowercase__ : List[str]=8 ,lowercase__ : Optional[int]=6 ,lowercase__ : Dict=2_0_4_8 ,lowercase__ : List[Any]=8 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : str=0.0 ,lowercase__ : List[str]=True ,lowercase__ : Union[str, Any]="relu" ,lowercase__ : List[str]=2_5_6 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Dict=0.0_2 ,lowercase__ : Tuple=1.0 ,lowercase__ : List[str]=False ,lowercase__ : Optional[int]="sine" ,lowercase__ : Any="resnet50" ,lowercase__ : str=True ,lowercase__ : Any=False ,lowercase__ : Tuple=1 ,lowercase__ : Optional[int]=5 ,lowercase__ : Any=2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : Dict=1 ,lowercase__ : List[str]=5 ,lowercase__ : int=2 ,lowercase__ : Union[str, Any]=0.1 ,**lowercase__ : Tuple ,): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowercase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase__ ,lowercase__ ): __lowercase = backbone_config.get('''model_type''' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowercase__ ) # set timm attributes to None __lowercase , __lowercase , __lowercase = None, None, None __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient super().__init__(is_encoder_decoder=lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.d_model @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ,lowercase__ : PretrainedConfig ,**lowercase__ : int ): return cls(backbone_config=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 1e-5 @property def SCREAMING_SNAKE_CASE ( self : Any ): return 1_2
104
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: int = {} if "candidate_labels" in kwargs: lowercase__: Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowercase__: List[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="This is a photo of {}." ) -> int: '''simple docstring''' lowercase__: Optional[int] = load_image(lowerCAmelCase__ ) lowercase__: Dict = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__: Tuple = candidate_labels lowercase__: List[str] = [hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] lowercase__: Optional[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) lowercase__: str = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: str = model_inputs.pop('candidate_labels' ) lowercase__: List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): lowercase__: Any = text_inputs[0] else: # Batching case. lowercase__: Optional[int] = text_inputs[0][0] lowercase__: Tuple = self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Any = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = model_outputs.pop('candidate_labels' ) lowercase__: Dict = model_outputs['logits'][0] if self.framework == "pt": lowercase__: Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__: Dict = probs.tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Dict = [scores] elif self.framework == "tf": lowercase__: Optional[int] = stable_softmax(lowerCAmelCase__ , axis=-1 ) lowercase__: Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowercase__: List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
196
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCamelCase = 3 def lowercase_ ( _lowerCamelCase : int): print("Generating primitive root of p") while True: lowercase__ : Any = random.randrange(3 , _lowerCamelCase) if pow(_lowerCamelCase , 2 , _lowerCamelCase) == 1: continue if pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) == 1: continue return g def lowercase_ ( _lowerCamelCase : int): print("Generating prime p...") lowercase__ : Optional[Any] = rabin_miller.generate_large_prime(_lowerCamelCase) # select large prime number. lowercase__ : List[Any] = primitive_root(_lowerCamelCase) # one primitive root on modulo p. lowercase__ : Optional[int] = random.randrange(3 , _lowerCamelCase) # private_key -> have to be greater than 2 for safety. lowercase__ : List[Any] = cryptomath.find_mod_inverse(pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) , _lowerCamelCase) lowercase__ : Tuple = (key_size, e_a, e_a, p) lowercase__ : Dict = (key_size, d) return public_key, private_key def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): if os.path.exists(f'''{name}_pubkey.txt''') or os.path.exists(f'''{name}_privkey.txt'''): print("\nWARNING:") print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' "Use a different name or delete these files and re-run this program.") sys.exit() lowercase__ , lowercase__ : Optional[int] = generate_key(_lowerCamelCase) print(f'''\nWriting public key to file {name}_pubkey.txt...''') with open(f'''{name}_pubkey.txt''' , "w") as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''') print(f'''Writing private key to file {name}_privkey.txt...''') with open(f'''{name}_privkey.txt''' , "w") as fo: fo.write(f'''{private_key[0]},{private_key[1]}''') def lowercase_ ( ): print("Making key files...") make_key_files("elgamal" , 2048) print("Key files generation successful") if __name__ == "__main__": main()
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __lowercase ( a__ ): '''simple docstring''' __lowerCAmelCase = '''mvp''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _UpperCAmelCase=50267 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=4096 , _UpperCAmelCase=16 , _UpperCAmelCase=12 , _UpperCAmelCase=4096 , _UpperCAmelCase=16 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1024 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=100 , _UpperCAmelCase=800 , **_UpperCAmelCase , ): __a : str = vocab_size __a : List[str] = max_position_embeddings __a : Optional[int] = d_model __a : int = encoder_ffn_dim __a : Optional[int] = encoder_layers __a : str = encoder_attention_heads __a : Any = decoder_ffn_dim __a : Union[str, Any] = decoder_layers __a : Any = decoder_attention_heads __a : Tuple = dropout __a : Dict = attention_dropout __a : Tuple = activation_dropout __a : str = activation_function __a : List[str] = init_std __a : str = encoder_layerdrop __a : Optional[Any] = decoder_layerdrop __a : Union[str, Any] = classifier_dropout __a : Dict = use_cache __a : Tuple = encoder_layers __a : int = scale_embedding # scale factor will be sqrt(d_model) if True __a : List[str] = use_prompt __a : Union[str, Any] = prompt_length __a : Optional[Any] = prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , SCREAMING_SNAKE_CASE__ ): __a : List[str] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' )
160
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = '''audio-spectrogram-transformer''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=1_28 , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = frequency_stride SCREAMING_SNAKE_CASE__ : Any = time_stride SCREAMING_SNAKE_CASE__ : Optional[int] = max_length SCREAMING_SNAKE_CASE__ : Any = num_mel_bins
25
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate snake_case_ = trt.Logger(trt.Logger.WARNING) snake_case_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) snake_case_ = logging.getLogger(__name__) snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) snake_case_ = parser.parse_args() if args.tokenizer_name: snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) snake_case_ = args.per_device_eval_batch_size snake_case_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties snake_case_ = True snake_case_ = """temp_engine/bert-fp32.engine""" if args.fpaa: snake_case_ = """temp_engine/bert-fp16.engine""" if args.inta: snake_case_ = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") snake_case_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network snake_case_ = [network.get_input(i) for i in range(network.num_inputs)] snake_case_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: snake_case_ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) snake_case_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) snake_case_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = np.asarray(inputs['input_ids'] , dtype=np.intaa ) UpperCAmelCase = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) UpperCAmelCase = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , a_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , a_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , a_ ) # start time UpperCAmelCase = time.time() # Run inference context.execute_async( bindings=[int(a_ ) for d_inp in d_inputs] + [int(a_ ), int(a_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(a_ , a_ , a_ ) cuda.memcpy_dtoh_async(a_ , a_ , a_ ) # Synchronize the stream and take time stream.synchronize() # end time UpperCAmelCase = time.time() UpperCAmelCase = end_time - start_time UpperCAmelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. snake_case_ = raw_datasets["""validation"""].column_names snake_case_ = """question""" if """question""" in column_names else column_names[0] snake_case_ = """context""" if """context""" in column_names else column_names[1] snake_case_ = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). snake_case_ = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case_ = min(args.max_seq_length, tokenizer.model_max_length) def _lowerCAmelCase ( lowercase_ ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace UpperCAmelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. UpperCAmelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=a_ , stride=args.doc_stride , return_overflowing_tokens=a_ , return_offsets_mapping=a_ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. UpperCAmelCase = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. UpperCAmelCase = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). UpperCAmelCase = tokenized_examples.sequence_ids(a_ ) UpperCAmelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. UpperCAmelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. UpperCAmelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples snake_case_ = raw_datasets["""validation"""] # Validation Feature Creation snake_case_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) snake_case_ = default_data_collator snake_case_ = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) snake_case_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. UpperCAmelCase = postprocess_qa_predictions( examples=a_ , features=a_ , predictions=a_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=a_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: UpperCAmelCase = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: UpperCAmelCase = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] UpperCAmelCase = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=a_ , label_ids=a_ ) snake_case_ = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowerCAmelCase ( lowercase_ ): return trt.volume(engine.get_binding_shape(a_ ) ) * engine.get_binding_dtype(a_ ).itemsize # Allocate device memory for inputs and outputs. snake_case_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer snake_case_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) snake_case_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) snake_case_ = cuda.mem_alloc(h_outputa.nbytes) snake_case_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. snake_case_ = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') snake_case_ = 0.0 snake_case_ = 0 snake_case_ = timeit.default_timer() snake_case_ = None for step, batch in enumerate(eval_dataloader): snake_case_ , snake_case_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 snake_case_ , snake_case_ = outputs snake_case_ = torch.tensor(start_logits) snake_case_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered snake_case_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) snake_case_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) snake_case_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) snake_case_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: snake_case_ = nested_truncate(all_preds, len(eval_dataset)) snake_case_ = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) snake_case_ = post_processing_function(eval_examples, eval_dataset, all_preds) snake_case_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
364
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Optional[Any] , lowercase_ :CLIPSegForImageSegmentation , lowercase_ :CLIPSegProcessor , lowercase_ :AutoencoderKL , lowercase_ :CLIPTextModel , lowercase_ :CLIPTokenizer , lowercase_ :UNetaDConditionModel , lowercase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ :StableDiffusionSafetyChecker , lowercase_ :CLIPImageProcessor , ) -> List[str]: super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: UpperCAmelCase = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = dict(scheduler.config ) UpperCAmelCase = 1 UpperCAmelCase = FrozenDict(lowercase_ ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = dict(scheduler.config ) UpperCAmelCase = True UpperCAmelCase = FrozenDict(lowercase_ ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=lowercase_ , segmentation_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: self.enable_attention_slicing(lowercase_ ) def UpperCAmelCase__ ( self :int ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self :Optional[Any] ) -> List[str]: if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self :Optional[Any] , lowercase_ :Union[str, List[str]] , lowercase_ :Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ :str , lowercase_ :int = 5_12 , lowercase_ :int = 5_12 , lowercase_ :int = 50 , lowercase_ :float = 7.5 , lowercase_ :Optional[Union[str, List[str]]] = None , lowercase_ :Optional[int] = 1 , lowercase_ :float = 0.0 , lowercase_ :Optional[torch.Generator] = None , lowercase_ :Optional[torch.FloatTensor] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , lowercase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ :int = 1 , **lowercase_ :int , ) -> int: UpperCAmelCase = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) UpperCAmelCase = self.segmentation_model(**lowercase_ ) UpperCAmelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase = self.numpy_to_pil(lowercase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , )
181
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _SCREAMING_SNAKE_CASE : str = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _SCREAMING_SNAKE_CASE : Any = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _SCREAMING_SNAKE_CASE : Optional[int] = '''zero2''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''zero3''' _SCREAMING_SNAKE_CASE : Optional[Any] = [ZEROa, ZEROa] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parameterized.to_safe_name('''_'''.join(str(_A ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _SCREAMING_SNAKE_CASE : Optional[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCAmelCase__ ( A__ ): """simple docstring""" @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Any ) -> Any: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> Union[str, Any]: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> List[Any]: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> Optional[int]: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowercase_ ( self : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 10 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , ) -> Tuple: SCREAMING_SNAKE_CASE__ = models[model] SCREAMING_SNAKE_CASE__ = self.run_trainer( stage=__lowerCamelCase , model_name=__lowerCamelCase , eval_steps=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) self.do_checks(__lowerCamelCase ) return output_dir def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 10 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , ) -> int: SCREAMING_SNAKE_CASE__ = self.get_auto_remove_tmp_dir('''./xxx''' , after=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__lowerCamelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files SCREAMING_SNAKE_CASE__ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() SCREAMING_SNAKE_CASE__ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] SCREAMING_SNAKE_CASE__ = self.get_launcher(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) return output_dir def lowercase_ ( self : int , __lowerCamelCase : Tuple=False ) -> Optional[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) SCREAMING_SNAKE_CASE__ = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple ): a__ = Mock() a__ = conn, Mock() a__ = iter([1, None] ) a__ = lambda __lowerCAmelCase : next(__UpperCamelCase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=__UpperCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
369
from __future__ import annotations def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
109
0
from __future__ import annotations from decimal import Decimal from numpy import array def _A ( _lowercase ) -> list[list[float]]: """simple docstring""" __UpperCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __UpperCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements __UpperCamelCase = [[0.0, 0.0], [0.0, 0.0]] __UpperCamelCase, __UpperCamelCase = matrix[1][1], matrix[0][0] __UpperCamelCase, __UpperCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __UpperCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix __UpperCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __UpperCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __UpperCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __UpperCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __UpperCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __UpperCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __UpperCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __UpperCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __UpperCamelCase = array(_lowercase ) for i in range(3 ): for j in range(3 ): __UpperCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __UpperCamelCase = array(_lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowercase ) # Calculate the inverse of the matrix return [[float(d(_lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowerCAmelCase : Optional[Any] = parser.parse_args() lowerCAmelCase : Optional[int] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase : Union[str, Any] = CLIPImageProcessor() lowerCAmelCase : List[str] = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowerCAmelCase : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
358
import doctest from collections import deque import numpy as np class __lowercase : """simple docstring""" def __init__( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Any = len(self.first_signal) SCREAMING_SNAKE_CASE_: Dict = len(self.second_signal) SCREAMING_SNAKE_CASE_: Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_: List[Any] = [[0] * max_length for i in range(lowerCAmelCase__)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = deque(self.second_signal) rotated_signal.rotate(lowerCAmelCase__) for j, item in enumerate(lowerCAmelCase__): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_: Optional[Any] = np.matmul(np.transpose(lowerCAmelCase__) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
127
0
'''simple docstring''' UpperCamelCase__ : int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase__ : Dict = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]: """simple docstring""" A_ : Optional[Any] = True A_ : Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(a_ , a_ , a_ ) order.append(a_ ) return order def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]: """simple docstring""" A_ : Any = True A_ : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(a_ , a_ , a_ ) return component def UpperCAmelCase ( a_ ) -> list[list[int]]: """simple docstring""" A_ : int = len(a_ ) * [False] A_ : dict[int, list[int]] = {vert: [] for vert in range(len(a_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(a_ ) A_ : List[Any] = [] for i, was_visited in enumerate(a_ ): if not was_visited: order += topology_sort(a_ , a_ , a_ ) A_ : Tuple = [] A_ : List[Any] = len(a_ ) * [False] for i in range(len(a_ ) ): A_ : Optional[Any] = order[len(a_ ) - i - 1] if not visited[vert]: A_ : Any = find_components(a_ , a_ , a_ ) components_list.append(a_ ) return components_list
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: return sum(e for e in range(3 , SCREAMING_SNAKE_CASE_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
38
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase__: Optional[Any] =k.replace(__a , __a ) if k.startswith("encoder" ): lowerCamelCase__: Optional[Any] =k.replace(".attn" , ".self_attn" ) lowerCamelCase__: Union[str, Any] =k.replace("norm1" , "self_attn_layer_norm" ) lowerCamelCase__: Any =k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): lowerCamelCase__: List[str] =k.replace("norm1" , "self_attn_layer_norm" ) lowerCamelCase__: Dict =k.replace("norm2" , "encoder_attn_layer_norm" ) lowerCamelCase__: Union[str, Any] =k.replace("norm3" , "final_layer_norm" ) return k def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Any =[ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: lowerCamelCase__: List[Any] =sd.pop(__a ) lowerCamelCase__: Union[str, Any] =k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd lowerCamelCase__: Optional[Any] =v __A = ["START"] @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: List[Any] =torch.load(__a , map_location="cpu" ) lowerCamelCase__: int =model["model"] lowerCamelCase__: int =BlenderbotConfig.from_json_file(__a ) lowerCamelCase__: List[Any] =BlenderbotForConditionalGeneration(__a ) lowerCamelCase__: List[str] =m.model.state_dict().keys() lowerCamelCase__: Dict =[] lowerCamelCase__: List[str] ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase__: Union[str, Any] =rename_state_dict_key(__a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase__: Any =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__a ) m.model.load_state_dict(__a , strict=__a ) m.half() m.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __A = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
10
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase__ = datasets.logging.get_logger(__name__) UpperCamelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' UpperCamelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' UpperCamelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="dummy_doc" ) -> Dict: UpperCAmelCase__ : List[str] = {doc: key_lines} UpperCAmelCase__ : int = {doc: sys_lines} UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : int = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : str = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : str = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : str = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : str = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Optional[int] = 0 for name, metric in metrics: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase__ : Any = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : int = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: UpperCAmelCase__ : str = line.split()[5] if not parse_col == "-": UpperCAmelCase__ : Tuple = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def lowercase_ ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Dict=True , _A : Optional[int]=False , _A : str=False , _A : List[str]=False ): '''simple docstring''' UpperCAmelCase__ : Any = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: UpperCAmelCase__ : int = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase__ : List[str] = evaluate( key_lines=_A , sys_lines=_A , metrics=_A , NP_only=_A , remove_nested=_A , keep_singletons=_A , min_span=_A , ) return score
181
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> int: lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A_ ) ) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCAmelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A_ , A_ ) def __snake_case ( self , **A_ ) -> Tuple: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **A_ ) def __snake_case ( self , **A_ ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **A_ ) def __snake_case ( self , **A_ ) -> List[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __snake_case ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __snake_case ( self ) -> Any: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ) -> Any: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __snake_case ( self ) -> Dict: lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=A_ ) lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(A_ , return_tensors="""np""" ) lowerCAmelCase = processor(images=A_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=A_ , return_tensors="""np""" ) lowerCAmelCase = tokenizer(A_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __snake_case ( self ) -> Dict: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __snake_case ( self ) -> str: lowerCAmelCase = """google/owlvit-base-patch32""" lowerCAmelCase = OwlViTProcessor.from_pretrained(A_ ) lowerCAmelCase = ["""cat""", """nasa badge"""] lowerCAmelCase = processor(text=A_ ) lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __snake_case ( self ) -> List[Any]: lowerCAmelCase = """google/owlvit-base-patch32""" lowerCAmelCase = OwlViTProcessor.from_pretrained(A_ ) lowerCAmelCase = [["""cat""", """nasa badge"""], ["""person"""]] lowerCAmelCase = processor(text=A_ ) lowerCAmelCase = 16 lowerCAmelCase = len(A_ ) lowerCAmelCase = max([len(A_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = """google/owlvit-base-patch32""" lowerCAmelCase = OwlViTProcessor.from_pretrained(A_ ) lowerCAmelCase = ["""cat""", """nasa badge"""] lowerCAmelCase = processor(text=A_ ) lowerCAmelCase = 16 lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(images=A_ , query_images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __snake_case ( self ) -> Dict: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(A_ ) lowerCAmelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
187
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( _SCREAMING_SNAKE_CASE : Namespace ) -> Tuple: """simple docstring""" return TrainCommand(_SCREAMING_SNAKE_CASE ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' @staticmethod def __snake_case ( A_ ) -> Optional[int]: lowerCAmelCase = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=A_ , required=A_ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=A_ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=A_ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=A_ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=A_ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=A_ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=A_ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=A_ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=A_ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=A_ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=A_ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=A_ , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=A_ , default=1e-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ ) -> Tuple: lowerCAmelCase = logging.get_logger("""transformers-cli/training""" ) lowerCAmelCase = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=A_ ) lowerCAmelCase = args.output lowerCAmelCase = args.column_label lowerCAmelCase = args.column_text lowerCAmelCase = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase = args.validation_split lowerCAmelCase = args.train_batch_size lowerCAmelCase = args.valid_batch_size lowerCAmelCase = args.learning_rate lowerCAmelCase = args.adam_epsilon def __snake_case ( self ) -> Optional[int]: if self.framework == "tf": return self.run_tf() return self.run_torch() def __snake_case ( self ) -> Tuple: raise NotImplementedError def __snake_case ( self ) -> Tuple: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
187
1
from __future__ import annotations from random import random from typing import Generic, TypeVar A__ = TypeVar("""KT""") A__ = TypeVar("""VT""") class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self , _snake_case = "root" , _snake_case = None ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = value _lowerCAmelCase = [] def __repr__( self ): """simple docstring""" return F'Node({self.key}: {self.value})' @property def snake_case ( self ): """simple docstring""" return len(self.forward ) class __lowerCAmelCase ( Generic[KT, VT] ): def __init__( self , _snake_case = 0.5 , _snake_case = 16 ): """simple docstring""" _lowerCAmelCase = Node[KT, VT]() _lowerCAmelCase = 0 _lowerCAmelCase = p _lowerCAmelCase = max_level def __str__( self ): """simple docstring""" _lowerCAmelCase = list(self ) if len(_snake_case ) == 0: return F'SkipList(level={self.level})' _lowerCAmelCase = max((len(str(_snake_case ) ) for item in items) , default=4 ) _lowerCAmelCase = max(_snake_case , 4 ) + 4 _lowerCAmelCase = self.head _lowerCAmelCase = [] _lowerCAmelCase = node.forward.copy() lines.append(F'[{node.key}]'.ljust(_snake_case , """-""" ) + """* """ * len(_snake_case ) ) lines.append(""" """ * label_size + """| """ * len(_snake_case ) ) while len(node.forward ) != 0: _lowerCAmelCase = node.forward[0] lines.append( F'[{node.key}]'.ljust(_snake_case , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(_snake_case ) ) _lowerCAmelCase = node.forward lines.append("""None""".ljust(_snake_case ) + """* """ * len(_snake_case ) ) return F'SkipList(level={self.level})\n' + "\n".join(_snake_case ) def __iter__( self ): """simple docstring""" _lowerCAmelCase = self.head while len(node.forward ) != 0: yield node.forward[0].key _lowerCAmelCase = node.forward[0] def snake_case ( self ): """simple docstring""" _lowerCAmelCase = 1 while random() < self.p and level < self.max_level: level += 1 return level def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _lowerCAmelCase = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_snake_case ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self._locate_node(_snake_case ) if node is not None: for i, update_node in enumerate(_snake_case ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _lowerCAmelCase = node.forward[i] else: _lowerCAmelCase = update_node.forward[:i] def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self._locate_node(_snake_case ) if node is not None: _lowerCAmelCase = value else: _lowerCAmelCase = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _snake_case ): update_vector.append(self.head ) _lowerCAmelCase = level _lowerCAmelCase = Node(_snake_case , _snake_case ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_snake_case ) else: _lowerCAmelCase = new_node def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self._locate_node(_snake_case ) if node is not None: return node.value return None def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) _lowerCAmelCase = skip_list.head _lowerCAmelCase = {} while node.level != 0: _lowerCAmelCase = node.forward[0] _lowerCAmelCase = node.value assert len(snake_case ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) _lowerCAmelCase = skip_list.head _lowerCAmelCase = {} while node.level != 0: _lowerCAmelCase = node.forward[0] _lowerCAmelCase = node.value if len(snake_case ) != 4: print() assert len(snake_case ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() assert skip_list.find("""Some key""" ) is None def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 1_42 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(snake_case ): yield node.key for forward_node in node.forward: yield from traverse_keys(snake_case ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _UpperCAmelCase ( ): """simple docstring""" def is_sorted(snake_case ): return all(next_item >= item for item, next_item in zip(snake_case , lst[1:] ) ) _lowerCAmelCase = SkipList() for i in range(10 ): skip_list.insert(snake_case , snake_case ) assert is_sorted(list(snake_case ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(snake_case ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(snake_case ) ) def _UpperCAmelCase ( ): """simple docstring""" for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
82
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
0
from __future__ import annotations from typing import Any class A__ : def __init__( self : str , a : int , a : int , a : float = 0 ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = row, column lowerCAmelCase__ : Any = [[default_value for c in range(a )] for r in range(a )] def __str__( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase__ : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase__ : List[Any] = max(a , len(str(a ) ) ) lowerCAmelCase__ : List[Any] = f'''%{max_element_length}s''' # Make string and return def single_line(a : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase__ : str = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a ) for row_vector in self.array ) return s def __repr__( self : int ): '''simple docstring''' return str(self ) def _lowerCamelCase ( self : int , a : tuple[int, int] ): '''simple docstring''' if not (isinstance(a , (list, tuple) ) and len(a ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , a : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(a ) return self.array[loc[0]][loc[1]] def __setitem__( self : Optional[int] , a : tuple[int, int] , a : float ): '''simple docstring''' assert self.validate_indicies(a ) lowerCAmelCase__ : Any = value def __add__( self : Dict , a : Matrix ): '''simple docstring''' assert isinstance(a , a ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase__ : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ : Any = self[r, c] + another[r, c] return result def __neg__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ : Optional[int] = -self[r, c] return result def __sub__( self : List[str] , a : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : List[Any] , a : int | float | Matrix ): '''simple docstring''' if isinstance(a , (int, float) ): # Scalar multiplication lowerCAmelCase__ : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ : Optional[int] = self[r, c] * another return result elif isinstance(a , a ): # Matrix multiplication assert self.column == another.row lowerCAmelCase__ : str = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase__ : Dict = f'''Unsupported type given for another ({type(a )})''' raise TypeError(a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ : int = self[r, c] return result def _lowerCamelCase ( self : Optional[Any] , a : Matrix , a : Matrix ): '''simple docstring''' assert isinstance(a , a ) and isinstance(a , a ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase__ : List[Any] = v.transpose() lowerCAmelCase__ : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase__ ( ) -> None: # a^(-1) lowerCAmelCase__ : int = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase__ : Dict = 1 print(F'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase__ : Union[str, Any] = Matrix(3 , 1 , 0 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = 1, 2, -3 lowerCAmelCase__ : Union[str, Any] = Matrix(3 , 1 , 0 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}''' ) def lowerCAmelCase__ ( ) -> None: import doctest doctest.testmod() testa()
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : List[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 5_000 ): __a : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , _SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): __a : str = pentagonal_nums[j] __a : Tuple = pentagonal_i + pentagonal_j __a : Optional[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_SCREAMING_SNAKE_CASE ) and is_pentagonal(_SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
27
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE : Optional[Any] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = len([g for position, g in enumerate(UpperCamelCase_ ) if g == main_target[position]] ) return (item, float(UpperCamelCase_ )) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = random.randint(0 ,len(UpperCamelCase_ ) - 1 ) snake_case = parent_a[:random_slice] + parent_a[random_slice:] snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = list(UpperCamelCase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: snake_case = random.choice(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,): """simple docstring""" snake_case = [] # Generate more children proportionally to the fitness score. snake_case = int(parent_a[1] * 1_00 ) + 1 snake_case = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase_ ): snake_case = population_score[random.randint(0 ,UpperCamelCase_ )][0] snake_case , snake_case = crossover(parent_a[0] ,UpperCamelCase_ ) # Append new string to the population list. pop.append(mutate(UpperCamelCase_ ,UpperCamelCase_ ) ) pop.append(mutate(UpperCamelCase_ ,UpperCamelCase_ ) ) return pop def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: snake_case = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(UpperCamelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(UpperCamelCase_ ) # Generate random starting population. snake_case = [] for _ in range(UpperCamelCase_ ): population.append(''''''.join([random.choice(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case , snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case = [evaluate(UpperCamelCase_ ,UpperCamelCase_ ) for item in population] # Check if there is a matching evolution. snake_case = sorted(UpperCamelCase_ ,key=lambda UpperCamelCase_ : x[1] ,reverse=UpperCamelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase_ ) # Normalize population score to be between 0 and 1. snake_case = [ (item, score / len(UpperCamelCase_ )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase_ ): population.extend(select(population_score[int(UpperCamelCase_ )] ,UpperCamelCase_ ,UpperCamelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase_ ) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
127
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a_ ( a_ ): '''simple docstring''' __a: Dict = '''perceiver''' def __init__( self , lowercase_=2_5_6 , lowercase_=1_2_8_0 , lowercase_=7_6_8 , lowercase_=1 , lowercase_=2_6 , lowercase_=8 , lowercase_=8 , lowercase_=None , lowercase_=None , lowercase_="kv" , lowercase_=1 , lowercase_=1 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=2_6_2 , lowercase_=2_0_4_8 , lowercase_=5_6 , lowercase_=[3_6_8, 4_9_6] , lowercase_=1_6 , lowercase_=1_9_2_0 , lowercase_=1_6 , lowercase_=[1, 1_6, 2_2_4, 2_2_4] , **lowercase_ , ) -> Dict: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = num_latents lowerCAmelCase_ = d_latents lowerCAmelCase_ = d_model lowerCAmelCase_ = num_blocks lowerCAmelCase_ = num_self_attends_per_block lowerCAmelCase_ = num_self_attention_heads lowerCAmelCase_ = num_cross_attention_heads lowerCAmelCase_ = qk_channels lowerCAmelCase_ = v_channels lowerCAmelCase_ = cross_attention_shape_for_attention lowerCAmelCase_ = self_attention_widening_factor lowerCAmelCase_ = cross_attention_widening_factor lowerCAmelCase_ = hidden_act lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_query_residual # masked language modeling attributes lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings # image classification attributes lowerCAmelCase_ = image_size # flow attributes lowerCAmelCase_ = train_size # multimodal autoencoding attributes lowerCAmelCase_ = num_frames lowerCAmelCase_ = audio_samples_per_frame lowerCAmelCase_ = samples_per_patch lowerCAmelCase_ = output_shape class a_ ( a_ ): '''simple docstring''' @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-4 def _lowercase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 4_0 , lowercase_ = 4_0 , ) -> Mapping[str, Any]: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ = preprocessor.num_special_tokens_to_add(lowercase_ ) lowerCAmelCase_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ = [' '.join(['a'] ) * seq_length] * batch_size lowerCAmelCase_ = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) ) lowerCAmelCase_ = inputs.pop('input_ids' ) return inputs elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase_ = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) lowerCAmelCase_ = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
355
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
0