code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __a ( __lowerCamelCase = 100_0000, __lowerCamelCase = 10 ): UpperCAmelCase_ : Optional[Any] = defaultdict(__lowerCAmelCase ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: UpperCAmelCase_ : Optional[int] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
61
import math def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 while num > 0: lowerCAmelCase_ = num % 8 lowerCAmelCase_ = octal + (remainder * math.floor(math.pow(10 , __lowerCAmelCase ) )) counter += 1 lowerCAmelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__lowerCAmelCase )}""" def lowerCamelCase__ ( ): """simple docstring""" print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
231
0
"""simple docstring""" def lowercase ( _snake_case : str , _snake_case : str ) ->bool: """simple docstring""" __snake_case : Optional[int] = len(_snake_case ) + 1 __snake_case : Optional[int] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __snake_case : Tuple = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __snake_case : Tuple = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __snake_case : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __snake_case : Optional[int] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __snake_case : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __snake_case : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __snake_case : str = dp[i - 1][j] else: __snake_case : str = 0 else: __snake_case : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE : Any = """aab""" SCREAMING_SNAKE_CASE : str = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
'''simple docstring''' from __future__ import annotations import math def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ): """simple docstring""" if len(__UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) SCREAMING_SNAKE_CASE : Any = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def lowercase__( __UpperCamelCase: list ): """simple docstring""" if len(__UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) SCREAMING_SNAKE_CASE : int = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_length // 2 SCREAMING_SNAKE_CASE : Union[str, Any] = [[a[i][j] for j in range(__UpperCamelCase ,__UpperCamelCase )] for i in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE : List[str] = [ [a[i][j] for j in range(__UpperCamelCase ,__UpperCamelCase )] for i in range(__UpperCamelCase ,__UpperCamelCase ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE : str = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase ,__UpperCamelCase )] return top_left, top_right, bot_left, bot_right def lowercase__( __UpperCamelCase: list ): """simple docstring""" return len(__UpperCamelCase ), len(matrix[0] ) def lowercase__( __UpperCamelCase: list ): """simple docstring""" print('\n'.join(str(__UpperCamelCase ) for line in matrix ) ) def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase ) == (2, 2): return default_matrix_multiplication(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = split_matrix(__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = split_matrix(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(__UpperCamelCase ,matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = actual_strassen(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(__UpperCamelCase ,matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = actual_strassen(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ,matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ,matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : str = matrix_addition(matrix_subtraction(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_addition(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) ,__UpperCamelCase ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(len(__UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase )[1] != matrix_dimensions(__UpperCamelCase )[0]: SCREAMING_SNAKE_CASE : Dict = ( 'Unable to multiply these matrices, please check the dimensions.\n' f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = matrix_dimensions(__UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : Union[str, Any] = max(*__UpperCamelCase ,*__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 ,math.ceil(math.loga(__UpperCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = matrixa SCREAMING_SNAKE_CASE : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,__UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,__UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,__UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Any = actual_strassen(__UpperCamelCase ,__UpperCamelCase ) # Removing the additional zeros for i in range(0 ,__UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,__UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase_ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase_ = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
251
'''simple docstring''' def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [int(__UpperCamelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(__UpperCamelCase ) == 4 and all(0 <= int(__UpperCamelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCamelCase_ = input().strip() UpperCamelCase_ = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
251
1
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if any(not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(_lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
354
"""simple docstring""" __A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __A (_SCREAMING_SNAKE_CASE ) ->list[list[int]]: """simple docstring""" lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) * [False] lowerCAmelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Dict = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: lowerCAmelCase__ :Union[str, Any] = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
254
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 16 ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE_ = DatasetDict( { '''train''': dataset['''train'''].select(__lowerCamelCase ), '''validation''': dataset['''train'''].select(__lowerCamelCase ), '''test''': dataset['''validation'''], } ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=__lowerCamelCase, max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ = datasets.map( __lowerCamelCase, batched=__lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ = 8 else: SCREAMING_SNAKE_CASE_ = None return tokenizer.pad( __lowerCamelCase, padding='''longest''', max_length=__lowerCamelCase, pad_to_multiple_of=__lowerCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['''train'''], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['''validation'''], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['''test'''], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def A__ ( __lowerCamelCase, __lowerCamelCase ): # New Code # SCREAMING_SNAKE_CASE_ = [] # Download the dataset SCREAMING_SNAKE_CASE_ = load_dataset('''glue''', '''mrpc''' ) # Create our splits SCREAMING_SNAKE_CASE_ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE_ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config['''lr'''] SCREAMING_SNAKE_CASE_ = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE_ = int(config['''seed'''] ) SCREAMING_SNAKE_CASE_ = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE_ = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ = MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE_ = kfold.split(np.zeros(datasets['''train'''].num_rows ), datasets['''train''']['''label'''] ) SCREAMING_SNAKE_CASE_ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_fold_dataloaders( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = AdamW(params=model.parameters(), lr=__lowerCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase, num_warmup_steps=1_00, num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.loss SCREAMING_SNAKE_CASE_ = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase, references=__lowerCamelCase, ) SCREAMING_SNAKE_CASE_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', __lowerCamelCase ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE_ = [] for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__lowerCamelCase, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE_ = torch.cat(__lowerCamelCase, dim=0 ) SCREAMING_SNAKE_CASE_ = torch.stack(__lowerCamelCase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ = metric.compute(predictions=__lowerCamelCase, references=__lowerCamelCase ) accelerator.print('''Average test metrics from all folds:''', __lowerCamelCase ) def A__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=__lowerCamelCase, default=__lowerCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''', type=__lowerCamelCase, default=3, help='''The number of splits to perform across the dataset''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": main()
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[str] = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowerCAmelCase : Optional[Any] = '' lowerCAmelCase : str = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(UpperCAmelCase_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowerCAmelCase : int = 0, 0 # length[i] shows the length of palindromic substring with center i lowerCAmelCase : Optional[Any] = [1 for i in range(len(UpperCAmelCase_ ) )] # for each character in new_string find corresponding palindromic string lowerCAmelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): lowerCAmelCase : Optional[int] = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(UpperCAmelCase_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowerCAmelCase : Any = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowerCAmelCase : Dict = j - k + 1 # noqa: E741 lowerCAmelCase : Optional[int] = j + k - 1 # update max_length and start position if max_length < length[j]: lowerCAmelCase : str = length[j] lowerCAmelCase : Tuple = j # create that string lowerCAmelCase : Dict = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "linear" _UpperCAmelCase :Dict = "cosine" _UpperCAmelCase :int = "cosine_with_restarts" _UpperCAmelCase :int = "polynomial" _UpperCAmelCase :Optional[Any] = "constant" _UpperCAmelCase :Optional[Any] = "constant_with_warmup" _UpperCAmelCase :Union[str, Any] = "piecewise_constant" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> Dict: return LambdaLR(a__ , lambda __UpperCAmelCase : 1 , last_epoch=a__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> Any: def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1.0 , a__ ) ) return 1.0 return LambdaLR(a__ , a__ , last_epoch=a__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> Optional[Any]: lowercase__: List[str] = {} lowercase__: str = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: lowercase__, lowercase__: str = rule_str.split(''':''' ) lowercase__: List[str] = int(a__ ) lowercase__: int = float(a__ ) lowercase__: Optional[int] = value lowercase__: Optional[int] = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: lowercase__: Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(a__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase__: List[str] = create_rules_function(a__ , a__ ) return LambdaLR(a__ , a__ , last_epoch=a__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> Union[str, Any]: def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(a__ , a__ , a__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Optional[Any]: def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) lowercase__: List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) ) return LambdaLR(a__ , a__ , a__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Optional[int]: def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) lowercase__: Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) ) return LambdaLR(a__ , a__ , a__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Any: lowercase__: Optional[int] = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase__: List[str] = lr_init - lr_end lowercase__: Optional[Any] = num_training_steps - num_warmup_steps lowercase__: Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase__: List[str] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(a__ , a__ , a__ ) __A = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> List[str]: lowercase__: Optional[int] = SchedulerType(a__ ) lowercase__: int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(a__ , last_epoch=a__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(a__ , step_rules=a__ , last_epoch=a__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , ) return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
177
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
267
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : List[Any] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : str = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCAmelCase )[0] @deprecated(UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def a__ ( UpperCAmelCase : int ) -> int: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: UpperCAmelCase : int = _readaa(UpperCAmelCase ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) UpperCAmelCase : Tuple = _readaa(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = _readaa(UpperCAmelCase ) UpperCAmelCase : int = _readaa(UpperCAmelCase ) UpperCAmelCase : List[str] = bytestream.read(rows * cols * num_images ) UpperCAmelCase : Optional[int] = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) UpperCAmelCase : Optional[Any] = data.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , 1 ) return data @deprecated(UpperCAmelCase , '''Please use tf.one_hot on tensors.''' ) def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Tuple ) -> List[str]: UpperCAmelCase : int = labels_dense.shape[0] UpperCAmelCase : Any = numpy.arange(UpperCAmelCase ) * num_classes UpperCAmelCase : List[str] = numpy.zeros((num_labels, num_classes) ) UpperCAmelCase : Dict = 1 return labels_one_hot @deprecated(UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Dict=10 ) -> Tuple: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: UpperCAmelCase : List[Any] = _readaa(UpperCAmelCase ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) UpperCAmelCase : List[str] = _readaa(UpperCAmelCase ) UpperCAmelCase : Optional[int] = bytestream.read(UpperCAmelCase ) UpperCAmelCase : Dict = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCAmelCase , UpperCAmelCase ) return labels class __UpperCAmelCase : @deprecated( __A, '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''', ) def __init__( self : Dict, __A : List[Any], __A : int, __A : Optional[int]=False, __A : Tuple=False, __A : List[str]=dtypes.floataa, __A : List[str]=True, __A : Tuple=None, ): UpperCAmelCase : Optional[Any] = random_seed.get_seed(__A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCAmelCase : Optional[Any] = dtypes.as_dtype(__A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: UpperCAmelCase : Any = 1_0_0_0_0 UpperCAmelCase : str = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' UpperCAmelCase : Tuple = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCAmelCase : Optional[Any] = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCAmelCase : Tuple = images.astype(numpy.floataa ) UpperCAmelCase : Tuple = numpy.multiply(__A, 1.0 / 2_5_5.0 ) UpperCAmelCase : str = images UpperCAmelCase : Union[str, Any] = labels UpperCAmelCase : int = 0 UpperCAmelCase : Any = 0 @property def __magic_name__ ( self : List[str] ): return self._images @property def __magic_name__ ( self : int ): return self._labels @property def __magic_name__ ( self : str ): return self._num_examples @property def __magic_name__ ( self : List[Any] ): return self._epochs_completed def __magic_name__ ( self : List[Any], __A : str, __A : Dict=False, __A : Union[str, Any]=True ): if fake_data: UpperCAmelCase : int = [1] * 7_8_4 UpperCAmelCase : Optional[int] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__A )], [fake_label for _ in range(__A )], ) UpperCAmelCase : Any = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCAmelCase : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) UpperCAmelCase : Optional[Any] = self.images[perma] UpperCAmelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCAmelCase : List[str] = self._num_examples - start UpperCAmelCase : Tuple = self._images[start : self._num_examples] UpperCAmelCase : List[str] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCAmelCase : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) UpperCAmelCase : Any = self.images[perm] UpperCAmelCase : Any = self.labels[perm] # Start next epoch UpperCAmelCase : Any = 0 UpperCAmelCase : List[Any] = batch_size - rest_num_examples UpperCAmelCase : str = self._index_in_epoch UpperCAmelCase : List[Any] = self._images[start:end] UpperCAmelCase : Dict = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size UpperCAmelCase : List[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCAmelCase , '''Please write your own downloading logic.''' ) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ) -> Dict: if not gfile.Exists(UpperCAmelCase ): gfile.MakeDirs(UpperCAmelCase ) UpperCAmelCase : Tuple = os.path.join(UpperCAmelCase , UpperCAmelCase ) if not gfile.Exists(UpperCAmelCase ): urllib.request.urlretrieve(UpperCAmelCase , UpperCAmelCase ) # noqa: S310 with gfile.GFile(UpperCAmelCase ) as f: UpperCAmelCase : List[str] = f.size() print('''Successfully downloaded''' , UpperCAmelCase , UpperCAmelCase , '''bytes.''' ) return filepath @deprecated( UpperCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=dtypes.floataa , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=5_000 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=DEFAULT_SOURCE_URL , ) -> List[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCAmelCase , one_hot=UpperCAmelCase , dtype=UpperCAmelCase , seed=UpperCAmelCase ) UpperCAmelCase : Tuple = fake() UpperCAmelCase : int = fake() UpperCAmelCase : Union[str, Any] = fake() return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase ) if not source_url: # empty string check UpperCAmelCase : Union[str, Any] = DEFAULT_SOURCE_URL UpperCAmelCase : Optional[int] = '''train-images-idx3-ubyte.gz''' UpperCAmelCase : str = '''train-labels-idx1-ubyte.gz''' UpperCAmelCase : List[Any] = '''t10k-images-idx3-ubyte.gz''' UpperCAmelCase : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' UpperCAmelCase : Any = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_images_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: UpperCAmelCase : Any = _extract_images(UpperCAmelCase ) UpperCAmelCase : List[Any] = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: UpperCAmelCase : List[str] = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) UpperCAmelCase : Optional[int] = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_images_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: UpperCAmelCase : Optional[int] = _extract_images(UpperCAmelCase ) UpperCAmelCase : Dict = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: UpperCAmelCase : Optional[int] = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) if not 0 <= validation_size <= len(UpperCAmelCase ): UpperCAmelCase : List[str] = ( '''Validation size should be between 0 and ''' f'''{len(UpperCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(UpperCAmelCase ) UpperCAmelCase : Dict = train_images[:validation_size] UpperCAmelCase : Optional[Any] = train_labels[:validation_size] UpperCAmelCase : Union[str, Any] = train_images[validation_size:] UpperCAmelCase : Optional[int] = train_labels[validation_size:] UpperCAmelCase : Tuple = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} UpperCAmelCase : int = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) UpperCAmelCase : List[str] = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) UpperCAmelCase : Dict = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase )
365
import logging import os from .state import PartialState class __UpperCAmelCase ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( __A : str ): UpperCAmelCase : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Union[str, Any], *__A : Optional[int], **__A : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''', __A ) UpperCAmelCase : int = kwargs.pop('''in_order''', __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): UpperCAmelCase , UpperCAmelCase : Dict = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) elif in_order: UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) state.wait_for_everyone() def a__ ( UpperCAmelCase : str , UpperCAmelCase : str = None ) -> Dict: if log_level is None: UpperCAmelCase : Union[str, Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCAmelCase ) UpperCAmelCase : Tuple = logging.getLogger(UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase , {} )
99
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A : Optional[Any] = "http://www.mocksite.com/file1.txt" A : Optional[Any] = "\"text\": [\"foo\", \"foo\"]" A : List[str] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Optional[Any] =2_0_0 __UpperCAmelCase : List[str] ={'Content-Length': '100'} __UpperCAmelCase : int ={} def snake_case ( self , **__a ): return [bytes(a__ , "utf-8" )] def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' import requests monkeypatch.setattr(snake_case_ , "request" , snake_case_ ) __lowerCAmelCase = URL if issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = url elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = [url] elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = {"train": url} __lowerCAmelCase = "dummy" __lowerCAmelCase = "downloads" __lowerCAmelCase = tmp_path __lowerCAmelCase = DownloadConfig( cache_dir=os.path.join(snake_case_ , snake_case_ ) , use_etag=snake_case_ , ) __lowerCAmelCase = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) __lowerCAmelCase = dl_manager.download(snake_case_ ) __lowerCAmelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = [downloaded_paths] __lowerCAmelCase = [urls] elif isinstance(snake_case_ , snake_case_ ): assert "train" in downloaded_paths.keys() __lowerCAmelCase = downloaded_paths.values() __lowerCAmelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(snake_case_ , snake_case_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCAmelCase = Path(snake_case_ ) __lowerCAmelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCAmelCase = downloaded_path.read_text() assert content == CONTENT __lowerCAmelCase = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() __lowerCAmelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = str(snake_case_ ) if issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = filename elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = [filename] elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = {"train": filename} __lowerCAmelCase = "dummy" __lowerCAmelCase = xz_file.parent __lowerCAmelCase = "extracted" __lowerCAmelCase = DownloadConfig( cache_dir=snake_case_ , use_etag=snake_case_ , ) __lowerCAmelCase = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) __lowerCAmelCase = dl_manager.extract(snake_case_ ) __lowerCAmelCase = paths for extracted_paths in [extracted_paths]: if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = [extracted_paths] __lowerCAmelCase = [paths] elif isinstance(snake_case_ , snake_case_ ): assert "train" in extracted_paths.keys() __lowerCAmelCase = extracted_paths.values() __lowerCAmelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(snake_case_ , snake_case_ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCAmelCase = Path(snake_case_ ) __lowerCAmelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(snake_case_ , etag=snake_case_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCAmelCase = extracted_path.read_text() __lowerCAmelCase = text_file.read_text() assert extracted_file_content == expected_file_content def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(snake_case_ , start=1 ): __lowerCAmelCase = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = request.getfixturevalue(snake_case_ ) __lowerCAmelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = request.getfixturevalue(snake_case_ ) __lowerCAmelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_tar == 1 assert num_jsonl == 2 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(snake_case_ ) , start=1 ): assert os.path.basename(snake_case_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
57
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCAmelCase_ = logging.getLogger(__name__) @dataclass(frozen=__lowerCamelCase) class lowerCamelCase__: UpperCAmelCase__ : str UpperCAmelCase__ : str UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None @dataclass(frozen=__lowerCamelCase) class lowerCamelCase__: UpperCAmelCase__ : List[int] UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[Union[int, float]] = None UpperCAmelCase__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[InputFeatures] def __init__( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: str , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: bool = False , ): __lowerCamelCase = hans_processors[task]() __lowerCamelCase = os.path.join( UpperCamelCase_ , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(UpperCamelCase_ ) , UpperCamelCase_ , ) , ) __lowerCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase, __lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase = cached_features_file + """.lock""" with FileLock(UpperCamelCase_ ): if os.path.exists(UpperCamelCase_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) __lowerCamelCase = torch.load(UpperCamelCase_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) __lowerCamelCase = ( processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) ) logger.info("""Training examples: %s""" , len(UpperCamelCase_ ) ) __lowerCamelCase = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info("""Saving features into cached file %s""" , UpperCamelCase_ ) torch.save(self.features , UpperCamelCase_ ) def __len__( self: Optional[int] ): return len(self.features ) def __getitem__( self: Any , UpperCamelCase_: Optional[int] ): return self.features[i] def lowerCAmelCase__ ( self: Dict ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase__: UpperCAmelCase__ : List[InputFeatures] def __init__( self: Dict , UpperCamelCase_: str , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: str , UpperCamelCase_: Optional[int] = 1_28 , UpperCamelCase_: Dict=False , UpperCamelCase_: bool = False , ): __lowerCamelCase = hans_processors[task]() __lowerCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase, __lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list __lowerCamelCase = processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) __lowerCamelCase = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(UpperCamelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowerCamelCase = tf.data.Dataset.from_generator( UpperCamelCase_ , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCAmelCase__ ( self: Optional[int] ): return self.dataset def __len__( self: Tuple ): return len(self.features ) def __getitem__( self: Dict , UpperCamelCase_: List[Any] ): return self.features[i] def lowerCAmelCase__ ( self: Dict ): return self.label_list class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[Any] ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , """heuristics_train_set.txt""" ) ) , """train""" ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowerCAmelCase__ ( self: List[Any] ): return ["contradiction", "entailment", "neutral"] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] ): __lowerCamelCase = [] for i, line in enumerate(UpperCamelCase_ ): if i == 0: continue __lowerCamelCase = """%s-%s""" % (set_type, line[0]) __lowerCamelCase = line[5] __lowerCamelCase = line[6] __lowerCamelCase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] __lowerCamelCase = line[0] examples.append(InputExample(guid=UpperCamelCase_ , text_a=UpperCamelCase_ , text_b=UpperCamelCase_ , label=UpperCamelCase_ , pairID=UpperCamelCase_ ) ) return examples def lowerCamelCase__ ( A__ : List[InputExample] , A__ : List[str] , A__ : int , A__ : PreTrainedTokenizer , ): '''simple docstring''' __lowerCamelCase = {label: i for i, label in enumerate(A__ )} __lowerCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(A__ ) , desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d""" % (ex_index) ) __lowerCamelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=A__ , max_length=A__ , padding="""max_length""" , truncation=A__ , return_overflowing_tokens=A__ , ) __lowerCamelCase = label_map[example.label] if example.label in label_map else 0 __lowerCamelCase = int(example.pairID ) features.append(InputFeatures(**A__ , label=A__ , pairID=A__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features UpperCAmelCase_ = { 'hans': 3, } UpperCAmelCase_ = { 'hans': HansProcessor, }
351
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase : str = random.Random() def SCREAMING_SNAKE_CASE__ ( __A , __A=1.0 , __A=None , __A=None ) -> str: if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=4_00 , lowerCAmelCase_=20_00 , lowerCAmelCase_=1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1_60_00 , lowerCAmelCase_=True , lowerCAmelCase_=80 , lowerCAmelCase_=16 , lowerCAmelCase_=64 , lowerCAmelCase_="hann_window" , lowerCAmelCase_=80 , lowerCAmelCase_=76_00 , lowerCAmelCase_=1E-10 , lowerCAmelCase_=True , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = feature_size _snake_case = padding_value _snake_case = sampling_rate _snake_case = do_normalize _snake_case = num_mel_bins _snake_case = hop_length _snake_case = win_length _snake_case = win_function _snake_case = fmin _snake_case = fmax _snake_case = mel_floor _snake_case = return_attention_mask def lowerCamelCase ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCamelCase ( self , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" def _flatten(lowerCAmelCase_ ): return list(itertools.chain(*lowerCAmelCase_ ) ) if equal_length: _snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs def lowerCamelCase ( self , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" if equal_length: _snake_case = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = SpeechTaFeatureExtractor def lowerCamelCase ( self ): """simple docstring""" _snake_case = SpeechTaFeatureExtractionTester(self ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase_ , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test not batched input _snake_case = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values _snake_case = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) # Test batched _snake_case = feat_extract(lowerCAmelCase_ , return_tensors='np' ).input_values _snake_case = feat_extract(lowerCAmelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case = ['longest', 'max_length', 'do_not_pad'] _snake_case = [None, 16_00, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = feat_extract(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='np' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = range(8_00 , 14_00 , 2_00 ) _snake_case = [floats_list((1, x) )[0] for x in lengths] _snake_case = ['longest', 'max_length', 'do_not_pad'] _snake_case = [None, 16_00, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = feat_extract(lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10_00 , padding='max_length' , return_tensors='np' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10_00 , padding='longest' , return_tensors='np' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) _snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=20_00 , padding='longest' , return_tensors='np' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = np.random.rand(1_00 ).astype(np.floataa ) _snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _snake_case = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test feature size _snake_case = feature_extractor(audio_target=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _snake_case = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) # Test batched _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ).input_values _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _snake_case = np.asarray(lowerCAmelCase_ ) _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ).input_values _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase_ ) _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.num_mel_bins # hack! _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.num_mel_bins # hack! _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = min(lowerCAmelCase_ ) _snake_case = feat_extract.num_mel_bins # hack! _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" from datasets import load_dataset _snake_case = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _snake_case = ds.sort('id' ).select(range(lowerCAmelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on _snake_case = self._load_datasamples(1 ) _snake_case = SpeechTaFeatureExtractor() _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCAmelCase_ , atol=1E-6 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on _snake_case = self._load_datasamples(1 ) _snake_case = SpeechTaFeatureExtractor() _snake_case = feature_extractor(audio_target=lowerCAmelCase_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCAmelCase_ , atol=1E-4 ) )
42
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="attention" ): """simple docstring""" __UpperCAmelCase : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) __UpperCAmelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) __UpperCAmelCase : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]=False ): """simple docstring""" if split_mlp_wi: __UpperCAmelCase : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] __UpperCAmelCase : Dict = (wi_a, wi_a) else: __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] __UpperCAmelCase : Tuple = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase_ ( lowerCAmelCase__ : dict , *, lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase : Tuple = traverse_util.flatten_dict(variables["""target"""] ) __UpperCAmelCase : Union[str, Any] = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Any = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) __UpperCAmelCase : Any = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : int = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) __UpperCAmelCase : Any = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : Optional[int] = o.T __UpperCAmelCase : str = q.T __UpperCAmelCase : Any = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : List[str] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : int = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : List[Any] = wi[0].T __UpperCAmelCase : Any = wi[1].T else: __UpperCAmelCase : Tuple = wi.T __UpperCAmelCase : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T __UpperCAmelCase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __UpperCAmelCase : Any = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """encoder""" ).T __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : str = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) __UpperCAmelCase : int = layer_norm __UpperCAmelCase : Optional[Any] = k.T __UpperCAmelCase : Dict = o.T __UpperCAmelCase : int = q.T __UpperCAmelCase : List[str] = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : Any = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : Optional[int] = q.T __UpperCAmelCase : Optional[int] = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Tuple = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : Any = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : Optional[Any] = wi[0].T __UpperCAmelCase : Optional[int] = wi[1].T else: __UpperCAmelCase : str = wi.T __UpperCAmelCase : int = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T __UpperCAmelCase : Dict = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : List[str] = old["""decoder/logits_dense/kernel"""].T return new def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __UpperCAmelCase : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) __UpperCAmelCase : Any = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) __UpperCAmelCase : str = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __UpperCAmelCase : Optional[int] = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : List[Any] = UMTaEncoderModel(lowerCAmelCase__ ) else: __UpperCAmelCase : Dict = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
254
0
"""simple docstring""" def lowercase ( a__ : int ) -> List[Any]: _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) for i in range(n - 1 ): for j in range(i + 1 , a__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase ( a__ : Dict ) -> str: if len(a__ ) <= 1: return arr, 0 _UpperCamelCase = len(a__ ) // 2 _UpperCamelCase = arr[0:mid] _UpperCamelCase = arr[mid:] _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) _UpperCamelCase , _UpperCamelCase = _count_cross_inversions(a__ , a__ ) _UpperCamelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase ( a__ : Optional[Any] , a__ : Any ) -> int: _UpperCamelCase = [] _UpperCamelCase = _UpperCamelCase = _UpperCamelCase = 0 while i < len(a__ ) and j < len(a__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase ( ) -> List[Any]: _UpperCamelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCamelCase = count_inversions_bf(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , a__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCamelCase = count_inversions_bf(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) # an empty list should also have zero inversions _UpperCamelCase = [] _UpperCamelCase = count_inversions_bf(a__ ) _UpperCamelCase , _UpperCamelCase = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) if __name__ == "__main__": main()
54
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowercase ( a__ : Union[str, Any] , a__ : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : List[Any] ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(a__ ) , version.parse(a__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( a__ : str , a__ : Optional[str] = None ) -> None: _UpperCamelCase = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , a__ ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = requirement, None, None else: _UpperCamelCase = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_full.split(''',''' ) # there could be multiple requirements _UpperCamelCase = {} for w in want_range: _UpperCamelCase = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _UpperCamelCase = '''.'''.join([str(a__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) return # check if any version is installed try: _UpperCamelCase = importlib.metadata.version(a__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) def lowercase ( a__ : Tuple ) -> Any: _UpperCamelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(a__ , a__ )
54
1
from __future__ import annotations from math import pow, sqrt def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) + pow(SCREAMING_SNAKE_CASE , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
95
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' pass def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ ) import datasets SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) SCREAMING_SNAKE_CASE : Any = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large""" SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
323
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase_ ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , """num_attention_heads""" ) ) class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=3_2 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=6_4_0 , __UpperCamelCase=4 , __UpperCamelCase="silu" , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=1_0 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = last_hidden_size UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = conv_kernel_size UpperCamelCase_ = output_stride UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = classifier_dropout_prob UpperCamelCase_ = use_labels UpperCamelCase_ = is_training UpperCamelCase_ = num_labels UpperCamelCase_ = initializer_range UpperCamelCase_ = scope def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = MobileViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = MobileViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = MobileViTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Dict = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A__ : Optional[int] = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A__ : List[str] = False A__ : List[Any] = False A__ : int = False A__ : Dict = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MobileViTModelTester(self ) UpperCamelCase_ = MobileViTConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ = outputs.hidden_states UpperCamelCase_ = 5 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase_ = 2 for i in range(len(__UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = MobileViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCamelCase__ ( ) -> Optional[int]: UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(__UpperCamelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase_ = model.to(__UpperCamelCase ) UpperCamelCase_ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**__UpperCamelCase ) UpperCamelCase_ = outputs.logits # verify the logits UpperCamelCase_ = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase_ = model.to(__UpperCamelCase ) UpperCamelCase_ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**__UpperCamelCase ) UpperCamelCase_ = outputs.logits.detach().cpu() UpperCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(5_0, 6_0)] ) UpperCamelCase_ = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) UpperCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) UpperCamelCase_ = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
261
def lowerCamelCase__ ( a__ : Optional[int] , a__ : Any ) -> Optional[Any]: UpperCamelCase_ = 0 UpperCamelCase_ = len(a__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a__ ): return None UpperCamelCase_ = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCamelCase_ = left UpperCamelCase_ = point elif point > right: UpperCamelCase_ = right UpperCamelCase_ = point else: if item < current_item: UpperCamelCase_ = point - 1 else: UpperCamelCase_ = point + 1 return None def lowerCamelCase__ ( a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : List[Any] ) -> Any: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(a__ , a__ , a__ , a__ ) elif point > right: return interpolation_search_by_recursion(a__ , a__ , a__ , a__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( a__ , a__ , a__ , point - 1 ) else: return interpolation_search_by_recursion( a__ , a__ , point + 1 , a__ ) def lowerCamelCase__ ( a__ : Tuple ) -> Any: if collection != sorted(a__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys _A = 0 if debug == 1: _A = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _A = 67 _A = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('''Not found''')
261
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowercase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowercase : Any = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" lowercase_ : Optional[Any] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=A__ )[0] @deprecated(A__ , '''Please use tf.data to implement this functionality.''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=A__ ) as bytestream: lowercase_ : Dict = _readaa(A__ ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowercase_ : Optional[Any] = _readaa(A__ ) lowercase_ : Union[str, Any] = _readaa(A__ ) lowercase_ : Tuple = _readaa(A__ ) lowercase_ : Any = bytestream.read(rows * cols * num_images ) lowercase_ : List[Any] = numpy.frombuffer(A__ , dtype=numpy.uinta ) lowercase_ : Any = data.reshape(A__ , A__ , A__ , 1 ) return data @deprecated(A__ , '''Please use tf.one_hot on tensors.''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : str = labels_dense.shape[0] lowercase_ : Union[str, Any] = numpy.arange(A__ ) * num_classes lowercase_ : Any = numpy.zeros((num_labels, num_classes) ) lowercase_ : int = 1 return labels_one_hot @deprecated(A__ , '''Please use tf.data to implement this functionality.''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Optional[int]=10 ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=A__ ) as bytestream: lowercase_ : Optional[int] = _readaa(A__ ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowercase_ : Optional[int] = _readaa(A__ ) lowercase_ : Any = bytestream.read(A__ ) lowercase_ : Tuple = numpy.frombuffer(A__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(A__ , A__ ) return labels class lowerCAmelCase__ : @deprecated( __SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=dtypes.floataa , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" lowercase_ : int = random_seed.get_seed(__SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase_ : Union[str, Any] = dtypes.as_dtype(__SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowercase_ : str = 1_00_00 lowercase_ : Optional[int] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' lowercase_ : List[str] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase_ : str = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase_ : Tuple = images.astype(numpy.floataa ) lowercase_ : List[str] = numpy.multiply(__SCREAMING_SNAKE_CASE , 1.0 / 2_55.0 ) lowercase_ : Optional[int] = images lowercase_ : Tuple = labels lowercase_ : Any = 0 lowercase_ : Dict = 0 @property def _snake_case ( self ): """simple docstring""" return self._images @property def _snake_case ( self ): """simple docstring""" return self._labels @property def _snake_case ( self ): """simple docstring""" return self._num_examples @property def _snake_case ( self ): """simple docstring""" return self._epochs_completed def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" if fake_data: lowercase_ : Dict = [1] * 7_84 lowercase_ : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__SCREAMING_SNAKE_CASE )], [fake_label for _ in range(__SCREAMING_SNAKE_CASE )], ) lowercase_ : Dict = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase_ : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.images[perma] lowercase_ : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase_ : Union[str, Any] = self._num_examples - start lowercase_ : Optional[int] = self._images[start : self._num_examples] lowercase_ : Any = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase_ : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.images[perm] lowercase_ : str = self.labels[perm] # Start next epoch lowercase_ : List[Any] = 0 lowercase_ : Tuple = batch_size - rest_num_examples lowercase_ : str = self._index_in_epoch lowercase_ : Optional[Any] = self._images[start:end] lowercase_ : List[str] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase_ : str = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(A__ , '''Please write your own downloading logic.''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if not gfile.Exists(A__ ): gfile.MakeDirs(A__ ) lowercase_ : Union[str, Any] = os.path.join(A__ , A__ ) if not gfile.Exists(A__ ): urllib.request.urlretrieve(A__ , A__ ) # noqa: S310 with gfile.GFile(A__ ) as f: lowercase_ : Optional[Any] = f.size() print('''Successfully downloaded''' , A__ , A__ , '''bytes.''' ) return filepath @deprecated( A__ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Optional[int]=dtypes.floataa , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Tuple=5000 , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : str=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=A__ , one_hot=A__ , dtype=A__ , seed=A__ ) lowercase_ : List[str] = fake() lowercase_ : int = fake() lowercase_ : str = fake() return _Datasets(train=A__ , validation=A__ , test=A__ ) if not source_url: # empty string check lowercase_ : List[str] = DEFAULT_SOURCE_URL lowercase_ : Tuple = 'train-images-idx3-ubyte.gz' lowercase_ : str = 'train-labels-idx1-ubyte.gz' lowercase_ : str = 't10k-images-idx3-ubyte.gz' lowercase_ : List[Any] = 't10k-labels-idx1-ubyte.gz' lowercase_ : Dict = _maybe_download( A__ , A__ , source_url + train_images_file ) with gfile.Open(A__ , '''rb''' ) as f: lowercase_ : Union[str, Any] = _extract_images(A__ ) lowercase_ : Any = _maybe_download( A__ , A__ , source_url + train_labels_file ) with gfile.Open(A__ , '''rb''' ) as f: lowercase_ : List[Any] = _extract_labels(A__ , one_hot=A__ ) lowercase_ : Union[str, Any] = _maybe_download( A__ , A__ , source_url + test_images_file ) with gfile.Open(A__ , '''rb''' ) as f: lowercase_ : Optional[Any] = _extract_images(A__ ) lowercase_ : List[Any] = _maybe_download( A__ , A__ , source_url + test_labels_file ) with gfile.Open(A__ , '''rb''' ) as f: lowercase_ : List[str] = _extract_labels(A__ , one_hot=A__ ) if not 0 <= validation_size <= len(A__ ): lowercase_ : str = ( 'Validation size should be between 0 and ' F'''{len(A__ )}. Received: {validation_size}.''' ) raise ValueError(A__ ) lowercase_ : Union[str, Any] = train_images[:validation_size] lowercase_ : str = train_labels[:validation_size] lowercase_ : Optional[int] = train_images[validation_size:] lowercase_ : str = train_labels[validation_size:] lowercase_ : Optional[int] = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowercase_ : Dict = _DataSet(A__ , A__ , **A__ ) lowercase_ : Union[str, Any] = _DataSet(A__ , A__ , **A__ ) lowercase_ : Dict = _DataSet(A__ , A__ , **A__ ) return _Datasets(train=A__ , validation=A__ , test=A__ )
93
import math import random def A_ ( A__ , A__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase : Optional[Any] = 0.02 def A_ ( A__ , A__ ) -> float: a__ : int = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(A__ ): # Forward propagation a__ : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? a__ : Optional[Any] = (expected / 100) - layer_a # Error delta a__ : Optional[int] = layer_1_error * sigmoid_function(A__ , A__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase : Dict = int(input("""Expected value: """)) lowercase : Dict = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
99
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : Tuple , lowercase_ : Any=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]=True , lowercase_ : Any=99 , lowercase_ : Optional[int]=16 , lowercase_ : Dict=36 , lowercase_ : Dict=6 , lowercase_ : Any=6 , lowercase_ : List[str]=6 , lowercase_ : Optional[Any]=37 , lowercase_ : Dict="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=512 , lowercase_ : Dict=16 , lowercase_ : Optional[Any]=2 , lowercase_ : int=0.02 , lowercase_ : Any=3 , lowercase_ : List[str]=4 , lowercase_ : Dict=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = seq_length SCREAMING_SNAKE_CASE_ : List[str] = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : str = use_token_type_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_groups SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = num_labels SCREAMING_SNAKE_CASE_ : int = num_choices SCREAMING_SNAKE_CASE_ : List[Any] = scope def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertModel(config=A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(A__ , attention_mask=A__ , token_type_ids=A__) SCREAMING_SNAKE_CASE_ : str = model(A__ , token_type_ids=A__) SCREAMING_SNAKE_CASE_ : Any = model(A__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : str , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = AlbertForPreTraining(config=A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : str = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , sentence_order_label=A__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForMaskedLM(config=A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertForQuestionAnswering(config=A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : str = AlbertForSequenceClassification(A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : int = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : int = AlbertForTokenClassification(config=A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForMultipleChoice(config=A__) model.to(A__) model.eval() SCREAMING_SNAKE_CASE_ : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_ : int = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_ : Dict = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = super()._prepare_for_class(A__ , A__ , return_labels=A__) if return_labels: if model_class in get_values(A__): SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__) SCREAMING_SNAKE_CASE_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = AlbertModelTester(self) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=A__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = type self.model_tester.create_and_check_model(*A__) @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = AlbertModel.from_pretrained(A__) self.assertIsNotNone(A__) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = AlbertModel.from_pretrained('''albert-base-v2''') SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(A__ , attention_mask=A__)[0] SCREAMING_SNAKE_CASE_ : List[str] = torch.Size((1, 11, 768)) self.assertEqual(output.shape , A__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1e-4))
359
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""] def _A (__a ) -> Dict: """simple docstring""" if "emb" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def _A (__a , __a ) -> Tuple[Dict, Dict]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() ) SCREAMING_SNAKE_CASE_ : int = {} for key in keys: SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a ) SCREAMING_SNAKE_CASE_ : int = rename_keys(__a ) if "in_proj_weight" in key: # split fused qkv proj SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :] SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: SCREAMING_SNAKE_CASE_ : int = val else: SCREAMING_SNAKE_CASE_ : Any = val return state_dict, enc_dec_proj_state_dict def _A (__a ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24 SCREAMING_SNAKE_CASE_ : Tuple = 24 SCREAMING_SNAKE_CASE_ : Optional[Any] = 16 elif checkpoint == "medium": SCREAMING_SNAKE_CASE_ : List[str] = 15_36 SCREAMING_SNAKE_CASE_ : Optional[int] = 48 SCREAMING_SNAKE_CASE_ : Optional[int] = 24 elif checkpoint == "large": SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48 SCREAMING_SNAKE_CASE_ : Optional[int] = 48 SCREAMING_SNAKE_CASE_ : int = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig( hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , ) return config @torch.no_grad() def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a ) SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict( __a , hidden_size=decoder_config.hidden_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' ) SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__a ) if len(__a ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(__a ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__a ) # check we can do a forward pass SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a ) # set the appropriate bos/pad token ids SCREAMING_SNAKE_CASE_ : str = 20_48 SCREAMING_SNAKE_CASE_ : List[Any] = 20_48 # set other default generation config params SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate ) SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0 if pytorch_dump_folder is not None: Path(__a ).mkdir(exist_ok=__a ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__a ) processor.push_to_hub(__a ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) UpperCAmelCase_ : Dict = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
318
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _snake_case ( _snake_case ): lowerCAmelCase_ : Tuple = '''trajectory_transformer''' lowerCAmelCase_ : Tuple = ['''past_key_values'''] lowerCAmelCase_ : int = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a__=100 , a__=5 , a__=1 , a__=1 , a__=249 , a__=6 , a__=17 , a__=25 , a__=4 , a__=4 , a__=128 , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0_0_0_6 , a__=512 , a__=0.0_2 , a__=1e-12 , a__=1 , a__=True , a__=1 , a__=50_256 , a__=50_256 , **a__ , ) -> int: '''simple docstring''' snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
85
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowercase__ ( __snake_case : List[str] , __snake_case : int , __snake_case : Tuple=8 ): '''simple docstring''' UpperCAmelCase_ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__ ( __snake_case : Any , __snake_case : int=512 , __snake_case : Dict=512 ): '''simple docstring''' UpperCAmelCase_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase_ : Dict = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase_ : Any = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase_ : Dict = np.transpose(__snake_case , [2, 0, 1] ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).unsqueeze(0 ) return image class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: # get the original timestep using init_timestep UpperCAmelCase_ : Any = min(int(num_inference_steps * strength ) , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : List[str] = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) UpperCAmelCase_ : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase_ : List[str] = image else: if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Any = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCamelCase ) ] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase , dim=0 ) else: UpperCAmelCase_ : Union[str, Any] = self.movq.encode(_UpperCamelCase ).latent_dist.sample(_UpperCamelCase ) UpperCAmelCase_ : int = self.movq.config.scaling_factor * init_latents UpperCAmelCase_ : Optional[int] = torch.cat([init_latents] , dim=0 ) UpperCAmelCase_ : Tuple = init_latents.shape UpperCAmelCase_ : List[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents UpperCAmelCase_ : str = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = init_latents return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase_ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. UpperCAmelCase_ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 5_1_2 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 4.0 , _UpperCamelCase = 0.3 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> str: UpperCAmelCase_ : Any = self._execution_device UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = torch.cat(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : int = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : int = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = [image] if not all(isinstance(_UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCAmelCase_ : str = torch.cat([prepare_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in image] , dim=0 ) UpperCAmelCase_ : Any = image.to(dtype=image_embeds.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.movq.encode(_UpperCamelCase )['latents'] UpperCAmelCase_ : List[Any] = latents.repeat_interleave(_UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase_ , UpperCAmelCase_ : str = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) UpperCAmelCase_ : Dict = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : str = {'image_embeds': image_embeds} UpperCAmelCase_ : Union[str, Any] = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : str = variance_pred.chunk(2 ) UpperCAmelCase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[str] = image * 0.5 + 0.5 UpperCAmelCase_ : List[Any] = image.clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
29
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __snake_case = logging.get_logger(__name__) __snake_case = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class lowercase__ ( __lowerCAmelCase ): A__ : Optional[int] ="layoutlmv3" def __init__( self : List[Any] , UpperCAmelCase_ : Union[str, Any]=50265 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Optional[int]=3072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Tuple=1e-5 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : str=1024 , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : Union[str, Any]=128 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : List[Any]=128 , UpperCAmelCase_ : Optional[int]=64 , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=224 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : List[Any] , ): super().__init__( vocab_size=lowerCamelCase__ , hidden_size=lowerCamelCase__ , num_hidden_layers=lowerCamelCase__ , num_attention_heads=lowerCamelCase__ , intermediate_size=lowerCamelCase__ , hidden_act=lowerCamelCase__ , hidden_dropout_prob=lowerCamelCase__ , attention_probs_dropout_prob=lowerCamelCase__ , max_position_embeddings=lowerCamelCase__ , type_vocab_size=lowerCamelCase__ , initializer_range=lowerCamelCase__ , layer_norm_eps=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) SCREAMING_SNAKE_CASE__ = max_ad_position_embeddings SCREAMING_SNAKE_CASE__ = coordinate_size SCREAMING_SNAKE_CASE__ = shape_size SCREAMING_SNAKE_CASE__ = has_relative_attention_bias SCREAMING_SNAKE_CASE__ = rel_pos_bins SCREAMING_SNAKE_CASE__ = max_rel_pos SCREAMING_SNAKE_CASE__ = has_spatial_attention_bias SCREAMING_SNAKE_CASE__ = rel_ad_pos_bins SCREAMING_SNAKE_CASE__ = max_rel_ad_pos SCREAMING_SNAKE_CASE__ = text_embed SCREAMING_SNAKE_CASE__ = visual_embed SCREAMING_SNAKE_CASE__ = input_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = classifier_dropout class lowercase__ ( __lowerCAmelCase ): A__ : str =version.parse("""1.12""" ) @property def A_ ( self : Tuple ): if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def A_ ( self : Union[str, Any] ): return 1e-5 @property def A_ ( self : Tuple ): return 12 def A_ ( self : Any , UpperCAmelCase_ : "ProcessorMixin" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , ): setattr(processor.image_processor , 'apply_ocr' , lowerCamelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ = compute_effective_axis_dimension( lowerCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = compute_effective_axis_dimension( lowerCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE__ = self._generate_dummy_images(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = dict( processor( lowerCamelCase__ , text=lowerCamelCase__ , boxes=lowerCamelCase__ , return_tensors=lowerCamelCase__ , ) ) return inputs
357
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) __snake_case = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __snake_case = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = """Normal""" if result[0][0] == 1: __snake_case = """Abnormality detected"""
169
0
"""simple docstring""" from collections import namedtuple a__ : Tuple = namedtuple('''from_to''', '''from_ to''') a__ : str = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 1_0_0_0), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ", ".join(lowerCAmelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ", ".join(lowerCAmelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
54
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) __SCREAMING_SNAKE_CASE = len(bin(lowerCAmelCase_ )[3:] ) __SCREAMING_SNAKE_CASE = bin(abs(lowerCAmelCase_ ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE = ( ( "1" + "0" * (binary_number_length - len(lowerCAmelCase_ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
54
1
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Union[str, Any] ): __UpperCAmelCase = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{\"default\": {\"dataset_size\": 42}}''' ) __UpperCAmelCase = DatasetInfosDict.from_directory(snake_case_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :DatasetInfo ): __UpperCAmelCase = str(snake_case_ ) dataset_info.write_to_directory(snake_case_ ) __UpperCAmelCase = DatasetInfo.from_directory(snake_case_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(snake_case_ , '''dataset_info.json''' ) ) def lowercase__ ( ): __UpperCAmelCase = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) __UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(snake_case_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __UpperCAmelCase = yaml.safe_dump(snake_case_ ) __UpperCAmelCase = yaml.safe_load(snake_case_ ) assert dataset_info_yaml_dict == reloaded def lowercase__ ( ): __UpperCAmelCase = DatasetInfo() __UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :DatasetInfosDict ): __UpperCAmelCase = str(snake_case_ ) dataset_infos_dict.write_to_directory(snake_case_ ) __UpperCAmelCase = DatasetInfosDict.from_directory(snake_case_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(snake_case_ , '''README.md''' ) )
353
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : Tuple = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowercase : str = {'allegro/herbert-base-cased': 5_14} _lowercase : Tuple = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_INIT_CONFIGURATION a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = HerbertTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : str="<s>" , _lowercase : List[str]="<unk>" , _lowercase : int="<pad>" , _lowercase : str="<mask>" , _lowercase : List[Any]="</s>" , **_lowercase : List[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: SCREAMING_SNAKE_CASE__:List[str] = None SCREAMING_SNAKE_CASE__:str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[str] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Any = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__:int = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } SCREAMING_SNAKE_CASE__:Optional[int] = """▁""" class snake_case__ ( snake_case_ ): _snake_case : Any = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = BigBirdTokenizer _snake_case : Tuple = ["""input_ids""", """attention_mask"""] _snake_case : List[int] = [] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<unk>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="[SEP]" , lowerCamelCase="[MASK]" , lowerCamelCase="[CLS]" , **lowerCamelCase , ): __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , **lowerCamelCase , ) __a = vocab_file __a = False if not self.vocab_file else True def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
261
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__:List[str] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
261
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=False , ): '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' UpperCAmelCase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase__ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: UpperCAmelCase__ = """cpu""" UpperCAmelCase__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER UpperCAmelCase__ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) UpperCAmelCase__ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') UpperCAmelCase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' def update_area_of_max_square(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase__ = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) UpperCAmelCase__ = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase__ = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: UpperCAmelCase__ = 1 + min([right, diagonal, down] ) UpperCAmelCase__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 UpperCAmelCase__ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase__ = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: UpperCAmelCase__ = 1 + min([right, diagonal, down] ) UpperCAmelCase__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase__ = [0] UpperCAmelCase__ = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase__ = dp_array[row][col + 1] UpperCAmelCase__ = dp_array[row + 1][col + 1] UpperCAmelCase__ = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = 0 return largest_square_area def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ = [0] * (cols + 1) UpperCAmelCase__ = [0] * (cols + 1) UpperCAmelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase__ = current_row[col + 1] UpperCAmelCase__ = next_row[col + 1] UpperCAmelCase__ = next_row[col] if mat[row][col] == 1: UpperCAmelCase__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = 0 UpperCAmelCase__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
61
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
97
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
def UpperCamelCase (lowercase_: int , lowercase_: int ) -> str: return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
350
from typing import Any def UpperCamelCase (lowercase_: list ) -> list[Any]: if not input_list: return [] A__ : Any = [input_list.count(lowercase_ ) for value in input_list] A__ : List[Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
141
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
47
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :AutoencoderKL , lowerCamelCase :CLIPTextModel , lowerCamelCase :CLIPTokenizer , lowerCamelCase :UNetaDConditionModel , lowerCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase :StableDiffusionSafetyChecker , lowerCamelCase :CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self :int , lowerCamelCase :Union[str, List[str]] , lowerCamelCase :int = 512 , lowerCamelCase :int = 512 , lowerCamelCase :int = 50 , lowerCamelCase :float = 7.5 , lowerCamelCase :Optional[Union[str, List[str]]] = None , lowerCamelCase :Optional[int] = 1 , lowerCamelCase :float = 0.0 , lowerCamelCase :Optional[torch.Generator] = None , lowerCamelCase :Optional[torch.FloatTensor] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , lowerCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase :int = 1 , lowerCamelCase :Optional[torch.FloatTensor] = None , **lowerCamelCase :List[str] , ) -> str: if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCamelCase )}.''' ) # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_embeddings.shape UpperCAmelCase__ = text_embeddings.repeat(1 , lowerCamelCase , 1 ) UpperCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = text_input_ids.shape[-1] UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) UpperCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = uncond_embeddings.shape[1] UpperCAmelCase__ = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) UpperCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase__ = latents_reference.to(self.device ) UpperCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase__ = 0 if dx < 0 else dx UpperCAmelCase__ = 0 if dy < 0 else dy UpperCAmelCase__ = max(-dx , 0 ) UpperCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ = {} if accepts_eta: UpperCAmelCase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 1 / 0.1_82_15 * latents UpperCAmelCase__ = self.vae.decode(lowerCamelCase ).sample UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase__ = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) UpperCAmelCase__ , UpperCAmelCase__ = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase__ = None if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
169
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Any ) -> Optional[int]: """simple docstring""" _snake_case = hf_hub_url(repo_id=__lowerCamelCase , path=__lowerCamelCase , revision=__lowerCamelCase ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__lowerCamelCase )}"""
360
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ : List[Any] = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[Any] = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
142
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetPipeline snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] snake_case_ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def lowercase_ ( self ) -> str: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return 100 @property def lowercase_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowerCamelCase = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.dummy_unet __lowerCamelCase = self.dummy_movq __lowerCamelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCamelCase__ , ) __lowerCamelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase = output.images __lowerCamelCase = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __lowerCamelCase = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 2_55.0 __lowerCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCamelCase = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) __lowerCamelCase = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A robot, 4k photo' __lowerCamelCase = torch.Generator(device='cuda' ).manual_seed(0 ) __lowerCamelCase , __lowerCamelCase = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowerCamelCase = torch.Generator(device='cuda' ).manual_seed(0 ) __lowerCamelCase = pipeline( image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , hint=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
90
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Dict = is_training __lowerCAmelCase : List[str] = use_input_mask __lowerCAmelCase : int = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : Tuple = embedding_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : Any = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : str = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : Union[str, Any] = scope def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[int] = None if self.use_input_mask: __lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : str = None if self.use_token_type_ids: __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Union[str, Any] = None if self.use_labels: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = MobileBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = MobileBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = MobileBertForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : Tuple = MobileBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : int = MobileBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_choices __lowerCAmelCase : List[str] = MobileBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs __lowerCAmelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : str = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[str] = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Dict = True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowerCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = MobileBertModelTester(self ) __lowerCAmelCase : str = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (_UpperCamelCase ): return torch.tensor( _UpperCamelCase , dtype=torch.long , device=_UpperCamelCase , ) lowerCamelCase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Dict = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=_SCREAMING_SNAKE_CASE , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Tuple = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
86
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Tuple = KandinskyVaaInpaintPipeline _snake_case : List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _snake_case : List[str] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _snake_case : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case : Any = False @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return 3_2 @property def __UpperCAmelCase ( self ) -> List[str]: return 3_2 @property def __UpperCAmelCase ( self ) -> str: return self.time_input_dim @property def __UpperCAmelCase ( self ) -> int: return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ) -> Dict: return 1_0_0 @property def __UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase_ : Any = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase_ : Optional[int] = UNetaDConditionModel(**_UpperCamelCase ) return model @property def __UpperCAmelCase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase_ : int = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Tuple = self.dummy_unet UpperCAmelCase_ : Union[str, Any] = self.dummy_movq UpperCAmelCase_ : List[str] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> str: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image UpperCAmelCase_ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase_ : Optional[Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase_ : List[Any] = 0 if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : int = 'cpu' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : List[Any] = self.pipeline_class(**_UpperCamelCase ) UpperCAmelCase_ : List[Any] = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : str = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : List[Any] = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase_ : Union[str, Any] = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __UpperCAmelCase ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) UpperCAmelCase_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCAmelCase_ : int = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[Any] = 'a hat' UpperCAmelCase_ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) UpperCAmelCase_ : Dict = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() UpperCAmelCase_ : Dict = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='np' , ) UpperCAmelCase_ : Any = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
145
def lowercase__ ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[Any] ): '''simple docstring''' if index == r: for j in range(__snake_case ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase_ : int = arr[i] combination_util(__snake_case , __snake_case , __snake_case , index + 1 , __snake_case , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase__ ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case , __snake_case , __snake_case , 0 , __snake_case , 0 ) if __name__ == "__main__": # Driver code to check the function above __UpperCAmelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
145
1
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase_ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase_ : Dict = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=__lowerCamelCase ) if decoder_head_mask is None: UpperCAmelCase_ : Dict = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=__lowerCamelCase ) if cross_attn_head_mask is None: UpperCAmelCase_ : Optional[Any] = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="relu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = encoder_layerdrop UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Any = eos_token_id UpperCAmelCase_ : Optional[int] = pad_token_id UpperCAmelCase_ : Union[str, Any] = bos_token_id def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = self.eos_token_id # Eos Token UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase_ : Optional[Any] = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ : Any = self.get_config() UpperCAmelCase_ : List[Any] = prepare_mam_aaa_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = MaMaaaModel(config=lowercase_ ).get_decoder().to(lowercase_ ).eval() UpperCAmelCase_ : int = inputs_dict["input_ids"] UpperCAmelCase_ : Optional[Any] = inputs_dict["attention_mask"] UpperCAmelCase_ : Optional[int] = inputs_dict["head_mask"] # first forward pass UpperCAmelCase_ : Any = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ : Any = model(lowercase_ , attention_mask=lowercase_ )["last_hidden_state"] UpperCAmelCase_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[ "last_hidden_state" ] # select random slice UpperCAmelCase_ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = MaMaaaModel(config=lowercase_ ).to(lowercase_ ).eval() UpperCAmelCase_ : Tuple = model(**lowercase_ ) UpperCAmelCase_ : int = outputs.encoder_last_hidden_state UpperCAmelCase_ : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[Any] = model.get_encoder() encoder.save_pretrained(lowercase_ ) UpperCAmelCase_ : Tuple = MaMaaaEncoder.from_pretrained(lowercase_ ).to(lowercase_ ) UpperCAmelCase_ : List[Any] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[Any] = model.get_decoder() decoder.save_pretrained(lowercase_ ) UpperCAmelCase_ : List[Any] = MaMaaaDecoder.from_pretrained(lowercase_ ).to(lowercase_ ) UpperCAmelCase_ : str = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=lowercase_ , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Tuple = False def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = MaMaaaModelTester(self ) UpperCAmelCase_ : Any = ConfigTester(self , config_class=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Any = model_class.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertEqual(info["missing_keys"] , [] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCAmelCase_ : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self._prepare_for_class(lowercase_ , lowercase_ ) ) if not self.is_encoder_decoder: UpperCAmelCase_ : Tuple = inputs["input_ids"] del inputs["input_ids"] else: UpperCAmelCase_ : Optional[Any] = inputs["input_ids"] UpperCAmelCase_ : List[str] = inputs.get("decoder_input_ids" , lowercase_ ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , lowercase_ ) UpperCAmelCase_ : List[str] = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCAmelCase_ : Dict = wte(lowercase_ ) else: UpperCAmelCase_ : Dict = wte(lowercase_ ) UpperCAmelCase_ : Optional[int] = wte(lowercase_ ) with torch.no_grad(): model(**lowercase_ )[0] def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Union[str, Any] = input_dict["input_ids"] UpperCAmelCase_ : List[str] = input_ids.ne(1 ).to(lowercase_ ) UpperCAmelCase_ : Tuple = MaMaaaForConditionalGeneration(lowercase_ ).eval().to(lowercase_ ) if torch_device == "cuda": model.half() model.generate(lowercase_ , attention_mask=lowercase_ ) model.generate(num_beams=4 , do_sample=lowercase_ , early_stopping=lowercase_ , num_return_sequences=3 ) def __a ( __lowerCamelCase ): return torch.tensor(__lowerCamelCase, dtype=torch.long, device=__lowerCamelCase ) _a = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ ) UpperCAmelCase_ : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) UpperCAmelCase_ : str = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) UpperCAmelCase_ : str = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**lowercase_ )[0] UpperCAmelCase_ : Optional[int] = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , lowercase_ ) # change to expected output here UpperCAmelCase_ : List[Any] = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=lowercase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ ) # change to intended input UpperCAmelCase_ : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) UpperCAmelCase_ : Optional[int] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) UpperCAmelCase_ : str = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowercase_ )[0] UpperCAmelCase_ : str = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowercase_ ) # change to expected output here UpperCAmelCase_ : Any = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=lowercase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ ) UpperCAmelCase_ : Tuple = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) UpperCAmelCase_ : str = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCAmelCase_ : List[Any] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) UpperCAmelCase_ : Optional[int] = model.generate( input_ids=dct["input_ids"].to(lowercase_ ) , attention_mask=dct["attention_mask"].to(lowercase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) UpperCAmelCase_ : List[Any] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] UpperCAmelCase_ : List[str] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowercase_ , skip_special_tokens=lowercase_ ) assert generated == expected_en
61
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : str = set(__lowerCamelCase ), [start] while stack: UpperCAmelCase_ : Any = stack.pop() explored.add(__lowerCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCamelCase ) return explored _a = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
61
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Dict=False , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :int=False ): '''simple docstring''' snake_case_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): snake_case_ : Optional[Any] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : Dict = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) snake_case_ : Tuple = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Dict = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Tuple = in_proj_bias[: config.hidden_size] snake_case_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : str = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : int = dct.pop(lowerCamelCase_ ) snake_case_ : List[Any] = val @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowerCamelCase_ ) snake_case_ : Optional[Any] = False snake_case_ : Union[str, Any] = False snake_case_ : Dict = False snake_case_ : Any = False if "vqa" in checkpoint_url: snake_case_ : List[Any] = True snake_case_ : List[Any] = 31_29 snake_case_ : List[Any] = '''huggingface/label-files''' snake_case_ : Union[str, Any] = '''vqa2-id2label.json''' snake_case_ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Optional[Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} snake_case_ : Dict = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Optional[int] = ViltForQuestionAnswering(lowerCamelCase_ ) elif "nlvr" in checkpoint_url: snake_case_ : str = True snake_case_ : Optional[Any] = 2 snake_case_ : Optional[Any] = {0: '''False''', 1: '''True'''} snake_case_ : Union[str, Any] = {v: k for k, v in config.idalabel.items()} snake_case_ : int = 3 snake_case_ : int = ViltForImagesAndTextClassification(lowerCamelCase_ ) elif "irtr" in checkpoint_url: snake_case_ : str = True snake_case_ : List[str] = ViltForImageAndTextRetrieval(lowerCamelCase_ ) elif "mlm_itm" in checkpoint_url: snake_case_ : Any = True snake_case_ : int = ViltForMaskedLM(lowerCamelCase_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys snake_case_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" )['''state_dict'''] snake_case_ : Tuple = create_rename_keys(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ ) if mlm_model or irtr_model: snake_case_ : int = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case_ : str = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCamelCase_ ) # Define processor snake_case_ : List[str] = ViltImageProcessor(size=3_84 ) snake_case_ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case_ : Union[str, Any] = ViltProcessor(lowerCamelCase_ , lowerCamelCase_ ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case_ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCamelCase_ ).raw ) snake_case_ : Union[str, Any] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCamelCase_ ).raw ) snake_case_ : Union[str, Any] = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) snake_case_ : Optional[int] = processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors="""pt""" ) snake_case_ : Tuple = processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors="""pt""" ) snake_case_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: snake_case_ : Dict = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCamelCase_ ).raw ) if mlm_model: snake_case_ : int = '''a bunch of [MASK] laying on a [MASK].''' else: snake_case_ : Optional[int] = '''How many cats are there?''' snake_case_ : Optional[int] = processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors="""pt""" ) snake_case_ : Any = model(**lowerCamelCase_ ) # Verify outputs if mlm_model: snake_case_ : Dict = torch.Size([1, 11, 3_05_22] ) snake_case_ : int = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) # verify masked token prediction equals "cats" snake_case_ : Optional[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case_ : List[Any] = torch.Size([1, 31_29] ) snake_case_ : str = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) # verify vqa prediction equals "2" snake_case_ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case_ : Union[str, Any] = torch.Size([1, 2] ) snake_case_ : Dict = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __A : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0
'''simple docstring''' from copy import deepcopy class lowerCAmelCase : def __init__( self : List[str] , __lowercase : list[int] | None = None , __lowercase : int | None = None ): """simple docstring""" if arr is None and size is not None: __lowercase =size __lowercase =[0] * size elif arr is not None: self.init(__lowercase ) else: raise ValueError('Either arr or size must be specified' ) def snake_case ( self : Optional[int] , __lowercase : list[int] ): """simple docstring""" __lowercase =len(__lowercase ) __lowercase =deepcopy(__lowercase ) for i in range(1 , self.size ): __lowercase =self.next_(__lowercase ) if j < self.size: self.tree[j] += self.tree[i] def snake_case ( self : List[str] ): """simple docstring""" __lowercase =self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __lowercase =self.next_(__lowercase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def snake_case ( __lowercase : int ): """simple docstring""" return index + (index & (-index)) @staticmethod def snake_case ( __lowercase : int ): """simple docstring""" return index - (index & (-index)) def snake_case ( self : List[Any] , __lowercase : int , __lowercase : int ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __lowercase =self.next_(__lowercase ) def snake_case ( self : int , __lowercase : int , __lowercase : int ): """simple docstring""" self.add(__lowercase , value - self.get(__lowercase ) ) def snake_case ( self : str , __lowercase : int ): """simple docstring""" if right == 0: return 0 __lowercase =self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __lowercase =self.prev(__lowercase ) return result def snake_case ( self : List[str] , __lowercase : int , __lowercase : int ): """simple docstring""" return self.prefix(__lowercase ) - self.prefix(__lowercase ) def snake_case ( self : Dict , __lowercase : int ): """simple docstring""" return self.query(__lowercase , index + 1 ) def snake_case ( self : List[str] , __lowercase : int ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 __lowercase =1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __lowercase =0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
141
'''simple docstring''' import math class lowerCAmelCase : def snake_case ( self : Optional[int] , __lowercase : list[list[float]] , __lowercase : list[int] ): """simple docstring""" __lowercase =0.0 __lowercase =0.0 for i in range(len(__lowercase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case ( self : Union[str, Any] , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ): """simple docstring""" for i in range(len(__lowercase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCamelCase ( ): '''simple docstring''' __lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowercase =SelfOrganizingMap() __lowercase =3 __lowercase =0.5 for _ in range(lowercase__ ): for j in range(len(lowercase__ ) ): # training sample __lowercase =training_samples[j] # Compute the winning vector __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # Update the winning vector __lowercase =self_organizing_map.update(lowercase__, lowercase__, lowercase__, lowercase__ ) # classify test sample __lowercase =[0, 0, 0, 1] __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
141
1
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def UpperCAmelCase_ (__a : str , __a : Union[str, Any] , __a : Tuple ): """simple docstring""" _a : Tuple = hf_hub_url(repo_id=__a , path=__a , revision=__a ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__a )}"""
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } lowercase_ = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } lowercase_ = "</w>" lowercase_ = "@@ " def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: '''simple docstring''' A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs # Speech2Text2 has no max input length lowercase_ = {"facebook/s2t-wav2vec2-large-en-de": 1024} class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self : Tuple,lowercase_ : Dict,lowercase_ : int="<s>",lowercase_ : Optional[int]="<pad>",lowercase_ : Tuple="</s>",lowercase_ : List[str]="<unk>",lowercase_ : Any=False,lowercase_ : Optional[Any]=None,**lowercase_ : Optional[Any],)-> List[Any]: '''simple docstring''' super().__init__( unk_token=lowercase_,bos_token=lowercase_,eos_token=lowercase_,pad_token=lowercase_,do_lower_case=lowercase_,**lowercase_,) A__ = do_lower_case with open(lowercase_,encoding='utf-8' ) as vocab_handle: A__ = json.load(lowercase_ ) A__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) A__ = None A__ = None else: with open(lowercase_,encoding='utf-8' ) as merges_handle: A__ = merges_handle.read().split('\n' )[:-1] A__ = [tuple(merge.split()[:2] ) for merge in merges] A__ = dict(zip(lowercase_,range(len(lowercase_ ) ) ) ) A__ = {} @property def snake_case__ ( self : str )-> int: '''simple docstring''' return len(self.decoder ) def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def snake_case__ ( self : Optional[int],lowercase_ : int )-> str: '''simple docstring''' A__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A__ = get_pairs(lowercase_ ) if not pairs: return token while True: A__ = min(lowercase_,key=lambda lowercase_ : self.bpe_ranks.get(lowercase_,float('inf' ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(lowercase_ ): try: A__ = word.index(lowercase_,lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(lowercase_ ) A__ = new_word if len(lowercase_ ) == 1: break else: A__ = get_pairs(lowercase_ ) A__ = ' '.join(lowercase_ ) if word == "\n " + BPE_TOKEN_MERGES: A__ = '\n' + BPE_TOKEN_MERGES if word.endswith(lowercase_ ): A__ = word.replace(lowercase_,'' ) A__ = word.replace(' ',lowercase_ ) A__ = word return word def snake_case__ ( self : int,lowercase_ : Optional[Any] )-> Optional[int]: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A__ = text.lower() A__ = text.split() A__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowercase_ ).split(' ' ) ) ) return split_tokens def snake_case__ ( self : Any,lowercase_ : str )-> int: '''simple docstring''' return self.encoder.get(lowercase_,self.encoder.get(self.unk_token ) ) def snake_case__ ( self : Optional[Any],lowercase_ : int )-> str: '''simple docstring''' A__ = self.decoder.get(lowercase_,self.unk_token ) return result def snake_case__ ( self : Dict,lowercase_ : List[str] )-> str: '''simple docstring''' A__ = ' '.join(lowercase_ ) # make sure @@ tokens are concatenated A__ = ''.join(string.split(lowercase_ ) ) return string def snake_case__ ( self : int,lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_,'w',encoding='utf-8' ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=lowercase_,ensure_ascii=lowercase_ ) + '\n' ) A__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowercase_,'w',encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) A__ = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
7
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A : int = 6 ) ->None: lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None self.create_linked_list(A ) def __lowerCamelCase ( self : Optional[int] , A : int ) ->None: lowerCamelCase__ : Optional[int] = Node() lowerCamelCase__ : List[str] = current_node lowerCamelCase__ : Union[str, Any] = current_node lowerCamelCase__ : List[str] = current_node for _ in range(1 , A ): lowerCamelCase__ : List[str] = Node() lowerCamelCase__ : List[Any] = current_node lowerCamelCase__ : Optional[Any] = previous_node lowerCamelCase__ : Dict = current_node lowerCamelCase__ : Union[str, Any] = self.front lowerCamelCase__ : int = previous_node def __lowerCamelCase ( self : Optional[int] ) ->bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCamelCase ( self : Optional[int] ) ->Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCamelCase ( self : Optional[int] , A : Any ) ->None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCamelCase__ : List[str] = self.rear.next if self.rear: lowerCamelCase__ : Optional[Any] = data def __lowerCamelCase ( self : str ) ->Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCamelCase__ : List[Any] = self.front.data lowerCamelCase__ : Optional[Any] = None return data lowerCamelCase__ : Optional[int] = self.front lowerCamelCase__ : Optional[int] = old_front.next lowerCamelCase__ : Any = old_front.data lowerCamelCase__ : List[str] = None return data def __lowerCamelCase ( self : Dict ) ->None: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowerCamelCase ( self : int ) ->None: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->None: lowerCamelCase__ : Any | None = None lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
142
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any =tempfile.mkdtemp() UpperCAmelCase : Tuple =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase : int ={ '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCAmelCase : Optional[int] =os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self , **snake_case__ ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self , **snake_case__ ) -> int: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self , **snake_case__ ) -> Optional[Any]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase : Union[str, Any] =[Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.get_tokenizer() UpperCAmelCase : Dict =self.get_rust_tokenizer() UpperCAmelCase : int =self.get_image_processor() UpperCAmelCase : Tuple =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] =AlignProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ ) UpperCAmelCase : Optional[int] =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase : Tuple =AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case__ ) self.assertIsInstance(processor_fast.tokenizer , snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case__ ) self.assertIsInstance(processor_fast.image_processor , snake_case__ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : int =AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Dict =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase : List[Any] =self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) UpperCAmelCase : Tuple =AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =self.get_image_processor() UpperCAmelCase : Any =self.get_tokenizer() UpperCAmelCase : Optional[Any] =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase : Any =self.prepare_image_inputs() UpperCAmelCase : Optional[Any] =image_processor(snake_case__ , return_tensors='''np''' ) UpperCAmelCase : int =processor(images=snake_case__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict =self.get_image_processor() UpperCAmelCase : List[Any] =self.get_tokenizer() UpperCAmelCase : int =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase : int ='''lower newer''' UpperCAmelCase : str =processor(text=snake_case__ ) UpperCAmelCase : Tuple =tokenizer(snake_case__ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =self.get_image_processor() UpperCAmelCase : Tuple =self.get_tokenizer() UpperCAmelCase : Tuple =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase : int ='''lower newer''' UpperCAmelCase : str =self.prepare_image_inputs() UpperCAmelCase : Dict =processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict =self.get_image_processor() UpperCAmelCase : Union[str, Any] =self.get_tokenizer() UpperCAmelCase : Dict =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : Dict =processor.batch_decode(snake_case__ ) UpperCAmelCase : List[Any] =tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.get_image_processor() UpperCAmelCase : Any =self.get_tokenizer() UpperCAmelCase : List[str] =AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase : Optional[int] ='''lower newer''' UpperCAmelCase : Dict =self.prepare_image_inputs() UpperCAmelCase : List[str] =processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
369
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __lowerCamelCase : Union[str, Any] = """CLIPImageProcessor""" __lowerCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case__ , ) UpperCAmelCase : int =kwargs.pop('''feature_extractor''' ) UpperCAmelCase : Tuple =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase : List[Any] =self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: UpperCAmelCase : Tuple =self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: UpperCAmelCase : List[Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.tokenizer.model_input_names UpperCAmelCase : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case__ , ) return self.image_processor
78
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) _UpperCAmelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices.""" ) _UpperCAmelCase : List[str] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices.""" ) _UpperCAmelCase : int = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _UpperCAmelCase : Optional[Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __a = Accelerator() __a = (accelerator.state.process_index + 2, 10) __a = torch.randint(0, 10, shape).to(accelerator.device) __a = '' __a = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __a = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __a = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
145
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase_ = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase_ = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if "bot_conv" in key: lowerCAmelCase_ = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase_ = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase_ = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase_ = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase_ = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase_ = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase_ = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase_ = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase ( ) -> Any: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_=False , a_=None ) -> Optional[int]: lowerCAmelCase_ = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase_ = GLPNImageProcessor() # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase_ = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict lowerCAmelCase_ = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase_ = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase_ = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) lowerCAmelCase_ = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , a_ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=a_ , ) image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=a_ , ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) lowerCamelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
369
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase_ = trt.Logger(trt.Logger.WARNING) lowerCamelCase_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_84, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_28, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) lowerCamelCase_ = parser.parse_args() if args.tokenizer_name: lowerCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) lowerCamelCase_ = args.per_device_eval_batch_size lowerCamelCase_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase_ = True lowerCamelCase_ = 'temp_engine/bert-fp32.engine' if args.fpaa: lowerCamelCase_ = 'temp_engine/bert-fp16.engine' if args.inta: lowerCamelCase_ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') lowerCamelCase_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase_ = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase_ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[Any] , __A : Tuple , __A : Optional[int] , __A : Union[str, Any] , __A : List[str] , __A : List[str] , __A : Optional[int] ) -> str: _SCREAMING_SNAKE_CASE = np.asarray(inputs["input_ids"] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __A ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __A ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __A ) # start time _SCREAMING_SNAKE_CASE = time.time() # Run inference context.execute_async( bindings=[int(__A ) for d_inp in d_inputs] + [int(__A ), int(__A )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__A , __A , __A ) cuda.memcpy_dtoh_async(__A , __A , __A ) # Synchronize the stream and take time stream.synchronize() # end time _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = end_time - start_time _SCREAMING_SNAKE_CASE = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase_ = raw_datasets['validation'].column_names lowerCamelCase_ = 'question' if 'question' in column_names else column_names[0] lowerCamelCase_ = 'context' if 'context' in column_names else column_names[1] lowerCamelCase_ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase_ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase_ = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _SCREAMING_SNAKE_CASE = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _SCREAMING_SNAKE_CASE = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=__A , stride=args.doc_stride , return_overflowing_tokens=__A , return_offsets_mapping=__A , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _SCREAMING_SNAKE_CASE = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _SCREAMING_SNAKE_CASE = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _SCREAMING_SNAKE_CASE = tokenized_examples.sequence_ids(__A ) _SCREAMING_SNAKE_CASE = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _SCREAMING_SNAKE_CASE = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _SCREAMING_SNAKE_CASE = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples lowerCamelCase_ = raw_datasets['validation'] # Validation Feature Creation lowerCamelCase_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) lowerCamelCase_ = default_data_collator lowerCamelCase_ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) lowerCamelCase_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Dict , __A : Dict , __A : List[Any]="eval" ) -> int: # Post-processing: we match the start logits and end logits to answers in the original context. _SCREAMING_SNAKE_CASE = postprocess_qa_predictions( examples=__A , features=__A , predictions=__A , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__A , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _SCREAMING_SNAKE_CASE = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _SCREAMING_SNAKE_CASE = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _SCREAMING_SNAKE_CASE = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__A , label_ids=__A ) lowerCamelCase_ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> List[Any]: return trt.volume(engine.get_binding_shape(__A ) ) * engine.get_binding_dtype(__A ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase_ = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase_ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase_ = 0.0 lowerCamelCase_ = 0 lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = None for step, batch in enumerate(eval_dataloader): lowerCamelCase_ , lowerCamelCase_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase_ , lowerCamelCase_ = outputs lowerCamelCase_ = torch.tensor(start_logits) lowerCamelCase_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase_ = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase_ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 10_00 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 10_00)) logger.info('Total Number of Inference = %d', niter) lowerCamelCase_ = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
111
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase_ : """simple docstring""" def lowerCAmelCase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): """simple docstring""" return None class lowercase_ : """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" return None class lowercase_ ( unittest.TestCase ): """simple docstring""" lowerCamelCase_ = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 1_2 , **__lowerCamelCase ) @require_torch @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 1_2 , **__lowerCamelCase ) @require_torch @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" from transformers import BertModel _SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() _SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 1_2 , __lowerCamelCase ) @require_tf @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 1_2 , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 1_2 , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : int ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: _SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" from transformers import BertModel _SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" from transformers import TFBertModel _SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] _SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
111
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =['a', 'b', 'c'] # Defaults to last layer if both are None __UpperCamelCase , __UpperCamelCase : List[str] =get_aligned_output_features_output_indices(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['c'] ) self.assertEqual(lowerCamelCase__ , [2] ) # Out indices set to match out features __UpperCamelCase , __UpperCamelCase : List[Any] =get_aligned_output_features_output_indices(['a', 'c'] , lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['a', 'c'] ) self.assertEqual(lowerCamelCase__ , [0, 2] ) # Out features set to match out indices __UpperCamelCase , __UpperCamelCase : int =get_aligned_output_features_output_indices(lowerCamelCase__ , [0, 2] , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['a', 'c'] ) self.assertEqual(lowerCamelCase__ , [0, 2] ) # Out features selected from negative indices __UpperCamelCase , __UpperCamelCase : Dict =get_aligned_output_features_output_indices(lowerCamelCase__ , [-3, -1] , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['a', 'c'] ) self.assertEqual(lowerCamelCase__ , [-3, -1] ) def __lowercase ( self ): """simple docstring""" with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , lowerCamelCase__ ) # Out features must be a list with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(lowerCamelCase__ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(lowerCamelCase__ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =BackboneMixin() __UpperCamelCase : Optional[Any] =['a', 'b', 'c'] __UpperCamelCase : Dict =['a', 'c'] __UpperCamelCase : Union[str, Any] =[0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __UpperCamelCase : Tuple =['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) __UpperCamelCase : Tuple =[-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
71
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Dict ={ "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __lowerCAmelCase : str ={ "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def UpperCamelCase ( ): A__ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) A__ = bs[:] A__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 A__ = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : List[str] ): A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = ["""input_ids""", """attention_mask"""] def __init__( self :str , lowercase_ :str , lowercase_ :str , lowercase_ :Union[str, Any]="replace" , lowercase_ :Dict="<s>" , lowercase_ :Union[str, Any]="</s>" , lowercase_ :List[Any]="</s>" , lowercase_ :List[Any]="<s>" , lowercase_ :Tuple="<unk>" , lowercase_ :Union[str, Any]="<pad>" , lowercase_ :Optional[int]="<mask>" , lowercase_ :List[str]=False , **lowercase_ :Any , )-> str: A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: A__ = json.load(lowercase_ ) A__ = {v: k for k, v in self.encoder.items()} A__ = errors # how to handle errors in decoding A__ = bytes_to_unicode() A__ = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[1:-1] A__ = [tuple(merge.split() ) for merge in bpe_merges] A__ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) A__ = {} A__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self :List[Any] )-> int: return len(self.encoder ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Tuple )-> Tuple: if token in self.cache: return self.cache[token] A__ = tuple(lowercase_ ) A__ = get_pairs(lowercase_ ) if not pairs: return token while True: A__ = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__, A__ = bigram A__ = [] A__ = 0 while i < len(lowercase_ ): try: A__ = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(lowercase_ ) A__ = new_word if len(lowercase_ ) == 1: break else: A__ = get_pairs(lowercase_ ) A__ = " ".join(lowercase_ ) A__ = word return word def UpperCAmelCase_ ( self :Dict , lowercase_ :Dict )-> Dict: A__ = [] for token in re.findall(self.pat , lowercase_ ): A__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self :str , lowercase_ :List[str] )-> Dict: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self :int , lowercase_ :List[str] )-> List[Any]: return self.decoder.get(lowercase_ ) def UpperCAmelCase_ ( self :str , lowercase_ :Union[str, Any] )-> Tuple: A__ = "".join(lowercase_ ) A__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :str , lowercase_ :Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) A__ = 0 with open(lowercase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) A__ = token_index writer.write(" ".join(lowercase_ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self :List[str] , lowercase_ :Optional[Any] , lowercase_ :Any=False , **lowercase_ :List[Any] )-> List[Any]: A__ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): A__ = " " + text return (text, kwargs)
123
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = (PNDMScheduler,) __lowercase = (("""num_inference_steps""", 50),) def UpperCAmelCase_ ( self :List[str] , **lowercase_ :Optional[int] )-> List[str]: A__ = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self :int , lowercase_ :Optional[int]=0 , **lowercase_ :Any )-> int: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Optional[Any]=0 , **lowercase_ :List[str] )-> str: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :Optional[int] , **lowercase_ :Dict )-> Optional[int]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCAmelCase_ ( self :int )-> Union[str, Any]: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample A__ = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A__ = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample A__ = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self :Any )-> Dict: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def UpperCAmelCase_ ( self :Optional[Any] )-> Any: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self :Tuple )-> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 A__ = 27 for scheduler_class in self.scheduler_classes: A__ = self.dummy_sample A__ = 0.1 * sample A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCAmelCase_ ( self :List[str] )-> str: with self.assertRaises(lowercase_ ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ ( self :int )-> str: A__ = self.full_loop() A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[Any] )-> List[Any]: A__ = self.full_loop(prediction_type="v_prediction" ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def UpperCAmelCase_ ( self :Tuple )-> Tuple: # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def UpperCAmelCase_ ( self :Dict )-> Any: # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
123
1
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Tuple=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : str=5 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : int=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_multiple_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = weight_tying UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = GPTNeoXJapaneseModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = model(lowercase_ , attention_mask=lowercase_ ) UpperCAmelCase__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = GPTNeoXJapaneseModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = GPTNeoXJapaneseForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = GPTNeoXJapaneseForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass UpperCAmelCase__ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ = model(lowercase_ , attention_mask=lowercase_ , output_hidden_states=lowercase_ ) UpperCAmelCase__ = output_from_no_past["""hidden_states"""][0] UpperCAmelCase__ = model( lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )["""hidden_states"""][0] # select random slice UpperCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase_ : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Optional[int] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = GPTNeoXJapaneseModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = """abeja/gpt-neox-japanese-2.7b""" UpperCAmelCase__ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCAmelCase__ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCAmelCase__ = GPTNeoXJapaneseTokenizer.from_pretrained(lowercase_ ) UpperCAmelCase__ = GPTNeoXJapaneseForCausalLM.from_pretrained(lowercase_ ) UpperCAmelCase__ = [] for prompt in prompts: UpperCAmelCase__ = tokenizer(lowercase_ , return_tensors="""pt""" ).input_ids UpperCAmelCase__ = model.generate(lowercase_ , max_length=50 ) UpperCAmelCase__ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
346
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""image_processor""", """tokenizer"""] __UpperCamelCase = """LayoutLMv2ImageProcessor""" __UpperCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self :Any , lowercase_ :int=None , lowercase_ :Union[str, Any]=None , **lowercase_ :Optional[Any] ) -> Dict: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) UpperCAmelCase = kwargs.pop('feature_extractor' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :str , lowercase_ :Optional[int] , lowercase_ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ :Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ :Optional[Union[List[int], List[List[int]]]] = None , lowercase_ :bool = True , lowercase_ :Union[bool, str, PaddingStrategy] = False , lowercase_ :Union[bool, str, TruncationStrategy] = None , lowercase_ :Optional[int] = None , lowercase_ :int = 0 , lowercase_ :Optional[int] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[bool] = None , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = True , lowercase_ :Optional[Union[str, TensorType]] = None , **lowercase_ :Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['words'] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values UpperCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowercase_ , encoded_inputs['overflow_to_sample_mapping'] ) UpperCAmelCase = images return encoded_inputs def UpperCAmelCase__ ( self :Dict , lowercase_ :List[Any] , lowercase_ :Any ) -> Optional[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowercase_ )} and {len(lowercase_ )}""" ) return images_with_overflow def UpperCAmelCase__ ( self :Any , *lowercase_ :int , **lowercase_ :Tuple ) -> Tuple: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , *lowercase_ :List[Any] , **lowercase_ :Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :int ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self :int ) -> Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
78
0
"""simple docstring""" def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : int = 0 lowerCamelCase : Dict = len(lowercase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCamelCase : Optional[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase_ ): return None lowerCamelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCamelCase : Dict = left lowerCamelCase : List[Any] = point elif point > right: lowerCamelCase : Optional[Any] = right lowerCamelCase : Any = point else: if item < current_item: lowerCamelCase : Union[str, Any] = point - 1 else: lowerCamelCase : Union[str, Any] = point + 1 return None def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCamelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase_, lowercase_, lowercase_, lowercase_ ) elif point > right: return interpolation_search_by_recursion(lowercase_, lowercase_, lowercase_, lowercase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase_, lowercase_, lowercase_, point - 1 ) else: return interpolation_search_by_recursion( lowercase_, lowercase_, point + 1, lowercase_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' if collection != sorted(lowercase_ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _A = 0 if debug == 1: _A = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') _A = 6_7 _A = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('Not found')
357
"""simple docstring""" def UpperCAmelCase ( a_ = 10 ): '''simple docstring''' if not isinstance(a_, a_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase : Union[str, Any] = 10**n lowerCamelCase : int = 2_8433 * (pow(2, 783_0457, a_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
205
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _A = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } _A = { """169M""": 768, """430M""": 1_024, """1B5""": 2_048, """3B""": 2_560, """7B""": 4_096, """14B""": 5_120, } def lowerCamelCase__ ( a__ : Tuple ) -> int: UpperCamelCase_ = list(state_dict.keys() ) for name in state_dict_keys: UpperCamelCase_ = state_dict.pop(lowercase_ ) # emb -> embedding if name.startswith("""emb.""" ): UpperCamelCase_ = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): UpperCamelCase_ = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention UpperCamelCase_ = re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , lowercase_ ) # ffn -> feed_forward UpperCamelCase_ = re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , lowercase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): UpperCamelCase_ = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): UpperCamelCase_ = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): UpperCamelCase_ = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": UpperCamelCase_ = """rwkv.""" + name UpperCamelCase_ = weight return state_dict def lowerCamelCase__ ( a__ : Tuple , a__ : Optional[int] , a__ : List[str] , a__ : Tuple=None , a__ : List[str]=None , a__ : Dict=False , a__ : str=None ) -> Any: if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) UpperCamelCase_ = 5_0277 UpperCamelCase_ = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: UpperCamelCase_ = PreTrainedTokenizerFast(tokenizer_file=lowercase_ ) UpperCamelCase_ = len(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) # 2. Build the config UpperCamelCase_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCamelCase_ = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) UpperCamelCase_ = RwkvConfig( vocab_size=lowercase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase_ ) # 3. Download model file then convert state_dict UpperCamelCase_ = hf_hub_download(lowercase_ , lowercase_ ) UpperCamelCase_ = torch.load(lowercase_ , map_location="""cpu""" ) UpperCamelCase_ = convert_state_dict(lowercase_ ) # 4. Split in shards and save UpperCamelCase_ , UpperCamelCase_ = shard_checkpoint(lowercase_ ) for shard_file, shard in shards.items(): torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) if index is not None: UpperCamelCase_ = os.path.join(lowercase_ , lowercase_ ) # Save the index as well with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase_ = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + """\n""" f.write(lowercase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.""" ) UpperCamelCase_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCamelCase_ = torch.load(os.path.join(lowercase_ , lowercase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase_ , lowercase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(lowercase_ ) model.push_to_hub(lowercase_ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(lowercase_ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
122
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [256, 512, 1024, 1024] UpperCAmelCase = (1, 384, 384) if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 150 UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """ade20k-id2label.json""" UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_snake_case , _snake_case , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase = {int(_snake_case ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 150, 480, 480] return config, expected_shape def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _a ( _snake_case ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: UpperCAmelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: UpperCAmelCase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: UpperCAmelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: UpperCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: UpperCAmelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: UpperCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: UpperCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: UpperCAmelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: UpperCAmelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: UpperCAmelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: UpperCAmelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: UpperCAmelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: UpperCAmelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: UpperCAmelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: UpperCAmelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: UpperCAmelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: UpperCAmelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: UpperCAmelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: UpperCAmelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: UpperCAmelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: UpperCAmelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: UpperCAmelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: UpperCAmelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def _a ( _snake_case , _snake_case ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) UpperCAmelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( ): """simple docstring""" UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = get_dpt_config(_snake_case ) # load original state_dict from URL UpperCAmelCase = torch.hub.load_state_dict_from_url(_snake_case , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_snake_case ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(_snake_case ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(_snake_case , _snake_case ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(_snake_case ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Check outputs on an image UpperCAmelCase = 480 if """ade""" in checkpoint_url else 384 UpperCAmelCase = DPTImageProcessor(size=_snake_case ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(_snake_case , return_tensors="""pt""" ) # forward pass UpperCAmelCase = model(**_snake_case ).logits if """ade""" in checkpoint_url else model(**_snake_case ).predicted_depth # Assert logits UpperCAmelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCAmelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _snake_case , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _snake_case ) ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_snake_case , ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } _UpperCamelCase = { """google/pegasus-xsum""": 512, } class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A=None ,A=None ,A="<pad>" ,A="</s>" ,A="<unk>" ,A="<mask_2>" ,A="<mask_1>" ,A=None ,A=103 ,**A ,): UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(A ,A ): raise TypeError( F'''additional_special_tokens should be of type {type(A )}, but is''' F''' {type(A )}''' ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(A ) ,self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( A ,tokenizer_file=A ,pad_token=A ,eos_token=A ,unk_token=A ,mask_token=A ,mask_token_sent=A ,offset=A ,additional_special_tokens=A ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def _UpperCamelCase ( self ,A ): UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _UpperCamelCase ( self ,A ,A=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self ,A ,A = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file ,A ) return (out_vocab_file,)
234
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCAmelCase : Any = input("Enter image url: ").strip() print(f'Downloading image from {url} ...') __UpperCAmelCase : int = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image __UpperCAmelCase : Optional[int] = soup.find("meta", {"property": "og:image"})["content"] __UpperCAmelCase : str = requests.get(image_url).content __UpperCAmelCase : Optional[int] = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, "wb") as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
111
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = GPTSanJapaneseTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCAmelCase__ ( self : Union[str, Any] ): super().setUp() # fmt: off __snake_case: str = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __snake_case: List[Any] = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __snake_case: Optional[int] = {"""unk_token""": """<unk>"""} __snake_case: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def UpperCAmelCase__ ( self : Optional[int] , **A : int ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Dict ): __snake_case: Tuple = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __snake_case: str = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] , A : Optional[int] ): __snake_case , __snake_case: Optional[int] = self.get_input_output_texts(A ) __snake_case: Optional[Any] = tokenizer.encode(A , add_special_tokens=A ) __snake_case: int = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def UpperCAmelCase__ ( self : int ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Dict ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Optional[int] ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Dict = self.get_tokenizer() # Testing tokenization __snake_case: List[str] = """こんにちは、世界。 こんばんは、㔺界。""" __snake_case: Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __snake_case: Any = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens __snake_case: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __snake_case: str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens __snake_case: Optional[int] = tokens + [tokenizer.unk_token] __snake_case: List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __snake_case: str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ ( self : str ): __snake_case: Union[str, Any] = self.get_tokenizer() # Testing tokenization __snake_case: Optional[Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __snake_case: Optional[Any] = """こんにちは、、、、世界。こんばんは、、、、世界。""" __snake_case: Union[str, Any] = tokenizer.encode(A ) __snake_case: List[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case: Any = """こんにちは、世界。""" __snake_case: Tuple = """こんばんは、㔺界。😀""" __snake_case: Optional[Any] = """こんにちは、世界。こんばんは、世界。😀""" __snake_case: int = tokenizer.encode(prefix_text + input_text ) __snake_case: Union[str, Any] = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __snake_case: Tuple = tokenizer.encode(A , prefix_text=A ) __snake_case: Union[str, Any] = tokenizer.decode(A ) __snake_case: Dict = tokenizer.decode(A ) __snake_case: Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def UpperCAmelCase__ ( self : List[str] ): __snake_case: int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case: Optional[int] = """こんにちは、世界。""" __snake_case: Any = """こんばんは、㔺界。😀""" __snake_case: Optional[int] = len(tokenizer.encode(A ) ) - 2 __snake_case: str = len(tokenizer.encode(A ) ) - 2 __snake_case: Dict = [1] + [0] * (len_prefix + len_text + 1) __snake_case: str = [1] * (len_prefix + len_text + 1) + [0] __snake_case: List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __snake_case: int = tokenizer(prefix_text + input_text ).token_type_ids __snake_case: Optional[int] = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __snake_case: Tuple = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case: int = tokenizer.encode("""あンいワ""" ) __snake_case: Optional[int] = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __snake_case: List[Any] = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase__ ( self : int ): __snake_case: List[str] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case: Union[str, Any] = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __snake_case: Optional[int] = tokenizer(A , padding=A ) __snake_case: int = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off __snake_case: List[str] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] __snake_case: int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __snake_case: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCAmelCase__ ( self : List[str] ): # tokenizer has no padding token pass
111
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,*_snake_case : Union[str, Any] ,**_snake_case : Dict ) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _snake_case : Dict = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _snake_case : List[str] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _snake_case : List[str] = "zero2" _snake_case : Any = "zero3" _snake_case : Dict = [ZEROa, ZEROa] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __snake_case : Optional[Any] = parameterized.to_safe_name("_".join(str(__lowerCamelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test _snake_case : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a (_lowerCAmelCase ): """simple docstring""" @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ) -> int: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Dict: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Any ) -> str: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) def __snake_case ( self : str , lowerCamelCase : List[Any] ) -> Union[str, Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Any = models[model] __snake_case : Tuple = self.run_trainer( stage=lowerCamelCase , model_name=lowerCamelCase , eval_steps=lowerCamelCase , num_train_epochs=1 , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) self.do_checks(lowerCamelCase ) return output_dir def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : int = 1 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Optional[int] = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase ) __snake_case : Optional[int] = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __snake_case : Optional[int] = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __snake_case : Dict = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __snake_case : Any = self.get_launcher(lowerCamelCase ) __snake_case : Optional[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase , env=self.get_env() ) return output_dir def __snake_case ( self : str , lowerCamelCase : str=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __snake_case : Dict = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
123
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _snake_case : int = logging.get_logger(__name__) class a : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : str = None , lowerCamelCase : uuid.UUID = None , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None ) -> int: if not conversation_id: __snake_case : Optional[Any] = uuid.uuida() if past_user_inputs is None: __snake_case : List[Any] = [] if generated_responses is None: __snake_case : Optional[int] = [] __snake_case : uuid.UUID = conversation_id __snake_case : List[str] = past_user_inputs __snake_case : List[str] = generated_responses __snake_case : Optional[str] = text def __eq__( self : int , lowerCamelCase : List[str] ) -> Dict: if not isinstance(lowerCamelCase , lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __snake_case ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : bool = False ) -> Optional[Any]: if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) __snake_case : Dict = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __snake_case : List[str] = text def __snake_case ( self : List[str] ) -> Dict: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __snake_case : Optional[Any] = None def __snake_case ( self : List[str] , lowerCamelCase : str ) -> List[Any]: self.generated_responses.append(lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ) -> Dict: __snake_case : Any = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __snake_case : List[Any] = "user" if is_user else "bot" output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCAmelCase , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : List[str] ) -> Any: super().__init__(*lowerCamelCase , **lowerCamelCase ) if self.tokenizer.pad_token_id is None: __snake_case : Dict = self.tokenizer.eos_token def __snake_case ( self : Dict , lowerCamelCase : List[str]=None , lowerCamelCase : int=None , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : Any ) -> Any: __snake_case : Union[str, Any] = {} __snake_case : Optional[int] = {} __snake_case : Optional[Any] = {} if min_length_for_response is not None: __snake_case : int = min_length_for_response if minimum_tokens is not None: __snake_case : Tuple = minimum_tokens if "max_length" in generate_kwargs: __snake_case : Any = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __snake_case : Any = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , lowerCamelCase : Union[Conversation, List[Conversation]] , lowerCamelCase : Optional[Any]=0 , **lowerCamelCase : Optional[Any] ) -> Union[str, Any]: __snake_case : Optional[Any] = super().__call__(lowerCamelCase , num_workers=lowerCamelCase , **lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) == 1: return outputs[0] return outputs def __snake_case ( self : Any , lowerCamelCase : Conversation , lowerCamelCase : Any=32 ) -> Dict[str, Any]: if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): __snake_case : Tuple = self.tokenizer._build_conversation_input_ids(lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __snake_case : Tuple = self._legacy_parse_and_tokenize(lowerCamelCase ) if self.framework == "pt": __snake_case : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __snake_case : Union[str, Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __snake_case ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=10 , **lowerCamelCase : Tuple ) -> List[str]: __snake_case : Tuple = generate_kwargs.get("max_length" , self.model.config.max_length ) __snake_case : List[str] = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __snake_case : Optional[int] = max_length - minimum_tokens __snake_case : List[Any] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: __snake_case : str = model_inputs["attention_mask"][:, -trim:] __snake_case : Any = model_inputs.pop("conversation" ) __snake_case : str = max_length __snake_case : Optional[int] = self.model.generate(**lowerCamelCase , **lowerCamelCase ) if self.model.config.is_encoder_decoder: __snake_case : List[Any] = 1 else: __snake_case : Union[str, Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Tuple=True ) -> Any: __snake_case : Optional[int] = model_outputs["output_ids"] __snake_case : Optional[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , ) __snake_case : Optional[int] = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowerCamelCase ) return conversation def __snake_case ( self : Optional[Any] , lowerCamelCase : Conversation ) -> Dict: __snake_case : Optional[Any] = self.tokenizer.eos_token_id __snake_case : Any = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) if len(lowerCamelCase ) > self.tokenizer.model_max_length: __snake_case : Tuple = input_ids[-self.tokenizer.model_max_length :] return input_ids
123
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase_ = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' lowerCamelCase_ = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' lowerCamelCase_ = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase , hypotheses=lowerCamelCase , min_len=lowerCamelCase , max_len=lowerCamelCase ) }
34
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase_ = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=8 ) -> Union[str, Any]: '''simple docstring''' snake_case_ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case_ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules( text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: if latents is None: snake_case_ = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case_ = latents.to(lowerCamelCase ) snake_case_ = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , ) -> Any: snake_case_ = len(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( lowerCamelCase , padding="""max_length""" , truncation=lowerCamelCase , max_length=77 , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="""pt""" , ) snake_case_ = text_inputs.input_ids snake_case_ = self.tokenizer(lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase , lowerCamelCase ): snake_case_ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) snake_case_ = text_input_ids.to(lowerCamelCase ) snake_case_ = text_inputs.attention_mask.to(lowerCamelCase ) snake_case_ , snake_case_ = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = prompt_embeds.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = text_encoder_hidden_states.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = text_mask.repeat_interleave(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: snake_case_ = 42 if negative_prompt is None: snake_case_ = [""""""] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: snake_case_ = negative_prompt snake_case_ = self.tokenizer( lowerCamelCase , padding="""max_length""" , max_length=77 , truncation=lowerCamelCase , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="""pt""" , ) snake_case_ = uncond_input.input_ids.to(lowerCamelCase ) snake_case_ = uncond_input.attention_mask.to(lowerCamelCase ) snake_case_ , snake_case_ = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , lowerCamelCase ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase ) snake_case_ = uncond_text_encoder_hidden_states.shape[1] snake_case_ = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase , 1 ) snake_case_ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCamelCase , -1 ) snake_case_ = uncond_text_mask.repeat_interleave(lowerCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case_ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case_ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase_ ( self , lowerCamelCase=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case_ = torch.device(f'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase=0 ) -> int: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case_ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) if self.safety_checker is not None: snake_case_ , snake_case_ = cpu_offload_with_hook(self.safety_checker , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ) -> List[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 100 , lowerCamelCase = 4.0 , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , ) -> Union[str, Any]: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) snake_case_ = self._execution_device snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_ , snake_case_ , snake_case_ = self._encode_prompt( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) snake_case_ = self.scheduler.timesteps snake_case_ = self.unet.config.in_channels snake_case_ , snake_case_ = get_new_h_w(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent snake_case_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} snake_case_ = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , ).prev_sample # post-processing snake_case_ = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule __UpperCamelCase = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
69
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __lowerCAmelCase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(features=lowerCAmelCase ) _lowercase =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' import torch if isinstance(lowerCAmelCase , lowerCAmelCase ) and column: if all( isinstance(lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase )) ): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase ={} if isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase ={'dtype': torch.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image ): _lowercase =np.asarray(lowerCAmelCase ) return torch.tensor(lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase , '__array__' ) and not isinstance(lowerCAmelCase , torch.Tensor ): _lowercase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_row(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_row(lowerCAmelCase ) return self.recursive_tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> "torch.Tensor": '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_column(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0] ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) _lowercase =self._consolidate(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ) -> Mapping: '''simple docstring''' _lowercase =self.numpy_arrow_extractor().extract_batch(lowerCAmelCase ) _lowercase =self.python_features_decoder.decode_batch(lowerCAmelCase ) _lowercase =self.recursive_tensorize(lowerCAmelCase ) for column_name in batch: _lowercase =self._consolidate(batch[column_name] ) return batch
205
0
import math from collections.abc import Callable def _UpperCamelCase (a__ :Callable[[float], float] , a__ :float , a__ :float ): """simple docstring""" UpperCamelCase__ = xa UpperCamelCase__ = xa while True: if x_n == x_na or function(a__ ) == function(a__ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) UpperCamelCase__ = x_na - ( function(a__ ) / ((function(a__ ) - function(a__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCamelCase__ = x_na UpperCamelCase__ = x_na def _UpperCamelCase (a__ :float ): """simple docstring""" return math.pow(a__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
87
import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """masked_bert""" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="topK" , __lowerCAmelCase="constant" , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = pruning_method UpperCamelCase__ = mask_init UpperCamelCase__ = mask_scale
87
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : str = "AutoTokenizer" lowerCAmelCase : Tuple = ["tokenizer"] lowerCAmelCase : Dict = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=None ) ->Optional[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCAmelCase : Dict = speaker_embeddings @classmethod def lowerCAmelCase__ ( cls : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]="speaker_embeddings_path.json" , **lowerCamelCase__ : int ) ->Any: '''simple docstring''' if speaker_embeddings_dict_path is not None: _UpperCAmelCase : List[str] = get_file_from_repo( lowerCamelCase__ , lowerCamelCase__ , subfolder=kwargs.pop("subfolder" , lowerCamelCase__ ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase__ ) , force_download=kwargs.pop("force_download" , lowerCamelCase__ ) , proxies=kwargs.pop("proxies" , lowerCamelCase__ ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase__ ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase__ ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase__ ) , revision=kwargs.pop("revision" , lowerCamelCase__ ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(lowerCamelCase__ , lowerCamelCase__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase : int = None else: with open(lowerCamelCase__ ) as speaker_embeddings_json: _UpperCAmelCase : Optional[Any] = json.load(lowerCamelCase__ ) else: _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) return cls(tokenizer=lowerCamelCase__ , speaker_embeddings=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]="speaker_embeddings_path.json" , lowerCamelCase__ : Tuple="speaker_embeddings" , lowerCamelCase__ : bool = False , **lowerCamelCase__ : str , ) ->Union[str, Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase__ , lowerCamelCase__ , "v2" ) , exist_ok=lowerCamelCase__ ) _UpperCAmelCase : Any = {} _UpperCAmelCase : Tuple = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase : Optional[int] = self._load_voice_preset(lowerCamelCase__ ) _UpperCAmelCase : Tuple = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , lowerCamelCase__ , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=lowerCamelCase__ , ) _UpperCAmelCase : int = os.path.join(lowerCamelCase__ , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase : Optional[int] = tmp_dict with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) super().save_pretrained(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str = None , **lowerCamelCase__ : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = self.speaker_embeddings[voice_preset] _UpperCAmelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , lowerCamelCase__ ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase__ ) , force_download=kwargs.pop("force_download" , lowerCamelCase__ ) , proxies=kwargs.pop("proxies" , lowerCamelCase__ ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase__ ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase__ ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase__ ) , revision=kwargs.pop("revision" , lowerCamelCase__ ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase : Optional[Any] = np.load(lowerCamelCase__ ) return voice_preset_dict def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[dict] = None ) ->Any: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : int , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Dict="pt" , lowerCamelCase__ : List[Any]=2_56 , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[Any]=False , **lowerCamelCase__ : Tuple , ) ->Tuple: '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): if ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase : Tuple = self._load_voice_preset(lowerCamelCase__ ) else: if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not voice_preset.endswith(".npz" ): _UpperCAmelCase : List[str] = voice_preset + ".npz" _UpperCAmelCase : List[Any] = np.load(lowerCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) _UpperCAmelCase : int = self.tokenizer( lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding="max_length" , max_length=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) if voice_preset is not None: _UpperCAmelCase : int = voice_preset return encoded_text
234
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } lowerCamelCase__ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Any = BertTokenizer def __init__( self : int , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple="[UNK]" , lowerCamelCase__ : str="[SEP]" , lowerCamelCase__ : Optional[Any]="[PAD]" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : Union[str, Any]="[MASK]" , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase__ ) != tokenize_chinese_chars ): _UpperCAmelCase : str = getattr(lowerCamelCase__ , normalizer_state.pop("type" ) ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : Any = strip_accents _UpperCAmelCase : List[Any] = tokenize_chinese_chars _UpperCAmelCase : int = normalizer_class(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = do_lower_case def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
234
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
367
'''simple docstring''' from __future__ import annotations from typing import Any def __lowerCAmelCase ( UpperCamelCase__ ) -> None: create_state_space_tree(UpperCamelCase__ , [] , 0 ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __UpperCAmelCase =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
237
0
def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : set ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE_ : Any = 0 count += depth_first_search(_SCREAMING_SNAKE_CASE , row + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , row - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col + 1 , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col - 1 , _SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
18
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = IFInpaintingSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self ) -> List[str]: return self._get_superresolution_dummy_components() def __a ( self , _a , _a=0 ) -> Any: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __a ( self ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __a ( self ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __a ( self ) -> List[str]: self._test_save_load_local() def __a ( self ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
22
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( __a , unittest.TestCase ): __a : int = UnCLIPImageVariationPipeline __a : Any = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} __a : Any = IMAGE_VARIATION_BATCH_PARAMS __a : Dict = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] __a : int = False @property def A ( self : Tuple ): '''simple docstring''' return 32 @property def A ( self : Dict ): '''simple docstring''' return 32 @property def A ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def A ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : int ): '''simple docstring''' return 100 @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def A ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase ) @property def A ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase ) @property def A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } UpperCAmelCase = UnCLIPTextProjModel(**lowercase ) return model @property def A ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } UpperCAmelCase = UNetaDConditionModel(**lowercase ) return model @property def A ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(1 ) UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.dummy_decoder UpperCAmelCase = self.dummy_text_proj UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_super_res_first UpperCAmelCase = self.dummy_super_res_last UpperCAmelCase = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) UpperCAmelCase = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) UpperCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCAmelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def A ( self : Union[str, Any] , lowercase : str , lowercase : Any=0 , lowercase : Optional[int]=True ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) if pil_image: UpperCAmelCase = input_image * 0.5 + 0.5 UpperCAmelCase = input_image.clamp(0 , 1 ) UpperCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase = DiffusionPipeline.numpy_to_pil(lowercase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = pipe(**lowercase ) UpperCAmelCase = output.images UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = pipe( **lowercase , return_dict=lowercase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = pipe(**lowercase ) UpperCAmelCase = output.images UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = pipe( **lowercase , return_dict=lowercase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] UpperCAmelCase = pipe(**lowercase ) UpperCAmelCase = output.images UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] UpperCAmelCase = pipe( **lowercase , return_dict=lowercase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCAmelCase = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : str ): '''simple docstring''' UpperCAmelCase = torch.device('''cpu''' ) class _a : __a : Optional[Any] = 1 UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(0 ) UpperCAmelCase = pipe.decoder.dtype UpperCAmelCase = 1 UpperCAmelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCAmelCase = pipe.prepare_latents( lowercase , dtype=lowercase , device=lowercase , generator=lowercase , latents=lowercase , scheduler=DummyScheduler() ) UpperCAmelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCAmelCase = pipe.prepare_latents( lowercase , dtype=lowercase , device=lowercase , generator=lowercase , latents=lowercase , scheduler=DummyScheduler() ) UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) UpperCAmelCase = pipe( **lowercase , decoder_latents=lowercase , super_res_latents=lowercase ).images UpperCAmelCase = self.get_dummy_inputs(lowercase , pil_image=lowercase ) # Don't pass image, instead pass embedding UpperCAmelCase = pipeline_inputs.pop('''image''' ) UpperCAmelCase = pipe.image_encoder(lowercase ).image_embeds UpperCAmelCase = pipe( **lowercase , decoder_latents=lowercase , super_res_latents=lowercase , image_embeddings=lowercase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def A ( self : Any ): '''simple docstring''' UpperCAmelCase = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCAmelCase = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase , expected_max_diff=lowercase ) @skip_mps def A ( self : int ): '''simple docstring''' UpperCAmelCase = torch_device == '''cpu''' UpperCAmelCase = True UpperCAmelCase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=lowercase , relax_max_difference=lowercase , additional_params_copy_to_batched_inputs=lowercase , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCAmelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase , additional_params_copy_to_batched_inputs=lowercase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase ) @skip_mps def A ( self : Any ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def A ( self : List[str] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def A ( self : Tuple ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): '''simple docstring''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) UpperCAmelCase = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipeline( lowercase , generator=lowercase , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowercase , lowercase , 15 )
34
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowercase = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] __lowercase = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] __lowercase = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) __lowercase = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) __lowercase = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for tf_name, hf_name in patterns: __UpperCamelCase :Optional[Any] = k.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return k def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = torch_model.state_dict() __UpperCamelCase :Optional[Any] = {} # separating decoder weights __UpperCamelCase :int = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __UpperCamelCase :Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): __UpperCamelCase :List[Any] = [k.endswith(SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE ): continue __UpperCamelCase :Union[str, Any] = DECODER_PATTERNS __UpperCamelCase :Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __UpperCamelCase :List[str] = v.T __UpperCamelCase :Any = torch.from_numpy(SCREAMING_SNAKE_CASE ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): __UpperCamelCase :int = [k.endswith(SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE ): continue __UpperCamelCase :List[str] = REMAINING_PATTERNS __UpperCamelCase :Optional[int] = rename_state_dict_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __UpperCamelCase :List[Any] = v.T __UpperCamelCase :str = torch.from_numpy(SCREAMING_SNAKE_CASE ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __UpperCamelCase :Optional[int] = mapping['''model.embed_positions.weight'''] __UpperCamelCase :Optional[Any] = mapping.pop('''model.embed_positions.weight''' ) __UpperCamelCase :List[Any] = torch_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = {} __UpperCamelCase :Optional[Any] = ['''global_step'''] for name, shape in tqdm(SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): __UpperCamelCase :Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase :List[Any] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = array return tf_weights def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowercase = parser.parse_args() __lowercase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
350
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowercase = '''bert-base-cased''' __lowercase = '''google/pegasus-xsum''' __lowercase = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __lowercase = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __lowercase = '''patrickvonplaten/t5-tiny-random''' __lowercase = '''sshleifer/bart-tiny-random''' __lowercase = '''sshleifer/tiny-mbart''' __lowercase = '''sshleifer/tiny-marian-en-de''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.source""" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.target""" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :List[Any] = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Optional[int] = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :int = 4 __UpperCamelCase :Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCamelCase , __UpperCamelCase :Tuple = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __UpperCamelCase :str = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , ) __UpperCamelCase :Any = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(__lowercase , __lowercase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCamelCase :Optional[int] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :int = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Dict = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :Union[str, Any] = 4 __UpperCamelCase :List[str] = LegacySeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=20 , max_target_length=__lowercase , ) __UpperCamelCase :Dict = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') __UpperCamelCase :Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __UpperCamelCase :str = tmp_dir.joinpath('''train.source''').open().readlines() __UpperCamelCase :int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(__lowercase , __lowercase , 128 , __lowercase) __UpperCamelCase :Union[str, Any] = {x.name for x in tmp_dir.iterdir()} __UpperCamelCase :int = {x.name for x in save_dir.iterdir()} __UpperCamelCase :Optional[int] = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowercase) < len(__lowercase) assert len(__lowercase) == 1 assert len(packed_examples[0]) == sum(len(__lowercase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def UpperCamelCase__ ( self) -> List[Any]: if not FAIRSEQ_AVAILABLE: return __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = self._get_dataset(max_len=64) __UpperCamelCase :Union[str, Any] = 64 __UpperCamelCase :Tuple = ds.make_dynamic_sampler(__lowercase , required_batch_size_multiple=__lowercase) __UpperCamelCase :List[str] = [len(__lowercase) for x in batch_sampler] assert len(set(__lowercase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowercase) == len(__lowercase) # no dropped or added examples __UpperCamelCase :int = DataLoader(__lowercase , batch_sampler=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :List[str] = [] __UpperCamelCase :int = [] for batch in data_loader: __UpperCamelCase :List[Any] = batch['''input_ids'''].shape __UpperCamelCase :Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCamelCase :Optional[int] = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(__lowercase) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowercase) assert num_src_per_batch[0] == max(__lowercase) if failures: raise AssertionError(f"""too many tokens in {len(__lowercase)} batches""") def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = self._get_dataset(max_len=512) __UpperCamelCase :Any = 2 __UpperCamelCase :List[Any] = ds.make_sortish_sampler(__lowercase , shuffle=__lowercase) __UpperCamelCase :List[Any] = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :Tuple = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowercase) __UpperCamelCase :int = tokenizer.pad_token_id def count_pad_tokens(__lowercase , __lowercase="input_ids"): return [batch[k].eq(__lowercase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowercase , k='''labels''')) < sum(count_pad_tokens(__lowercase , k='''labels''')) assert sum(count_pad_tokens(__lowercase)) < sum(count_pad_tokens(__lowercase)) assert len(__lowercase) == len(__lowercase) def UpperCamelCase__ ( self , __lowercase=1_000 , __lowercase=128) -> List[Any]: if os.getenv('''USE_REAL_DATA''' , __lowercase): __UpperCamelCase :Optional[Any] = '''examples/seq2seq/wmt_en_ro''' __UpperCamelCase :Dict = max_len * 2 * 64 if not Path(__lowercase).joinpath('''train.len''').exists(): save_len_file(__lowercase , __lowercase) else: __UpperCamelCase :Union[str, Any] = '''examples/seq2seq/test_data/wmt_en_ro''' __UpperCamelCase :Optional[int] = max_len * 4 save_len_file(__lowercase , __lowercase) __UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :List[Any] = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , n_obs=__lowercase , ) return ds, max_tokens, tokenizer def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._get_dataset() __UpperCamelCase :List[str] = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowercase)) __UpperCamelCase :Tuple = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowercase)) assert idsa.intersection(__lowercase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) if tok_name == MBART_TINY: __UpperCamelCase :Optional[Any] = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __UpperCamelCase :Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCamelCase :Tuple = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __UpperCamelCase :Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowercase) == 1 if tok_name == BART_TINY else len(__lowercase) == 0
105
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class snake_case_ ( __A ): __A : Dict = "M-CLIP" def __init__( self : Union[str, Any] , lowercase_ : Optional[Any]=10_24 , lowercase_ : Optional[int]=7_68 , **lowercase_ : Tuple ) -> Optional[int]: lowercase__ : Tuple = transformerDimSize lowercase__ : Union[str, Any] = imageDimSize super().__init__(**lowercase_ ) class snake_case_ ( __A ): __A : int = MCLIPConfig def __init__( self : int , lowercase_ : Any , *lowercase_ : Dict , **lowercase_ : Dict ) -> Any: super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) lowercase__ : Dict = XLMRobertaModel(lowercase_ ) lowercase__ : Optional[int] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any ) -> str: lowercase__ : Dict = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] lowercase__ : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
87
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Union[str, Any] = LEDTokenizer __A : Union[str, Any] = LEDTokenizerFast __A : Optional[Any] = True def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().setUp() lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Tuple = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : int , **lowercase_ : str ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Any ) -> Tuple: return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def __UpperCamelCase ( self : Tuple ) -> int: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowercase_ ) self.assertIn("attention_mask" , lowercase_ ) self.assertNotIn("labels" , lowercase_ ) self.assertNotIn("decoder_attention_mask" , lowercase_ ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Dict = tokenizer(text_target=lowercase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowercase_ , truncation=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Union[str, Any] = ["A long paragraph for summarization."] lowercase__ : List[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer(lowercase_ , return_tensors="pt" ) lowercase__ : Dict = tokenizer(text_target=lowercase_ , return_tensors="pt" ) lowercase__ : Optional[int] = inputs["input_ids"] lowercase__ : str = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : int = ["Summary of the text.", "Another summary."] lowercase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Tuple = tokenizer(lowercase_ , padding=lowercase_ ) lowercase__ : int = [[0] * len(lowercase_ ) for x in encoded_output["input_ids"]] lowercase__ : Any = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[Any] = "A, <mask> AllenNLP sentence." lowercase__ : Tuple = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
87
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( __lowerCAmelCase , padding="longest" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) UpperCamelCase = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , __lowerCAmelCase ) == "1": UpperCamelCase = 2 # Initialize accelerator UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["lr"] UpperCamelCase = int(config["num_epochs"] ) UpperCamelCase = int(config["seed"] ) UpperCamelCase = int(config["batch_size"] ) UpperCamelCase = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) UpperCamelCase , UpperCamelCase = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**__lowerCAmelCase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCamelCase = 0 for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**__lowerCAmelCase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __lowerCAmelCase ) def a__ ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
371
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=_SCREAMING_SNAKE_CASE , all_configs=_SCREAMING_SNAKE_CASE , save_infos=_SCREAMING_SNAKE_CASE ) UpperCamelCase = TestCommand(*_SCREAMING_SNAKE_CASE ) test_command.run() UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "README.md" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict.from_directory(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_351_563, "num_examples": 10_000, }, { "name": "validation", "num_bytes": 238_418, "num_examples": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["default"] , _SCREAMING_SNAKE_CASE ), getattr(expected_dataset_infos["default"] , _SCREAMING_SNAKE_CASE ) if key == "num_bytes": assert is_apercent_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif key == "splits": assert list(_SCREAMING_SNAKE_CASE ) == list(_SCREAMING_SNAKE_CASE ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
244
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Tuple = prime_factors(_lowerCAmelCase ) if is_square_free(_lowerCAmelCase ): return -1 if len(_lowerCAmelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
77
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = (DPMSolverSDEScheduler,) __lowercase = 10 def UpperCAmelCase_ ( self :List[Any] , **lowercase_ :Optional[int] )-> str: A__ = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self :int )-> Dict: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self :Any )-> Optional[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[int] )-> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type="v_prediction" ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[int] )-> List[str]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCAmelCase_ ( self :Tuple )-> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
237
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): lowerCAmelCase_ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ = PandasConfig def _snake_case ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase_ : List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): lowercase_ : Optional[Any] = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase_ : Any = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase_ : Dict = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase_ : List[str] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase_ : str = table_cast(__SCREAMING_SNAKE_CASE , self.config.features.arrow_schema ) return pa_table def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: lowercase_ : Dict = pa.Table.from_pandas(pd.read_pickle(__SCREAMING_SNAKE_CASE ) ) yield i, self._cast_table(__SCREAMING_SNAKE_CASE )
362
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowercase : Tuple = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = super().to_dict() for k, v in d.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = v.to_dict() return d
264
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE :str = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[int] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
'''simple docstring''' import string from math import logaa def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _UpperCAmelCase = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> tuple[int, int]: '''simple docstring''' _UpperCAmelCase = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("\n" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
22
1
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a_ ( _lowercase , _lowercase , _lowercase ): if isinstance(_lowercase , torch.Tensor ): return image elif isinstance(_lowercase , PIL.Image.Image ): _UpperCamelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _UpperCamelCase : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _UpperCamelCase : Optional[int] = np.concatenate(_lowercase , axis=0 ) _UpperCamelCase : Optional[Any] = np.array(_lowercase ).astype(np.floataa ) / 255.0 _UpperCamelCase : str = image.transpose(0 , 3 , 1 , 2 ) _UpperCamelCase : int = 2.0 * image - 1.0 _UpperCamelCase : List[Any] = torch.from_numpy(_lowercase ) elif isinstance(image[0] , torch.Tensor ): _UpperCamelCase : str = torch.cat(_lowercase , dim=0 ) return image def a_ ( _lowercase , _lowercase , _lowercase , _lowercase=0.9995 ): if not isinstance(_lowercase , np.ndarray ): _UpperCamelCase : Any = True _UpperCamelCase : Optional[int] = va.device _UpperCamelCase : Optional[int] = va.cpu().numpy() _UpperCamelCase : Tuple = va.cpu().numpy() _UpperCamelCase : Optional[Any] = np.sum(va * va / (np.linalg.norm(_lowercase ) * np.linalg.norm(_lowercase )) ) if np.abs(_lowercase ) > DOT_THRESHOLD: _UpperCamelCase : Tuple = (1 - t) * va + t * va else: _UpperCamelCase : Any = np.arccos(_lowercase ) _UpperCamelCase : str = np.sin(_lowercase ) _UpperCamelCase : Optional[int] = theta_a * t _UpperCamelCase : Dict = np.sin(_lowercase ) _UpperCamelCase : Dict = np.sin(theta_a - theta_t ) / sin_theta_a _UpperCamelCase : str = sin_theta_t / sin_theta_a _UpperCamelCase : Tuple = sa * va + sa * va if inputs_are_torch: _UpperCamelCase : Optional[int] = torch.from_numpy(_lowercase ).to(_lowercase ) return va def a_ ( _lowercase , _lowercase ): _UpperCamelCase : Union[str, Any] = F.normalize(_lowercase , dim=-1 ) _UpperCamelCase : Tuple = F.normalize(_lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a_ ( _lowercase , _lowercase ): for param in model.parameters(): _UpperCamelCase : Tuple = value class _a ( _lowerCAmelCase ): def __init__( self : List[Any], lowerCAmelCase__ : AutoencoderKL, lowerCAmelCase__ : CLIPTextModel, lowerCAmelCase__ : CLIPModel, lowerCAmelCase__ : CLIPTokenizer, lowerCAmelCase__ : UNetaDConditionModel, lowerCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], lowerCAmelCase__ : CLIPFeatureExtractor, lowerCAmelCase__ : List[str]=None, lowerCAmelCase__ : List[str]=None, lowerCAmelCase__ : Any=None, ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, clip_model=lowerCAmelCase__, tokenizer=lowerCAmelCase__, unet=lowerCAmelCase__, scheduler=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, coca_model=lowerCAmelCase__, coca_tokenizer=lowerCAmelCase__, coca_transform=lowerCAmelCase__, ) _UpperCamelCase : Optional[int] = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCAmelCase__ ) else feature_extractor.size['''shortest_edge'''] ) _UpperCamelCase : List[str] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, lowerCAmelCase__ ) set_requires_grad(self.clip_model, lowerCAmelCase__ ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def snake_case ( self : Tuple ) -> Tuple: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) def snake_case ( self : int ) -> Tuple: '''simple docstring''' set_requires_grad(self.vae, lowerCAmelCase__ ) def snake_case ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' set_requires_grad(self.vae, lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' set_requires_grad(self.unet, lowerCAmelCase__ ) def snake_case ( self : Any ) -> Tuple: '''simple docstring''' set_requires_grad(self.unet, lowerCAmelCase__ ) def snake_case ( self : Optional[int], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[str] = min(int(num_inference_steps * strength ), lowerCAmelCase__ ) _UpperCamelCase : Tuple = max(num_inference_steps - init_timestep, 0 ) _UpperCamelCase : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self : str, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Dict, lowerCAmelCase__ : int, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : int=None ) -> List[str]: '''simple docstring''' if not isinstance(lowerCAmelCase__, torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase__ )}""" ) _UpperCamelCase : Dict = image.to(device=lowerCAmelCase__, dtype=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): _UpperCamelCase : Union[str, Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase__ ) ] _UpperCamelCase : Dict = torch.cat(lowerCAmelCase__, dim=0 ) else: _UpperCamelCase : Any = self.vae.encode(lowerCAmelCase__ ).latent_dist.sample(lowerCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase : List[str] = 0.18_215 * init_latents _UpperCamelCase : Union[str, Any] = init_latents.repeat_interleave(lowerCAmelCase__, dim=0 ) _UpperCamelCase : Optional[int] = randn_tensor(init_latents.shape, generator=lowerCAmelCase__, device=lowerCAmelCase__, dtype=lowerCAmelCase__ ) # get latents _UpperCamelCase : str = self.scheduler.add_noise(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = init_latents return latents def snake_case ( self : str, lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = self.coca_transform(lowerCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCamelCase : int = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) _UpperCamelCase : List[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''', '''''' ).rstrip(''' .,''' ) def snake_case ( self : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.feature_extractor.preprocess(lowerCAmelCase__ ) _UpperCamelCase : str = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _UpperCamelCase : Tuple = self.clip_model.get_image_features(lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCAmelCase__ ) _UpperCamelCase : Tuple = image_embeddings_clip.repeat_interleave(lowerCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case ( self : Any, lowerCAmelCase__ : int, lowerCAmelCase__ : int, lowerCAmelCase__ : List[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Any, ) -> List[str]: '''simple docstring''' _UpperCamelCase : List[Any] = latents.detach().requires_grad_() _UpperCamelCase : Any = self.scheduler.scale_model_input(lowerCAmelCase__, lowerCAmelCase__ ) # predict the noise residual _UpperCamelCase : Optional[Any] = self.unet(lowerCAmelCase__, lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _UpperCamelCase : Dict = self.scheduler.alphas_cumprod[timestep] _UpperCamelCase : Tuple = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase : str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCamelCase : int = torch.sqrt(lowerCAmelCase__ ) _UpperCamelCase : Tuple = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCAmelCase__ ): _UpperCamelCase : Any = self.scheduler.sigmas[index] _UpperCamelCase : Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase : Optional[Any] = 1 / 0.18_215 * sample _UpperCamelCase : Dict = self.vae.decode(lowerCAmelCase__ ).sample _UpperCamelCase : List[str] = (image / 2 + 0.5).clamp(0, 1 ) _UpperCamelCase : str = transforms.Resize(self.feature_extractor_size )(lowerCAmelCase__ ) _UpperCamelCase : Dict = self.normalize(lowerCAmelCase__ ).to(latents.dtype ) _UpperCamelCase : Any = self.clip_model.get_image_features(lowerCAmelCase__ ) _UpperCamelCase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCAmelCase__ ) _UpperCamelCase : int = spherical_dist_loss(lowerCAmelCase__, lowerCAmelCase__ ).mean() * clip_guidance_scale _UpperCamelCase : Union[str, Any] = -torch.autograd.grad(lowerCAmelCase__, lowerCAmelCase__ )[0] if isinstance(self.scheduler, lowerCAmelCase__ ): _UpperCamelCase : int = latents.detach() + grads * (sigma**2) _UpperCamelCase : Union[str, Any] = noise_pred_original else: _UpperCamelCase : List[Any] = noise_pred_original - torch.sqrt(lowerCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Dict, lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], lowerCAmelCase__ : Optional[str] = None, lowerCAmelCase__ : Optional[str] = None, lowerCAmelCase__ : Optional[int] = 5_1_2, lowerCAmelCase__ : Optional[int] = 5_1_2, lowerCAmelCase__ : float = 0.6, lowerCAmelCase__ : Optional[int] = 5_0, lowerCAmelCase__ : Optional[float] = 7.5, lowerCAmelCase__ : Optional[int] = 1, lowerCAmelCase__ : float = 0.0, lowerCAmelCase__ : Optional[float] = 1_0_0, lowerCAmelCase__ : Optional[torch.Generator] = None, lowerCAmelCase__ : Optional[str] = "pil", lowerCAmelCase__ : bool = True, lowerCAmelCase__ : float = 0.8, lowerCAmelCase__ : float = 0.1, lowerCAmelCase__ : float = 0.1, ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__, lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(lowerCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(lowerCAmelCase__, torch.Generator ) and batch_size > 1: _UpperCamelCase : Dict = [generator] + [None] * (batch_size - 1) _UpperCamelCase : Optional[Any] = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _UpperCamelCase : List[Any] = [x[0] for x in coca_is_none if x[1]] _UpperCamelCase : int = ''', '''.join(lowerCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase__ ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _UpperCamelCase : List[Any] = self.get_image_description(lowerCAmelCase__ ) if style_prompt is None: if len(lowerCAmelCase__ ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _UpperCamelCase : Dict = self.get_image_description(lowerCAmelCase__ ) # get prompt text embeddings for content and style _UpperCamelCase : List[Any] = self.tokenizer( lowerCAmelCase__, padding='''max_length''', max_length=self.tokenizer.model_max_length, truncation=lowerCAmelCase__, return_tensors='''pt''', ) _UpperCamelCase : Any = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _UpperCamelCase : Optional[int] = self.tokenizer( lowerCAmelCase__, padding='''max_length''', max_length=self.tokenizer.model_max_length, truncation=lowerCAmelCase__, return_tensors='''pt''', ) _UpperCamelCase : Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _UpperCamelCase : str = slerp(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) # duplicate text embeddings for each generation per prompt _UpperCamelCase : List[str] = text_embeddings.repeat_interleave(lowerCAmelCase__, dim=0 ) # set timesteps _UpperCamelCase : List[str] = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _UpperCamelCase : Any = {} if accepts_offset: _UpperCamelCase : Tuple = 1 self.scheduler.set_timesteps(lowerCAmelCase__, **lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _UpperCamelCase , _UpperCamelCase : Any = self.get_timesteps(lowerCAmelCase__, lowerCAmelCase__, self.device ) _UpperCamelCase : Dict = timesteps[:1].repeat(lowerCAmelCase__ ) # Preprocess image _UpperCamelCase : Optional[int] = preprocess(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = self.prepare_latents( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, text_embeddings.dtype, self.device, lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = preprocess(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : str = self.prepare_latents( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, text_embeddings.dtype, self.device, lowerCAmelCase__ ) _UpperCamelCase : Tuple = slerp(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) if clip_guidance_scale > 0: _UpperCamelCase : List[Any] = self.get_clip_image_embeddings(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : List[Any] = self.get_clip_image_embeddings(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Any = slerp( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCamelCase : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCamelCase : Tuple = content_text_input.input_ids.shape[-1] _UpperCamelCase : Optional[Any] = self.tokenizer([''''''], padding='''max_length''', max_length=lowerCAmelCase__, return_tensors='''pt''' ) _UpperCamelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _UpperCamelCase : Optional[Any] = uncond_embeddings.repeat_interleave(lowerCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCamelCase : int = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCamelCase : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCamelCase : List[str] = torch.randn(lowerCAmelCase__, generator=lowerCAmelCase__, device='''cpu''', dtype=lowerCAmelCase__ ).to( self.device ) else: _UpperCamelCase : Any = torch.randn(lowerCAmelCase__, generator=lowerCAmelCase__, device=self.device, dtype=lowerCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _UpperCamelCase : Dict = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCamelCase : List[str] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase : Optional[Any] = {} if accepts_eta: _UpperCamelCase : Union[str, Any] = eta # check if the scheduler accepts generator _UpperCamelCase : Union[str, Any] = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _UpperCamelCase : Optional[Any] = generator with self.progress_bar(total=lowerCAmelCase__ ): for i, t in enumerate(lowerCAmelCase__ ): # expand the latents if we are doing classifier free guidance _UpperCamelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase : Any = self.scheduler.scale_model_input(lowerCAmelCase__, lowerCAmelCase__ ) # predict the noise residual _UpperCamelCase : Tuple = self.unet(lowerCAmelCase__, lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase : Union[str, Any] = noise_pred.chunk(2 ) _UpperCamelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCamelCase : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _UpperCamelCase , _UpperCamelCase : Tuple = self.cond_fn( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase : Dict = self.scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCamelCase : Dict = 1 / 0.18_215 * latents _UpperCamelCase : Union[str, Any] = self.vae.decode(lowerCAmelCase__ ).sample _UpperCamelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0, 1 ) _UpperCamelCase : Union[str, Any] = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": _UpperCamelCase : Tuple = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase__, nsfw_content_detected=lowerCAmelCase__ )
128
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[str], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Any = False super().__init__(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.image_processor def __call__( self : str, lowerCAmelCase__ : ImageInput = None, lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False, lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : int = 0, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : Optional[bool] = None, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Optional[Union[str, TensorType]] = None, **lowerCAmelCase__ : Optional[Any], ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase : int = self.tokenizer _UpperCamelCase : List[str] = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) return text_encoding # add pixel_values _UpperCamelCase : List[str] = self.image_processor(lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) else: _UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self : List[Any], *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__, **lowerCAmelCase__ ) def snake_case ( self : List[Any], *lowerCAmelCase__ : Dict, **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__, **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
128
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any]=1_3 , __UpperCAmelCase : int=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[Any]=9_9 , __UpperCAmelCase : int=3_2 , __UpperCAmelCase : Union[str, Any]=5 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : str=3_7 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : str=1_2_8 , __UpperCAmelCase : str=3_2 , __UpperCAmelCase : Any=1_6 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=None , ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : List[Any] ) -> List[Any]: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def lowercase_ (self : List[str] ) -> int: """simple docstring""" ( UpperCAmelCase__ ) = self.prepare_config_and_inputs() UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ (self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase__ = NezhaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ (self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , ) -> Any: """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = NezhaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ (self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = NezhaForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase__ = NezhaForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = NezhaForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = NezhaForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( a__ , a__ , a__ , unittest.TestCase ): __UpperCAmelCase : str = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = True def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]=False ) -> List[str]: """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def lowercase_ (self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = NezhaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowercase_ (self : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def lowercase_ (self : Optional[Any] ) -> str: """simple docstring""" ( UpperCAmelCase__ ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase_ (self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def lowercase_ (self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def lowercase_ (self : List[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase__ ) def lowercase_ (self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def lowercase_ (self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def lowercase_ (self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def lowercase_ (self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = NezhaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def lowercase_ (self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase__ = True UpperCAmelCase__ = model_class(config=lowerCAmelCase__ ) UpperCAmelCase__ = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ = torch.jit.trace( lowerCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "bert.pt" ) ) UpperCAmelCase__ = torch.jit.load(os.path.join(lowerCAmelCase__ , "bert.pt" ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict["input_ids"].to(lowerCAmelCase__ ) , inputs_dict["attention_mask"].to(lowerCAmelCase__ ) ) @require_torch class A ( unittest.TestCase ): @slow def lowercase_ (self : Any ) -> int: """simple docstring""" UpperCAmelCase__ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] UpperCAmelCase__ = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) UpperCAmelCase__ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] UpperCAmelCase__ = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) UpperCAmelCase__ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
65
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self , *, lowerCAmelCase__ = 4 , lowerCAmelCase__ = 768 , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[Any]: super().__init__() a : Tuple = nn.Parameter(torch.zeros(lowerCAmelCase__ ) ) # parameters for additional clip time embeddings a : str = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) # parameters for encoder hidden states a : int = clip_extra_context_tokens a : int = nn.Linear( lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) a : Any = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) a : str = nn.LayerNorm(lowerCAmelCase__ ) def __a ( self , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings a : str = image_embeddings.shape[0] a : Optional[int] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) a : Any = classifier_free_guidance_embeddings.expand( lowerCAmelCase__ , -1 ) a : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] a : List[str] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... a : Dict = self.embedding_proj(lowerCAmelCase__ ) a : List[str] = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ ) a : Dict = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" a : Union[str, Any] = self.clip_extra_context_tokens_proj(lowerCAmelCase__ ) a : List[str] = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens ) a : Optional[Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) a : Optional[int] = self.encoder_hidden_states_proj(lowerCAmelCase__ ) a : str = self.text_encoder_hidden_states_norm(lowerCAmelCase__ ) a : List[str] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
105
0
import numpy as np a__: Dict = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class SCREAMING_SNAKE_CASE__ : def __init__( self ): A__ = np.array(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ , A__ = np.where(letter == self.SQUARE ) A__ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCamelCase ( self,__lowerCamelCase ): A__ = message.lower() A__ = message.replace(''' ''','''''' ) A__ = message.replace('''j''','''i''' ) A__ = np.empty((2, len(__lowerCamelCase )) ) for letter_index in range(len(__lowerCamelCase ) ): A__ = self.letter_to_numbers(message[letter_index] ) A__ = numbers[0] A__ = numbers[1] A__ = first_step.reshape(2 * len(__lowerCamelCase ) ) A__ = '''''' for numbers_index in range(len(__lowerCamelCase ) ): A__ = int(second_step[numbers_index * 2] ) A__ = int(second_step[(numbers_index * 2) + 1] ) A__ = self.numbers_to_letter(__lowerCamelCase,__lowerCamelCase ) A__ = encoded_message + letter return encoded_message def UpperCamelCase ( self,__lowerCamelCase ): A__ = message.lower() message.replace(''' ''','''''' ) A__ = np.empty(2 * len(__lowerCamelCase ) ) for letter_index in range(len(__lowerCamelCase ) ): A__ = self.letter_to_numbers(message[letter_index] ) A__ = numbers[0] A__ = numbers[1] A__ = first_step.reshape((2, len(__lowerCamelCase )) ) A__ = '''''' for numbers_index in range(len(__lowerCamelCase ) ): A__ = int(second_step[0, numbers_index] ) A__ = int(second_step[1, numbers_index] ) A__ = self.numbers_to_letter(__lowerCamelCase,__lowerCamelCase ) A__ = decoded_message + letter return decoded_message
39
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): # pass variant but use the non-variant filenames A__ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A__ = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): # pass variant but use the non-variant filenames A__ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) )
39
1
class __snake_case : def __init__( self : str , A_ : Dict , A_ : Optional[int]): lowerCAmelCase_ : str = name lowerCAmelCase_ : List[Any] = val def __str__( self : List[str]): return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : List[str] , A_ : Tuple): return self.val < other.val class __snake_case : def __init__( self : int , A_ : Dict): lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Dict = self.build_heap(A_) def __getitem__( self : List[str] , A_ : List[Any]): return self.get_value(A_) def UpperCAmelCase__ ( self : List[Any] , A_ : str): return (idx - 1) // 2 def UpperCAmelCase__ ( self : int , A_ : List[str]): return idx * 2 + 1 def UpperCAmelCase__ ( self : str , A_ : List[Any]): return idx * 2 + 2 def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple): return self.heap_dict[key] def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Dict = len(A_) - 1 lowerCAmelCase_ : List[Any] = self.get_parent_idx(A_) for idx, i in enumerate(A_): lowerCAmelCase_ : List[str] = idx lowerCAmelCase_ : Any = i.val for i in range(A_ , -1 , -1): self.sift_down(A_ , A_) return array def UpperCAmelCase__ ( self : List[str] , A_ : int , A_ : Tuple): while True: lowerCAmelCase_ : Union[str, Any] = self.get_left_child_idx(A_) # noqa: E741 lowerCAmelCase_ : int = self.get_right_child_idx(A_) lowerCAmelCase_ : int = idx if l < len(A_) and array[l] < array[idx]: lowerCAmelCase_ : Any = l if r < len(A_) and array[r] < array[smallest]: lowerCAmelCase_ : List[str] = r if smallest != idx: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = array[smallest], array[idx] ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase_ : Union[str, Any] = smallest else: break def UpperCAmelCase__ ( self : Tuple , A_ : List[str]): lowerCAmelCase_ : Any = self.get_parent_idx(A_) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.heap[idx], self.heap[p] lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase_ : int = p lowerCAmelCase_ : Tuple = self.get_parent_idx(A_) def UpperCAmelCase__ ( self : Optional[Any]): return self.heap[0] def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.heap[-1], self.heap[0] lowerCAmelCase_ , lowerCAmelCase_ : Any = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase_ : int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def UpperCAmelCase__ ( self : Any , A_ : Any): self.heap.append(A_) lowerCAmelCase_ : Optional[int] = len(self.heap) - 1 lowerCAmelCase_ : Optional[int] = node.val self.sift_up(len(self.heap) - 1) def UpperCAmelCase__ ( self : List[Any]): return len(self.heap) == 0 def UpperCAmelCase__ ( self : Optional[int] , A_ : Optional[Any] , A_ : int): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase_ : Tuple = new_value lowerCAmelCase_ : Tuple = new_value self.sift_up(self.idx_of_element[node]) A__ : List[str] = Node('''R''', -1) A__ : Optional[Any] = Node('''B''', 6) A__ : List[str] = Node('''A''', 3) A__ : Optional[Any] = Node('''X''', 1) A__ : Tuple = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A__ : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
103
lowerCamelCase_ = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''', '''mask_image''']) lowerCamelCase_ = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''example_image''', '''image''', '''mask_image''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset(['''input_tokens''']) lowerCamelCase_ = frozenset(['''input_tokens'''])
244
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __A , __A=7 , __A=3 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , __A=True , __A=1 / 255 , __A=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase_ :Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCAmelCase_ :str = parent lowerCAmelCase_ :Optional[int] = batch_size lowerCAmelCase_ :Union[str, Any] = num_channels lowerCAmelCase_ :str = min_resolution lowerCAmelCase_ :str = max_resolution lowerCAmelCase_ :Optional[int] = do_resize lowerCAmelCase_ :Dict = size lowerCAmelCase_ :str = do_normalize lowerCAmelCase_ :int = image_mean lowerCAmelCase_ :Any = image_std lowerCAmelCase_ :str = do_rescale lowerCAmelCase_ :str = rescale_factor lowerCAmelCase_ :int = do_pad def __lowerCAmelCase ( self ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self , __A , __A=False ) -> Any: if not batched: lowerCAmelCase_ :Union[str, Any] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): lowerCAmelCase_ :Optional[Any] = image.size else: lowerCAmelCase_ :Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ :str = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase_ :Dict = self.size["shortest_edge"] elif w > h: lowerCAmelCase_ :Optional[int] = self.size["shortest_edge"] lowerCAmelCase_ :Optional[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase_ :int = self.size["shortest_edge"] lowerCAmelCase_ :Optional[Any] = self.size["shortest_edge"] else: lowerCAmelCase_ :List[str] = [] for image in image_inputs: lowerCAmelCase_ :Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ :List[Any] = max(lowerCAmelCase__ , key=lambda __A : item[0] )[0] lowerCAmelCase_ :Tuple = max(lowerCAmelCase__ , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( a__ , unittest.TestCase ): UpperCAmelCase_ :Optional[Any] = DetaImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Any = DetaImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def __lowerCAmelCase ( self ) -> str: pass def __lowerCAmelCase ( self ) -> Any: # Initialize image_processing lowerCAmelCase_ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowerCAmelCase_ :str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ :Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ :Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) lowerCAmelCase_ :Tuple = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ) -> Optional[Any]: # Initialize image_processing lowerCAmelCase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input lowerCAmelCase_ :Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ :List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ :Tuple = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ :Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ) -> int: # Initialize image_processing lowerCAmelCase_ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input lowerCAmelCase_ :Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ :Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ :str = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ :Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCAmelCase ( self ) -> str: # prepare image and target lowerCAmelCase_ :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase_ :int = json.loads(f.read() ) lowerCAmelCase_ :List[str] = {"image_id": 3_9769, "annotations": target} # encode them lowerCAmelCase_ :Dict = DetaImageProcessor() lowerCAmelCase_ :Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase_ :Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase__ ) lowerCAmelCase_ :Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area lowerCAmelCase_ :Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase__ ) ) # verify boxes lowerCAmelCase_ :Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase__ ) lowerCAmelCase_ :List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ :Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase__ ) ) # verify is_crowd lowerCAmelCase_ :Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase__ ) ) # verify class_labels lowerCAmelCase_ :str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase__ ) ) # verify orig_size lowerCAmelCase_ :int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase__ ) ) # verify size lowerCAmelCase_ :List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase__ ) ) @slow def __lowerCAmelCase ( self ) -> Any: # prepare image, target and masks_path lowerCAmelCase_ :Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase_ :Dict = json.loads(f.read() ) lowerCAmelCase_ :Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowerCAmelCase_ :Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase_ :List[Any] = DetaImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase_ :Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase_ :Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase__ ) lowerCAmelCase_ :Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area lowerCAmelCase_ :str = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase__ ) ) # verify boxes lowerCAmelCase_ :Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase__ ) lowerCAmelCase_ :List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ :Optional[int] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase__ ) ) # verify is_crowd lowerCAmelCase_ :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase__ ) ) # verify class_labels lowerCAmelCase_ :Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase__ ) ) # verify masks lowerCAmelCase_ :Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase__ ) # verify orig_size lowerCAmelCase_ :Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase__ ) ) # verify size lowerCAmelCase_ :Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase__ ) )
362
"""simple docstring""" import os from math import logaa def _snake_case ( lowercase__ : str = "base_exp.txt" ) -> int: '''simple docstring''' lowerCAmelCase_ :float = 0 lowerCAmelCase_ :Union[str, Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = list(map(lowercase__ , line.split(""",""" ) ) ) if x * logaa(lowercase__ ) > largest: lowerCAmelCase_ :Any = x * logaa(lowercase__ ) lowerCAmelCase_ :List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
1
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __a ( ): UpperCAmelCase_ : int = HfArgumentParser(_a ) UpperCAmelCase_ : List[str] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(args=_a ) try: UpperCAmelCase_ : Dict = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : Union[str, Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : Any = ''' '''.join(str(_a ).split(" " )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Any = eval(str(_a ).split(" " )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_a ) if len(_a ) > 0: UpperCAmelCase_ : Optional[int] = full_error_msg + begin_error_msg + str(_a ) raise ValueError(_a ) benchmark.run() if __name__ == "__main__": main()
61
"""simple docstring""" import numpy as np def __lowercase ( _a ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
264
0
'''simple docstring''' import math import os import sys def __lowerCamelCase ( __snake_case : str ) -> str: """simple docstring""" A__ : List[Any] ="""""" try: with open(__snake_case, """rb""" ) as binary_file: A__ : str =binary_file.read() for dat in data: A__ : Optional[Any] =f"{dat:08b}" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def __lowerCamelCase ( __snake_case : dict[str, str], __snake_case : str, __snake_case : int, __snake_case : str ) -> None: """simple docstring""" lexicon.pop(__snake_case ) A__ : Optional[Any] =last_match_id if math.loga(__snake_case ).is_integer(): for curr_key in lexicon: A__ : str ="""0""" + lexicon[curr_key] A__ : Dict =bin(__snake_case )[2:] def __lowerCamelCase ( __snake_case : str ) -> str: """simple docstring""" A__ : Union[str, Any] ={"""0""": """0""", """1""": """1"""} A__ , A__ : Union[str, Any] ="""""", """""" A__ : Any =len(__snake_case ) for i in range(len(__snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A__ : Tuple =lexicon[curr_string] result += last_match_id add_key_to_lexicon(__snake_case, __snake_case, __snake_case, __snake_case ) index += 1 A__ : Any ="""""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": A__ : int =lexicon[curr_string] result += last_match_id return result def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str: """simple docstring""" A__ : Dict =os.path.getsize(__snake_case ) A__ : Union[str, Any] =bin(__snake_case )[2:] A__ : Optional[Any] =len(__snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> None: """simple docstring""" A__ : Optional[Any] =8 try: with open(__snake_case, """wb""" ) as opened_file: A__ : str =[ to_write[i : i + byte_length] for i in range(0, len(__snake_case ), __snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__snake_case, 2 ).to_bytes(1, byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> None: """simple docstring""" A__ : str =read_file_binary(__snake_case ) A__ : str =compress_data(__snake_case ) A__ : str =add_file_length(__snake_case, __snake_case ) write_file_binary(__snake_case, __snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
136
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: A__ : List[Any] ={} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A__ : str =truncation A__ : Optional[int] =tokenize_kwargs A__ : List[Any] ={} if return_tensors is not None: A__ : Any =return_tensors return preprocess_params, {}, postprocess_params def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> Dict[str, GenericTensor]: '''simple docstring''' A__ : List[str] =self.framework A__ : Union[str, Any] =self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) return model_inputs def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.model(**lowerCAmelCase_ ) return model_outputs def lowercase__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False ) -> List[Any]: '''simple docstring''' # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : int , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
136
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase : Dict =TypeVar("""T""") class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = data UpperCamelCase_ = None def __str__( self ): '''simple docstring''' return F"""{self.data}""" class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCamelCase_ = None def __iter__( self ): '''simple docstring''' UpperCamelCase_ = self.top while node: yield node.data UpperCamelCase_ = node.next def __str__( self ): '''simple docstring''' return "->".join([str(snake_case__ ) for item in self] ) def __len__( self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def _lowerCamelCase ( self ): '''simple docstring''' return self.top is None def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = Node(snake_case__ ) if not self.is_empty(): UpperCamelCase_ = self.top UpperCamelCase_ = node def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , snake_case__ ) UpperCamelCase_ = self.top UpperCamelCase_ = self.top.next return pop_node.data def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = None if __name__ == "__main__": from doctest import testmod testmod()
128
UpperCAmelCase : Optional[Any] ={ """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
128
1
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case ,snake_case : Optional[int] = array[indexa], array[indexa] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' if length > 1: snake_case : Optional[Any] = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: '''simple docstring''' if length > 1: snake_case : Union[str, Any] = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
370
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=99 , UpperCamelCase__ : str=16 , UpperCamelCase__ : Dict=36 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = parent snake_case : str = batch_size snake_case : Optional[Any] = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_input_mask snake_case : List[Any] = use_token_type_ids snake_case : Tuple = use_labels snake_case : Optional[Any] = vocab_size snake_case : List[Any] = embedding_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : Union[str, Any] = num_hidden_groups snake_case : List[str] = num_attention_heads snake_case : Any = intermediate_size snake_case : List[Any] = hidden_act snake_case : List[str] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : List[Any] = type_sequence_label_size snake_case : List[Any] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Optional[Any] = num_choices snake_case : Optional[int] = scope def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Optional[int] = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Union[str, Any] = None snake_case : List[Any] = None snake_case : int = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[int] = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) snake_case : str = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" snake_case : Optional[Any] = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : str = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" snake_case : int = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[int] = self.num_labels snake_case : List[str] = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" snake_case : Tuple = self.num_labels snake_case : int = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" snake_case : int = self.num_choices snake_case : List[Any] = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Union[str, Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) : List[str] = config_and_inputs snake_case : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = True def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Any = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): snake_case : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : Any = AlbertModelTester(self ) snake_case : Any = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[Any] = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' ) snake_case : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] snake_case : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) snake_case : Any = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
83
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "BlipImageProcessor" UpperCamelCase__ = "AutoTokenizer" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" super().__init__(UpperCAmelCase , UpperCAmelCase ) # add QFormer tokenizer _UpperCAmelCase = qformer_tokenizer def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _UpperCAmelCase = BatchFeature() if text is not None: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) encoding.update(UpperCAmelCase ) _UpperCAmelCase = self.qformer_tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) _UpperCAmelCase = qformer_text_encoding.pop('input_ids' ) _UpperCAmelCase = qformer_text_encoding.pop('attention_mask' ) if images is not None: _UpperCAmelCase = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) encoding.update(UpperCAmelCase ) return encoding def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase ( self , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" if os.path.isfile(UpperCAmelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase ) return super().save_pretrained(UpperCAmelCase , **UpperCAmelCase ) @classmethod def UpperCamelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , subfolder='qformer_tokenizer' ) _UpperCAmelCase = cls._get_arguments_from_pretrained(UpperCAmelCase , **UpperCAmelCase ) args.append(UpperCAmelCase ) return cls(*UpperCAmelCase )
39
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
1
from timeit import timeit _lowerCamelCase : Any = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Any = len(UpperCamelCase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : int = len(UpperCamelCase_ ) // 2 _lowerCAmelCase : Optional[Any] = len(UpperCamelCase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCamelCase_ ) ) def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' if len(UpperCamelCase_ ) <= 2: return True if s[0] == s[len(UpperCamelCase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' return s == s[::-1] def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"all({name}(key) is value for key, value in test_data.items())" _lowerCAmelCase : Tuple = F"from __main__ import test_data, {name}" _lowerCAmelCase : Dict = 500000 _lowerCAmelCase : Optional[Any] = timeit(stmt=UpperCamelCase_ , setup=UpperCamelCase_ , number=UpperCamelCase_ ) print(F"{name:<35} finished {number:,} runs in {result:.5f} seconds" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
355
_lowerCamelCase : List[Any] = tuple[float, float, float] _lowerCamelCase : Tuple = tuple[float, float, float] def _UpperCAmelCase (UpperCamelCase_ : Pointad , UpperCamelCase_ : Pointad ): '''simple docstring''' _lowerCAmelCase : Tuple = end_pointa[0] - end_pointa[0] _lowerCAmelCase : str = end_pointa[1] - end_pointa[1] _lowerCAmelCase : List[Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCAmelCase (UpperCamelCase_ : Vectorad , UpperCamelCase_ : Vectorad ): '''simple docstring''' _lowerCAmelCase : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowerCAmelCase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowerCAmelCase : List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCAmelCase (UpperCamelCase_ : Vectorad , UpperCamelCase_ : int ): '''simple docstring''' return tuple(round(UpperCamelCase_ , UpperCamelCase_ ) for x in vector ) == (0, 0, 0) def _UpperCAmelCase (UpperCamelCase_ : Pointad , UpperCamelCase_ : Pointad , UpperCamelCase_ : Pointad , UpperCamelCase_ : int = 10 ): '''simple docstring''' _lowerCAmelCase : Any = create_vector(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = create_vector(UpperCamelCase_ , UpperCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
159
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __lowercase ( __lowercase ) -> Dict: '''simple docstring''' _A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def __lowercase ( __lowercase ) -> List[Any]: '''simple docstring''' _A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _A = s_dict.pop(__lowercase ) elif "subsample" in key: _A = s_dict.pop(__lowercase ) def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' _A , _A = emb.weight.shape _A = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _A = emb.weight.data return lin_layer def __lowercase ( __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _A = torch.load(__lowercase , map_location="cpu" ) _A = mam_aaa["args"] _A = mam_aaa["model"] _A = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(__lowercase ) rename_keys(__lowercase ) _A = state_dict["decoder.embed_tokens.weight"].shape[0] _A = args.share_decoder_input_output_embed _A = [int(__lowercase ) for i in args.conv_kernel_sizes.split("," )] _A = SpeechaTextConfig( vocab_size=__lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(__lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowercase , num_beams=5 , max_length=200 , use_cache=__lowercase , decoder_start_token_id=2 , early_stopping=__lowercase , ) _A = SpeechaTextForConditionalGeneration(__lowercase ) _A , _A = model.model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0 and not set(__lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F''' but all the following weights are missing {missing}''' ) if tie_embeds: _A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _A = lm_head_weights model.save_pretrained(__lowercase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCamelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
79
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __snake_case = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class lowercase__ : A__ : str A__ : str A__ : Optional[str] =None A__ : Optional[str] =None A__ : Optional[str] =None @dataclass(frozen=_UpperCAmelCase ) class lowercase__ : A__ : List[int] A__ : Optional[List[int]] =None A__ : Optional[List[int]] =None A__ : Optional[Union[int, float]] =None A__ : Optional[int] =None if is_torch_available(): import torch from torch.utils.data import Dataset class lowercase__ ( _UpperCAmelCase ): A__ : List[InputFeatures] def __init__( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str=False , UpperCAmelCase_ : bool = False , ): SCREAMING_SNAKE_CASE__ = hans_processors[task]() SCREAMING_SNAKE_CASE__ = os.path.join( UpperCAmelCase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) , UpperCAmelCase_ , ) , ) SCREAMING_SNAKE_CASE__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + '.lock' with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE__ = torch.load(UpperCAmelCase_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE__ = ( processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) ) logger.info('Training examples: %s' , len(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info('Saving features into cached file %s' , UpperCAmelCase_ ) torch.save(self.features , UpperCAmelCase_ ) def __len__( self : str ): return len(self.features ) def __getitem__( self : List[Any] , UpperCAmelCase_ : Union[str, Any] ): return self.features[i] def A_ ( self : Any ): return self.label_list if is_tf_available(): import tensorflow as tf class lowercase__ : A__ : List[InputFeatures] def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : bool = False , ): SCREAMING_SNAKE_CASE__ = hans_processors[task]() SCREAMING_SNAKE_CASE__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE__ = label_list SCREAMING_SNAKE_CASE__ = processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE__ = tf.data.Dataset.from_generator( UpperCAmelCase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : str ): return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): return self.features[i] def A_ ( self : Union[str, Any] ): return self.label_list class lowercase__ ( _UpperCAmelCase ): def A_ ( self : Optional[Any] , UpperCAmelCase_ : str ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Dict ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Optional[Any] ): return ["contradiction", "entailment", "neutral"] def A_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = [] for i, line in enumerate(UpperCAmelCase_ ): if i == 0: continue SCREAMING_SNAKE_CASE__ = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE__ = line[5] SCREAMING_SNAKE_CASE__ = line[6] SCREAMING_SNAKE_CASE__ = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE__ = line[0] examples.append(InputExample(guid=UpperCAmelCase_ , text_a=UpperCAmelCase_ , text_b=UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) return examples def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {label: i for i, label in enumerate(UpperCamelCase_ )} SCREAMING_SNAKE_CASE__ = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCamelCase_ ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE__ = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , truncation=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE__ = int(example.pairID ) features.append(InputFeatures(**UpperCamelCase_ , label=UpperCamelCase_ , pairID=UpperCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features __snake_case = { """hans""": 3, } __snake_case = { """hans""": HansProcessor, }
368
from __future__ import annotations class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = text, pattern SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A_ ( self : Tuple , UpperCAmelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A_ ( self : str ): # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE__ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE__ = self.mismatch_in_text(UpperCAmelCase_ ) if mismatch_index == -1: positions.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case = """ABAABA""" __snake_case = """AB""" __snake_case = BoyerMooreSearch(text, pattern) __snake_case = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
169
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=__lowerCAmelCase ) lowercase_ = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=__lowerCAmelCase ) env_command_parser(subparsers=__lowerCAmelCase ) launch_command_parser(subparsers=__lowerCAmelCase ) tpu_command_parser(subparsers=__lowerCAmelCase ) test_command_parser(subparsers=__lowerCAmelCase ) # Let's go lowercase_ = parser.parse_args() if not hasattr(__lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(__lowerCAmelCase ) if __name__ == "__main__": main()
136
"""simple docstring""" UpperCAmelCase : Optional[Any] = tuple[float, float, float] UpperCAmelCase : Optional[Any] = tuple[float, float, float] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Vectorad: '''simple docstring''' lowercase_ = end_pointa[0] - end_pointa[0] lowercase_ = end_pointa[1] - end_pointa[1] lowercase_ = end_pointa[2] - end_pointa[2] return (x, y, z) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Vectorad: '''simple docstring''' lowercase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> bool: '''simple docstring''' return tuple(round(__lowerCAmelCase , __lowerCAmelCase ) for x in vector ) == (0, 0, 0) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10 ) -> bool: '''simple docstring''' lowercase_ = create_vector(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = create_vector(__lowerCAmelCase , __lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
136
1
from __future__ import annotations import os from collections.abc import Mapping UpperCAmelCase__ = tuple[int, int] class __lowerCAmelCase : def __init__( self : List[Any] , A : set[int] , A : Mapping[EdgeT, int]) -> None: """simple docstring""" _UpperCAmelCase = vertices _UpperCAmelCase = { (min(A), max(A)): weight for edge, weight in edges.items() } def _lowerCamelCase ( self : Tuple , A : EdgeT , A : int) -> None: """simple docstring""" self.vertices.add(edge[0]) self.vertices.add(edge[1]) _UpperCAmelCase = weight def _lowerCamelCase ( self : Tuple) -> Graph: """simple docstring""" _UpperCAmelCase = Graph({min(self.vertices)} , {}) _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 while len(subgraph.vertices) < len(self.vertices): _UpperCAmelCase = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _UpperCAmelCase = edge _UpperCAmelCase = weight subgraph.add_edge(A , A) return subgraph def A ( _UpperCAmelCase : str = "p107_network.txt" ) -> int: '''simple docstring''' _UpperCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 with open(_UpperCAmelCase ) as f: _UpperCAmelCase = f.read().strip().split('\n' ) _UpperCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": _UpperCAmelCase = int(adjaceny_matrix[edgea][edgea] ) _UpperCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) _UpperCAmelCase = graph.prims_algorithm() _UpperCAmelCase = sum(graph.edges.values() ) _UpperCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
290
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPFeatureExtractor"] UpperCAmelCase__ = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = """data2vec-text""" def __init__( self : Union[str, Any] , __lowerCamelCase : str=3_05_22 , __lowerCamelCase : Dict=7_68 , __lowerCamelCase : Dict=12 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=30_72 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=5_12 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=1e-12 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]="absolute" , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any , ) -> int: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class snake_case__ (_UpperCamelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
107
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') snake_case_ : Any = logging.getLogger(__name__) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase__ : lowercase__ = field(default=lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if self.train_file is not None: _UpperCamelCase : List[Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCamelCase : Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None def __call__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = 'label' if 'label' in features[0].keys() else 'labels' _UpperCamelCase : List[Any] = [feature.pop(lowerCamelCase__ ) for feature in features] _UpperCamelCase : Dict = len(lowerCamelCase__ ) _UpperCamelCase : List[str] = len(features[0]['input_ids'] ) _UpperCamelCase : List[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] _UpperCamelCase : str = list(chain(*lowerCamelCase__ ) ) _UpperCamelCase : Tuple = self.tokenizer.pad( lowerCamelCase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten _UpperCamelCase : str = {k: v.view(lowerCamelCase__ ,lowerCamelCase__ ,-1 ) for k, v in batch.items()} # Add back labels _UpperCamelCase : Optional[int] = torch.tensor(lowerCamelCase__ ,dtype=torch.intaa ) return batch def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCamelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCamelCase : Optional[int] = {} if data_args.train_file is not None: _UpperCamelCase : Tuple = data_args.train_file if data_args.validation_file is not None: _UpperCamelCase : Tuple = data_args.validation_file _UpperCamelCase : Any = data_args.train_file.split('.' )[-1] _UpperCamelCase : Union[str, Any] = load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCamelCase : List[str] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCamelCase : Any = [f'ending{i}' for i in range(4 )] _UpperCamelCase : int = 'sent1' _UpperCamelCase : List[str] = 'sent2' if data_args.max_seq_length is None: _UpperCamelCase : int = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _UpperCamelCase : int = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _UpperCamelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ ): _UpperCamelCase : str = [[context] * 4 for context in examples[context_name]] _UpperCamelCase : Optional[Any] = examples[question_header_name] _UpperCamelCase : Tuple = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out _UpperCamelCase : Optional[int] = list(chain(*UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = list(chain(*UpperCAmelCase_ ) ) # Tokenize _UpperCamelCase : Tuple = tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCamelCase : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCamelCase : Tuple = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Tuple = train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _UpperCamelCase : Union[str, Any] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCamelCase : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCamelCase : Union[str, Any] = min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) _UpperCamelCase : str = eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _UpperCamelCase : Dict = eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCamelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = eval_predictions _UpperCamelCase : List[str] = np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCamelCase : Optional[int] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: _UpperCamelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase : int = last_checkpoint _UpperCamelCase : List[str] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCamelCase : Union[str, Any] = train_result.metrics _UpperCamelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : List[Any] = trainer.evaluate() _UpperCamelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : int = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
83
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Dict = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "glpn" def __init__( self , __a=3 , __a=4 , __a=[2, 2, 2, 2] , __a=[8, 4, 2, 1] , __a=[32, 64, 160, 256] , __a=[7, 3, 3, 3] , __a=[4, 2, 2, 2] , __a=[1, 2, 5, 8] , __a=[4, 4, 4, 4] , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=0.1 , __a=1E-6 , __a=64 , __a=10 , __a=-1 , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Optional[int] = num_channels __a : Optional[int] = num_encoder_blocks __a : Tuple = depths __a : Union[str, Any] = sr_ratios __a : Tuple = hidden_sizes __a : str = patch_sizes __a : Dict = strides __a : Any = mlp_ratios __a : str = num_attention_heads __a : str = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = initializer_range __a : Any = drop_path_rate __a : int = layer_norm_eps __a : int = decoder_hidden_size __a : List[str] = max_depth __a : int = head_in_index
294
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
294
1
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ : Optional[int] =[label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): """simple docstring""" if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(_lowerCAmelCase ) ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ : Union[str, Any] =[sequences] lowerCamelCase__ : Optional[int] =[] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_lowerCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(A__ ) class A_ ( A__ ): """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase_ :Dict=ZeroShotClassificationArgumentHandler() , *lowerCamelCase_ :Any , **lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : List[str] =args_parser super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def UpperCAmelCase__ ( self :int ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase_ :Tuple ): """simple docstring""" lowerCamelCase__ : List[Any] =self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) lowerCamelCase__ : Any =self.tokenizer.eos_token try: lowerCamelCase__ : Optional[Any] =self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , ) except Exception as e: if "too short" in str(_lowerCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCamelCase__ : Union[str, Any] =self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase__ ( self :str , **lowerCamelCase_ :Any ): """simple docstring""" if kwargs.get('multi_class' , _lowerCAmelCase ) is not None: lowerCamelCase__ : Tuple =kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) lowerCamelCase__ : Dict ={} if "candidate_labels" in kwargs: lowerCamelCase__ : str =self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: lowerCamelCase__ : Optional[Any] =kwargs['hypothesis_template'] lowerCamelCase__ : Optional[Any] ={} if "multi_label" in kwargs: lowerCamelCase__ : int =kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self :int , lowerCamelCase_ :Union[str, List[str]] , *lowerCamelCase_ :Dict , **lowerCamelCase_ :Optional[Any] , ): """simple docstring""" if len(_lowerCAmelCase ) == 0: pass elif len(_lowerCAmelCase ) == 1 and "candidate_labels" not in kwargs: lowerCamelCase__ : Optional[int] =args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Dict="This example is {}." ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Dict =self._args_parser(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): lowerCamelCase__ : Dict =self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_lowerCAmelCase ) - 1, **model_input, } def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : int =inputs['candidate_label'] lowerCamelCase__ : Optional[Any] =inputs['sequence'] lowerCamelCase__ : Union[str, Any] ={k: inputs[k] for k in self.tokenizer.model_input_names} lowerCamelCase__ : Optional[Any] =self.model(**_lowerCAmelCase ) lowerCamelCase__ : List[str] ={ 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str=False ): """simple docstring""" lowerCamelCase__ : Dict =[outputs['candidate_label'] for outputs in model_outputs] lowerCamelCase__ : str =[outputs['sequence'] for outputs in model_outputs] lowerCamelCase__ : Optional[int] =np.concatenate([output['logits'].numpy() for output in model_outputs] ) lowerCamelCase__ : Optional[int] =logits.shape[0] lowerCamelCase__ : List[str] =len(_lowerCAmelCase ) lowerCamelCase__ : List[str] =N // n lowerCamelCase__ : str =logits.reshape((num_sequences, n, -1) ) if multi_label or len(_lowerCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCamelCase__ : Any =self.entailment_id lowerCamelCase__ : Union[str, Any] =-1 if entailment_id == 0 else 0 lowerCamelCase__ : int =reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCamelCase__ : str =np.exp(_lowerCAmelCase ) / np.exp(_lowerCAmelCase ).sum(-1 , keepdims=_lowerCAmelCase ) lowerCamelCase__ : int =scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCamelCase__ : Optional[int] =reshaped_outputs[..., self.entailment_id] lowerCamelCase__ : int =np.exp(_lowerCAmelCase ) / np.exp(_lowerCAmelCase ).sum(-1 , keepdims=_lowerCAmelCase ) lowerCamelCase__ : List[str] =list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
126
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
159
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] =field( default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool =field(default=A__ , metadata={"help": "Whether tp freeze the encoder."} ) lowerCamelCase : bool =field(default=A__ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowerCamelCase : Optional[str] =field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) lowerCamelCase : Optional[int] =field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : Optional[int] =field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : Optional[int] =field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) lowerCamelCase : Optional[int] =field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : Optional[int] =field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) lowerCamelCase : Optional[int] =field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) lowerCamelCase : Optional[int] =field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) lowerCamelCase : Optional[str] =field(default=A__ , metadata={"help": "Source language id for translation."} ) lowerCamelCase : Optional[str] =field(default=A__ , metadata={"help": "Target language id for translation."} ) lowerCamelCase : Optional[int] =field(default=A__ , metadata={"help": "# num_beams to use for evaluation."} ) lowerCamelCase : bool =field( default=A__ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def snake_case_ (__A : Optional[Any] , __A : Optional[int] , __A : Optional[Any] ) -> Optional[int]: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(lowercase__ , os.path.join(lowercase__ , f'''{split}_results.json''' ) ) def snake_case_ () -> Tuple: __lowerCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase : Any = parser.parse_args_into_dataclasses() check_output_dir(lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCAmelCase : Union[str, Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase__ , lowercase__ , lowercase__ ): assert hasattr(lowercase__ , lowercase__ ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(lowercase__ , lowercase__ , getattr(lowercase__ , lowercase__ ) ) __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCAmelCase : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCAmelCase : Dict = SeqaSeqDataset # Get datasets __lowerCAmelCase : Tuple = ( dataset_class( lowercase__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) __lowerCAmelCase : List[str] = ( dataset_class( lowercase__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCAmelCase : Any = ( dataset_class( lowercase__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCAmelCase : Any = ( build_compute_metrics_fn(data_args.task , lowercase__ ) if training_args.predict_with_generate else None ) __lowerCAmelCase : Tuple = SeqaSeqTrainer( model=lowercase__ , args=lowercase__ , data_args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , data_collator=SeqaSeqDataCollator( lowercase__ , lowercase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase__ , tokenizer=lowercase__ , ) __lowerCAmelCase : Union[str, Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) __lowerCAmelCase : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCAmelCase : Any = train_result.metrics __lowerCAmelCase : Union[str, Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase__ , training_args.output_dir ) all_metrics.update(lowercase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase : Any = trainer.evaluate(metric_key_prefix="""val""" ) __lowerCAmelCase : List[Any] = data_args.n_val __lowerCAmelCase : Tuple = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase__ , training_args.output_dir ) all_metrics.update(lowercase__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) __lowerCAmelCase : Optional[int] = trainer.predict(test_dataset=lowercase__ , metric_key_prefix="""test""" ) __lowerCAmelCase : Union[str, Any] = test_output.metrics __lowerCAmelCase : Dict = data_args.n_test if trainer.is_world_process_zero(): __lowerCAmelCase : List[str] = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase__ , training_args.output_dir ) all_metrics.update(lowercase__ ) if training_args.predict_with_generate: __lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) __lowerCAmelCase : str = lmap(str.strip , lowercase__ ) write_txt_file(lowercase__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def snake_case_ (__A : Tuple ) -> Dict: main() if __name__ == "__main__": main()
351
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case_ (__A : int ) -> List[Any]: random.seed(__A ) np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # ^^ safe to call this function even if cuda is not available class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , lowerCAmelCase : Iterable[torch.nn.Parameter] , lowerCAmelCase : float = 0.9999 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 0 , lowerCAmelCase : bool = False , lowerCAmelCase : Union[float, int] = 1.0 , lowerCAmelCase : Union[float, int] = 2 / 3 , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : Dict[str, Any] = None , **lowerCAmelCase : Any , ) -> List[str]: """simple docstring""" if isinstance(lowerCAmelCase , torch.nn.Module ): __lowerCAmelCase : Optional[int] = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase , standard_warn=lowerCAmelCase , ) __lowerCAmelCase : int = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __lowerCAmelCase : Optional[Any] = True if kwargs.get("""max_value""" , lowerCAmelCase ) is not None: __lowerCAmelCase : Optional[Any] = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase , standard_warn=lowerCAmelCase ) __lowerCAmelCase : Dict = kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase ) is not None: __lowerCAmelCase : Optional[int] = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase , standard_warn=lowerCAmelCase ) __lowerCAmelCase : Any = kwargs["""min_value"""] __lowerCAmelCase : Optional[Any] = list(lowerCAmelCase ) __lowerCAmelCase : Dict = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase ) is not None: __lowerCAmelCase : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase , standard_warn=lowerCAmelCase ) self.to(device=kwargs["""device"""] ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Any = decay __lowerCAmelCase : Any = min_decay __lowerCAmelCase : List[Any] = update_after_step __lowerCAmelCase : Optional[Any] = use_ema_warmup __lowerCAmelCase : Union[str, Any] = inv_gamma __lowerCAmelCase : Union[str, Any] = power __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : str = None # set in `step()` __lowerCAmelCase : int = model_cls __lowerCAmelCase : List[Any] = model_config @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Dict ) -> "EMAModel": """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = model_cls.load_config(lowerCAmelCase , return_unused_kwargs=lowerCAmelCase ) __lowerCAmelCase : Any = model_cls.from_pretrained(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = cls(model.parameters() , model_cls=lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase ) return ema_model def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) __lowerCAmelCase : Dict = self.model_cls.from_config(self.model_config ) __lowerCAmelCase : Optional[Any] = self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase ) model.register_to_config(**lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : int ) -> float: """simple docstring""" __lowerCAmelCase : Optional[int] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __lowerCAmelCase : str = 1 - (1 + step / self.inv_gamma) ** -self.power else: __lowerCAmelCase : Optional[int] = (1 + step) / (10 + step) __lowerCAmelCase : Any = min(lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay __lowerCAmelCase : Union[str, Any] = max(lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Iterable[torch.nn.Parameter] ) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , torch.nn.Module ): __lowerCAmelCase : int = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase , standard_warn=lowerCAmelCase , ) __lowerCAmelCase : Any = parameters.parameters() __lowerCAmelCase : Any = list(lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __lowerCAmelCase : Optional[Any] = self.get_decay(self.optimization_step ) __lowerCAmelCase : Dict = decay __lowerCAmelCase : Tuple = 1 - decay __lowerCAmelCase : str = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __lowerCAmelCase : List[Any] = deepspeed.zero.GatheredParameters(lowerCAmelCase , modifier_rank=lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" __lowerCAmelCase : Dict = list(lowerCAmelCase ) for s_param, param in zip(self.shadow_params , lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None ) -> None: """simple docstring""" __lowerCAmelCase : List[str] = [ p.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if p.is_floating_point() else p.to(device=lowerCAmelCase ) for p in self.shadow_params ] def SCREAMING_SNAKE_CASE ( self : int ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" __lowerCAmelCase : Dict = [param.detach().cpu().clone() for param in parameters] def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. __lowerCAmelCase : Union[str, Any] = None def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : dict ) -> None: """simple docstring""" __lowerCAmelCase : List[str] = copy.deepcopy(lowerCAmelCase ) __lowerCAmelCase : int = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) __lowerCAmelCase : Tuple = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase ): raise ValueError("""Invalid min_decay""" ) __lowerCAmelCase : List[Any] = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase ): raise ValueError("""Invalid optimization_step""" ) __lowerCAmelCase : Union[str, Any] = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase ): raise ValueError("""Invalid update_after_step""" ) __lowerCAmelCase : List[str] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase ): raise ValueError("""Invalid use_ema_warmup""" ) __lowerCAmelCase : Optional[int] = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) __lowerCAmelCase : Any = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) __lowerCAmelCase : Optional[Any] = state_dict.get("""shadow_params""" , lowerCAmelCase ) if shadow_params is not None: __lowerCAmelCase : int = shadow_params if not isinstance(self.shadow_params , lowerCAmelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
139
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Tuple = logging.get_logger(__name__) a : List[Any] = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } a : List[Any] = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } a : str = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : str = set() __UpperCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Dict = char __UpperCAmelCase : int = set(_lowerCAmelCase ) return pairs class a ( lowercase__ ): """simple docstring""" a : Any = VOCAB_FILES_NAMES a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : List[str]="<s>" , __lowercase : Dict="</s>" , __lowercase : List[Any]="</s>" , __lowercase : Dict="<s>" , __lowercase : int="<unk>" , __lowercase : Tuple="<pad>" , __lowercase : int="<mask>" , **__lowercase : Dict , ) -> Dict: super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : Optional[Any] = merges_file __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Any = 1 __UpperCAmelCase : Optional[int] = 2 __UpperCAmelCase : Union[str, Any] = 3 self.add_from_file(__lowercase ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: __UpperCAmelCase : List[str] = merges_handle.read().split("""\n""" )[:-1] __UpperCAmelCase : Dict = [tuple(merge.split()[:-1] ) for merge in merges] __UpperCAmelCase : str = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __UpperCAmelCase : Any = {} def UpperCAmelCase ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] __UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self : Optional[Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def UpperCAmelCase ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self : List[Any] ) -> Any: return len(self.encoder ) def UpperCAmelCase ( self : str ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self : Optional[int] , __lowercase : List[str] ) -> List[str]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(__lowercase ) __UpperCAmelCase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __UpperCAmelCase : Union[str, Any] = get_pairs(__lowercase ) if not pairs: return token while True: __UpperCAmelCase : Dict = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : str = bigram __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Dict = 0 while i < len(__lowercase ): try: __UpperCAmelCase : List[str] = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Dict = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Tuple = tuple(__lowercase ) __UpperCAmelCase : Optional[Any] = new_word if len(__lowercase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowercase ) __UpperCAmelCase : int = """@@ """.join(__lowercase ) __UpperCAmelCase : Optional[Any] = word[:-4] __UpperCAmelCase : Tuple = word return word def UpperCAmelCase ( self : str , __lowercase : int ) -> List[str]: __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = re.findall(r"""\S+\n?""" , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase ( self : int , __lowercase : Union[str, Any] ) -> Any: return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self : Optional[int] , __lowercase : Tuple ) -> List[str]: return self.decoder.get(__lowercase , self.unk_token ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = """ """.join(__lowercase ).replace("""@@ """ , """""" ).strip() return out_string def UpperCAmelCase ( self : Optional[Any] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : Any = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowercase ): copyfile(self.merges_file , __lowercase ) return out_vocab_file, out_merge_file def UpperCAmelCase ( self : Optional[Any] , __lowercase : List[Any] ) -> Optional[int]: if isinstance(__lowercase , __lowercase ): try: with open(__lowercase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return __UpperCAmelCase : int = f.readlines() for lineTmp in lines: __UpperCAmelCase : Dict = lineTmp.strip() __UpperCAmelCase : List[Any] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) __UpperCAmelCase : List[str] = line[:idx] __UpperCAmelCase : Tuple = len(self.encoder )
114
_lowerCAmelCase : Dict = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _lowerCAmelCase : str = ["a", "b", "c", "d", "e"] def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = start # add current to visited visited.append(_lowerCAmelCase ) UpperCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(_lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): for vertice in vertices: if vertice not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _lowerCAmelCase : Optional[int] = topological_sort("a", [], []) print(sort)
169
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCamelCase: Any = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase = ['pixel_values'] def __init__( self : int, lowerCAmelCase : List[Any] = True, lowerCAmelCase : Union[str, Any] = None, lowerCAmelCase : str = PILImageResampling.BICUBIC, lowerCAmelCase : int = True, lowerCAmelCase : Dict = None, lowerCAmelCase : Any = True, lowerCAmelCase : str = 1 / 255, lowerCAmelCase : str = True, lowerCAmelCase : int = None, lowerCAmelCase : List[Any] = None, lowerCAmelCase : Any = True, **lowerCAmelCase : str, ) -> None: super().__init__(**lowerCAmelCase ) lowercase : List[Any] = size if size is not None else {'shortest_edge': 224} lowercase : Tuple = get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowercase : List[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase : int = get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase, param_name='crop_size' ) lowercase : int = do_resize lowercase : str = size lowercase : Union[str, Any] = resample lowercase : List[Any] = do_center_crop lowercase : Union[str, Any] = crop_size lowercase : Any = do_rescale lowercase : Tuple = rescale_factor lowercase : Optional[int] = do_normalize lowercase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase : Optional[int] = do_convert_rgb def lowercase ( self : Union[str, Any], lowerCAmelCase : Optional[Any], lowerCAmelCase : str, lowerCAmelCase : Union[str, Any] = PILImageResampling.BICUBIC, lowerCAmelCase : Optional[Any] = None, **lowerCAmelCase : List[str], ) -> np.ndarray: lowercase : List[Any] = get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase : Optional[int] = get_resize_output_image_size(lowerCAmelCase, size=size['shortest_edge'], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] = None, **lowerCAmelCase : str, ) -> np.ndarray: lowercase : Optional[Any] = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase, size=(size['height'], size['width']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Optional[int], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Optional[int] = None, **lowerCAmelCase : str, ) -> List[Any]: return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : str, lowerCAmelCase : Dict, lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any] = None, **lowerCAmelCase : Tuple, ) -> np.ndarray: return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : List[Any], lowerCAmelCase : Optional[Any] = None, lowerCAmelCase : Any = None, lowerCAmelCase : int = None, lowerCAmelCase : List[str] = None, lowerCAmelCase : str = None, lowerCAmelCase : List[str] = None, lowerCAmelCase : int = None, lowerCAmelCase : Optional[Any] = None, lowerCAmelCase : Optional[Any] = None, lowerCAmelCase : int = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : str = None, lowerCAmelCase : Tuple = ChannelDimension.FIRST, **lowerCAmelCase : Union[str, Any], ) -> PIL.Image.Image: lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase : List[Any] = size if size is not None else self.size lowercase : Tuple = get_size_dict(lowerCAmelCase, param_name='size', default_to_square=lowerCAmelCase ) lowercase : Dict = resample if resample is not None else self.resample lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = crop_size if crop_size is not None else self.crop_size lowercase : int = get_size_dict(lowerCAmelCase, param_name='crop_size', default_to_square=lowerCAmelCase ) lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase : str = image_mean if image_mean is not None else self.image_mean lowercase : List[Any] = image_std if image_std is not None else self.image_std lowercase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : int = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : List[str] = [convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase : str = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowercase : int = [self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowercase : Any = [self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowercase : Tuple = [self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowercase : List[Any] = [self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowercase : Tuple = [to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowercase : List[Any] = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
365
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('Input value must be a \'int\' type' ) return bin(_SCREAMING_SNAKE_CASE ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
290
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ = random.Random() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: if rng is None: a__: Any = global_rng a__: int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __snake_case ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=4_00 , lowercase=20_00 , lowercase=1 , lowercase=0.0 , lowercase=1_60_00 , lowercase=True , lowercase=True , ) -> Union[str, Any]: '''simple docstring''' a__: Tuple = parent a__: Optional[int] = batch_size a__: Optional[Any] = min_seq_length a__: Optional[int] = max_seq_length a__: Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__: Dict = feature_size a__: Any = padding_value a__: Optional[Any] = sampling_rate a__: Optional[Any] = return_attention_mask a__: str = do_normalize def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self , lowercase=False , lowercase=False) -> Tuple: '''simple docstring''' def _flatten(lowercase): return list(itertools.chain(*lowercase)) if equal_length: a__: Dict = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size a__: List[Any] = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: a__: str = [np.asarray(lowercase) for x in speech_inputs] return speech_inputs class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = WavaVecaFeatureExtractor def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Optional[int] = WavaVecaFeatureExtractionTester(self) def lowerCamelCase_ ( self , lowercase) -> List[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(lowercase , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(lowercase , axis=0) - 1) < 1e-3)) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 a__: Optional[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: List[str] = [np.asarray(lowercase) for speech_input in speech_inputs] # Test not batched input a__: Optional[Any] = feat_extract(speech_inputs[0] , return_tensors='np').input_values a__: Dict = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) # Test batched a__: Dict = feat_extract(lowercase , return_tensors='np').input_values a__: int = feat_extract(lowercase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) # Test 2-D numpy arrays are batched. a__: int = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] a__: Union[str, Any] = np.asarray(lowercase) a__: int = feat_extract(lowercase , return_tensors='np').input_values a__: Any = feat_extract(lowercase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: List[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Optional[int] = ['longest', 'max_length', 'do_not_pad'] a__: List[Any] = [None, 16_00, None] for max_length, padding in zip(lowercase , lowercase): a__: Dict = feat_extract(lowercase , padding=lowercase , max_length=lowercase , return_tensors='np') a__: Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self.assertTrue(input_values[0][8_00:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self.assertTrue(input_values[0][10_00:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Optional[int] = range(8_00 , 14_00 , 2_00) a__: List[str] = [floats_list((1, x))[0] for x in lengths] a__: Tuple = ['longest', 'max_length', 'do_not_pad'] a__: Dict = [None, 16_00, None] for max_length, padding in zip(lowercase , lowercase): a__: int = feat_extract(lowercase , max_length=lowercase , padding=lowercase) a__: Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Any = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Dict = feat_extract( lowercase , truncation=lowercase , max_length=10_00 , padding='max_length' , return_tensors='np') a__: int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: int = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: str = feat_extract( lowercase , truncation=lowercase , max_length=10_00 , padding='longest' , return_tensors='np') a__: Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00)) a__: Dict = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Tuple = feat_extract( lowercase , truncation=lowercase , max_length=20_00 , padding='longest' , return_tensors='np') a__: str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00)) @require_torch def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' import torch a__: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Tuple = np.random.rand(1_00).astype(np.floataa) a__: Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__: Any = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) a__: Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: a__: str = WavaVecaConfig.from_pretrained(lowercase) a__: str = WavaVecaFeatureExtractor.from_pretrained(lowercase) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer')
290
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = BartphoTokenizer lowercase__ = False lowercase__ = True def __lowerCAmelCase ( self : int ): super().setUp() lowerCAmelCase__ : List[str] = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] lowerCAmelCase__ : Optional[int] = dict(zip(lowercase_ ,range(len(lowercase_ ) ) ) ) lowerCAmelCase__ : List[str] = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) lowerCAmelCase__ : int = BartphoTokenizer(lowercase_ ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] ,**lowercase_ : Any ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[str] = '''This is a là test''' lowerCAmelCase__ : Optional[int] = '''This is a<unk><unk> test''' return input_text, output_text def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Tuple = BartphoTokenizer(lowercase_ ,self.monolingual_vocab_file ,**self.special_tokens_map ) lowerCAmelCase__ : List[Any] = '''This is a là test''' lowerCAmelCase__ : Union[str, Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() lowerCAmelCase__ : List[Any] = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = tokens + [tokenizer.unk_token] lowerCAmelCase__ : str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) ,lowercase_ )
74
"""simple docstring""" import qiskit def __SCREAMING_SNAKE_CASE ( A_ = 2 ): lowerCAmelCase__ : int = qubits # Using Aer's simulator lowerCAmelCase__ : str = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register lowerCAmelCase__ : str = qiskit.QuantumCircuit(A_ , A_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A_ ) ) , list(range(A_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCAmelCase__ : List[Any] = qiskit.execute(A_ , A_ , shots=10_00 ) return job.result().get_counts(A_ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
74
1
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _snake_case = logging.get_logger(__name__) _snake_case = 'T5Config' def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = jnp.zeros_like(UpperCamelCase__ ) _a : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _a : Union[str, Any] = shifted_input_ids.at[:, 0].set(UpperCamelCase__ ) _a : Union[str, Any] = jnp.where(shifted_input_ids == -1_0_0 , UpperCamelCase__ , UpperCamelCase__ ) return shifted_input_ids class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[Any] = '''mt5''' UpperCamelCase : Optional[int] = MTaConfig class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = '''mt5''' UpperCamelCase : Union[str, Any] = MTaConfig class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = '''mt5''' UpperCamelCase : List[Any] = MTaConfig
294
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['PerceiverFeatureExtractor'] _snake_case = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a_ ( _UpperCAmelCase : Namespace ) -> Union[str, Any]: return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) A__ : Optional[int] = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @staticmethod def A_ ( __a : ArgumentParser ) -> str: '''simple docstring''' __snake_case : List[str] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=__a , required=__a , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=__a , required=__a , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=__a , required=__a , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=__a , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=__a , default=__a , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=__a ) def __init__( self : Tuple , __a : str , __a : str , __a : str , __a : str , __a : str , *__a : int , ) -> List[str]: '''simple docstring''' __snake_case : Dict = logging.get_logger('transformers-cli/converting' ) self._logger.info(f'''Loading model {model_type}''' ) __snake_case : Dict = model_type __snake_case : Optional[Any] = tf_checkpoint __snake_case : str = pytorch_dump_output __snake_case : Dict = config __snake_case : str = finetuning_task_name def A_ ( self : List[str] ) -> List[Any]: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__a ) if "ckpt" in self._tf_checkpoint.lower(): __snake_case : Optional[int] = self._tf_checkpoint __snake_case : List[str] = '' else: __snake_case : int = self._tf_checkpoint __snake_case : Tuple = '' convert_transfo_xl_checkpoint_to_pytorch( __a , self._config , self._pytorch_dump_output , __a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
367
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer A__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : List[Any] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } A__ : List[Any] = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } A__ : Optional[Any] = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ElectraTokenizer def __init__( self : int , __a : List[Any]=None , __a : int=None , __a : List[str]=True , __a : Any="[UNK]" , __a : Any="[SEP]" , __a : Union[str, Any]="[PAD]" , __a : Dict="[CLS]" , __a : List[Any]="[MASK]" , __a : str=True , __a : Optional[int]=None , **__a : Optional[int] , ) -> str: '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __a ) != do_lower_case or normalizer_state.get('strip_accents' , __a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars ): __snake_case : List[Any] = getattr(__a , normalizer_state.pop('type' ) ) __snake_case : str = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : Any = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**__a ) __snake_case : Any = do_lower_case def A_ ( self : Any , __a : List[str] , __a : Optional[Any]=None ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __snake_case : Tuple = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
0
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A_ ( snake_case ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def A_ ( snake_case ): class _snake_case : def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:int = metric_id class _snake_case : _A : Optional[int] = [MetricMock(_a ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def __UpperCamelCase ( self : Optional[int] ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case ): if "tmp_path" in args: SCREAMING_SNAKE_CASE:int = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(snake_case , match="https://huggingface.co/docs/evaluate" ): func(*snake_case )
139
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor A_ = logging.get_logger(__name__) class _snake_case ( _a ): def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Tuple ): warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." ,SCREAMING_SNAKE_CASE__ ,) super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
139
1
from heapq import heappop, heappush import numpy as np def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): A , A : int = grid.shape A : List[Any] = [-1, 1, 0, 0] A : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A , A : Optional[int] = [(0, source)], set() A : List[Any] = np.full((rows, cols) , np.inf ) A : Optional[Any] = 0 A : Optional[int] = np.empty((rows, cols) , dtype=UpperCamelCase__ ) A : List[str] = None while queue: ((A) , (A)) : Union[str, Any] = heappop(UpperCamelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A : List[str] = [] while (x, y) != source: path.append((x, y) ) A , A : Optional[Any] = predecessors[x, y] path.append(UpperCamelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase__ ) ): A , A : int = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A : Tuple = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase__ , (dist + 1, (nx, ny)) ) A : int = dist + 1 A : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
367
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "BridgeTowerImageProcessor" a__ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ) -> Optional[int]: super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Dict , ) -> BatchEncoding: A : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel_values + pixel_mask A : List[Any] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , do_normalize=__lowerCamelCase , do_center_crop=__lowerCamelCase , **__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def SCREAMING_SNAKE_CASE__ ( self : int , *__lowerCamelCase : List[str] , **__lowerCamelCase : str ) -> List[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : str ) -> Any: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: A : Dict = self.tokenizer.model_input_names A : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
256
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE : Optional[int] = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
362
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger('''transformers.models.speecht5''') def lowerCamelCase_ ( _a : str , _a : int , _a : Union[str, Any] ): '''simple docstring''' hf_model.apply_weight_norm() UpperCAmelCase_ : Optional[int] = checkpoint["""input_conv.weight_g"""] UpperCAmelCase_ : str = checkpoint["""input_conv.weight_v"""] UpperCAmelCase_ : str = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCAmelCase_ : Dict = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCAmelCase_ : Any = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCAmelCase_ : Union[str, Any] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase_ : Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCAmelCase_ : Dict = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCAmelCase_ : Optional[Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCAmelCase_ : Tuple = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCAmelCase_ : Optional[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCAmelCase_ : Tuple = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.weight_g"""] UpperCAmelCase_ : Optional[Any] = checkpoint["""output_conv.1.weight_v"""] UpperCAmelCase_ : Union[str, Any] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def lowerCamelCase_ ( _a : Tuple , _a : int , _a : Any , _a : Tuple=None , _a : Dict=None , ): '''simple docstring''' if config_path is not None: UpperCAmelCase_ : Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(_a ) else: UpperCAmelCase_ : str = SpeechTaHifiGanConfig() UpperCAmelCase_ : List[str] = SpeechTaHifiGan(_a ) UpperCAmelCase_ : int = torch.load(_a ) load_weights(orig_checkpoint["""model"""]["""generator"""] , _a , _a ) UpperCAmelCase_ : List[Any] = np.load(_a ) UpperCAmelCase_ : Optional[Any] = stats[0].reshape(-1 ) UpperCAmelCase_ : int = stats[1].reshape(-1 ) UpperCAmelCase_ : Any = torch.from_numpy(_a ).float() UpperCAmelCase_ : int = torch.from_numpy(_a ).float() model.save_pretrained(_a ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_a ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
59
0
"""simple docstring""" from collections import namedtuple _lowercase = namedtuple('''from_to''', '''from_ to''') _lowercase = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00_454, 264.172), '''cubicyard''': from_to(0.76_455, 1.30_795), '''cubicfoot''': from_to(0.028, 35.3_147), '''cup''': from_to(0.000_236_588, 4_226.75), } def _snake_case ( snake_case__ : float , snake_case__ : str , snake_case__ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(snake_case__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(snake_case__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase = 16 _lowercase = 32 def _snake_case ( snake_case__ : Accelerator , snake_case__ : int = 16 , snake_case__ : str = "bert-base-cased" ): A = AutoTokenizer.from_pretrained(snake_case__ ) A = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : Dict ): # max_length=None => use the model max length (it's actually the default) A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(snake_case__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) A = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Optional[int] ): # Initialize accelerator A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A = config['lr'] A = int(config['num_epochs'] ) A = int(config['seed'] ) A = int(config['batch_size'] ) A = args.model_name_or_path set_seed(snake_case__ ) A , A = get_dataloaders(snake_case__ , snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer A = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: A = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A = 1 A = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: A = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over A = 0 # We also need to keep track of the stating epoch so files are named properly A = 0 # Now we train the model A = evaluate.load('glue' , 'mrpc' ) A = 0 A = {} for epoch in range(snake_case__ , snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): A = model(**snake_case__ ) A = outputs.loss A = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A = model(**snake_case__ ) A = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case__ ) - 1: A = predictions[: len(eval_dataloader.dataset ) - samples_seen] A = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case__ ) A = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: A = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(snake_case__ , snake_case__ ) def _snake_case ( ): A = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=snake_case__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=snake_case__ , ) parser.add_argument( '--output_dir' , type=snake_case__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=snake_case__ , default=snake_case__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=snake_case__ , default=3 , help='Number of train epochs.' , ) A = parser.parse_args() A = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
74
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase : Tuple = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) else: UpperCAmelCase : Dict = max( mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , ) UpperCAmelCase : Tuple = val return f[i][j] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : List[str] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase : str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCAmelCase : Optional[Any] = dp[i - 1][w_] return dp[n][w_], dp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) UpperCAmelCase : Optional[int] = len(_lowercase ) if num_items != len(_lowercase ): UpperCAmelCase : Optional[Any] = ( """The number of weights must be the same as the number of values.\n""" F'''But got {num_items} weights and {len(_lowercase )} values''' ) raise ValueError(_lowercase ) for i in range(_lowercase ): if not isinstance(wt[i] , _lowercase ): UpperCAmelCase : Union[str, Any] = ( """All weights must be integers but got weight of """ F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(_lowercase ) UpperCAmelCase , UpperCAmelCase : List[Any] = knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : set = set() _construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return optimal_val, example_optional_set def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase ) else: optimal_set.add(_lowercase ) _construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase ) if __name__ == "__main__": a : str = [3, 2, 4, 4] a : str = [4, 3, 2, 3] a : List[str] = 4 a : Optional[Any] = 6 a : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a , a : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a , a : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __UpperCAmelCase = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __UpperCAmelCase = concatenate_datasets __UpperCAmelCase = DownloadConfig __UpperCAmelCase = DownloadManager __UpperCAmelCase = DownloadMode __UpperCAmelCase = DownloadConfig __UpperCAmelCase = DownloadMode __UpperCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
29
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCAmelCase__ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ElectraTokenizer def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
0
0
def _snake_case( ) -> int: '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(SCREAMING_SNAKE_CASE__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
365
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Any,lowercase_ : Optional[int],lowercase_ : Optional[int]=1_3,lowercase_ : int=7,lowercase_ : List[str]=True,lowercase_ : str=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=9_9,lowercase_ : Dict=2_4,lowercase_ : Union[str, Any]=2,lowercase_ : str=6,lowercase_ : Dict=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : Any=0.1,lowercase_ : Any=0.1,lowercase_ : Any=5_1_2,lowercase_ : Dict=1_6,lowercase_ : List[str]=2,lowercase_ : Dict=0.02,lowercase_ : Any=3,lowercase_ : Dict=None,lowercase_ : List[str]=1_0_0_0,)-> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : Dict )-> int: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : str,lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Tuple,)-> Optional[Any]: '''simple docstring''' A__ = LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def snake_case__ ( self : Any,lowercase_ : Dict,lowercase_ : List[Any],lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : List[Any],)-> List[str]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],)-> Any: '''simple docstring''' A__ = LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : List[str],lowercase_ : str,lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' return True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase_ ) A__ = torch.tensor([[1, 2]],device=lowercase_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]],device=lowercase_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=lowercase_,bbox=lowercase_ ) A__ = torch.Size([1, 2, 7_6_8] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]],device=lowercase_,) self.assertTrue(outputs.last_hidden_state.shape,lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3],lowercase_,atol=1E-3 ) )
282
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : str = ["pixel_values"] def __init__( self : str , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : Dict[str, int] = None , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Dict , ) -> None: super().__init__(**A ) lowercase_ : Tuple = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : Dict = get_size_dict(A ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : List[Any] = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) lowercase_ : Optional[Any] = do_resize lowercase_ : List[str] = do_rescale lowercase_ : Optional[int] = do_normalize lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : Optional[Any] = size lowercase_ : Optional[Any] = resample lowercase_ : Optional[Any] = rescale_factor lowercase_ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A ( self : str , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: lowercase_ : str = get_size_dict(A ) if "shortest_edge" in size: lowercase_ : Dict = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase_ : List[Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(A , size=A , resample=A , data_format=A , **A ) def A ( self : str , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: lowercase_ : List[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def A ( self : Tuple , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Any ) -> np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def A ( self : Optional[int] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def A ( self : Dict , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : int = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : List[str] , ) -> BatchFeature: lowercase_ : str = do_resize if do_resize is not None else self.do_resize lowercase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : str = crop_size if crop_size is not None else self.crop_size lowercase_ : int = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) lowercase_ : Union[str, Any] = resample if resample is not None else self.resample lowercase_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : Tuple = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Union[str, Any] = size if size is not None else self.size lowercase_ : str = get_size_dict(A ) if not is_batched(A ): lowercase_ : List[Any] = [images] if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase_ : Tuple = [to_numpy_array(A ) for image in images] if do_resize: lowercase_ : List[str] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: lowercase_ : List[Any] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: lowercase_ : List[Any] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: lowercase_ : Dict = [self.normalize(image=A , mean=A , std=A ) for image in images] lowercase_ : List[str] = [to_channel_dimension_format(A , A ) for image in images] lowercase_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
33
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( _lowercase): def __init__( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Dict=32 , __UpperCamelCase : int=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : List[str]=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple="None" , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Any=None , ) -> Tuple: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = relative_attention _UpperCamelCase = position_biased_input _UpperCamelCase = pos_att_type _UpperCamelCase = scope def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: _UpperCamelCase = self.get_config() _UpperCamelCase = 300 return config def _UpperCamelCase ( self : int , __UpperCamelCase : List[Any] ) -> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> List[str]: _UpperCamelCase = DebertaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> Tuple: _UpperCamelCase = DebertaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> List[Any]: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Dict: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) -> List[Any]: _UpperCamelCase = DebertaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Any ) -> Union[str, Any]: _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase = DebertaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _UpperCamelCase ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ) -> List[str]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCamelCase ) def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCamelCase ) @slow def _UpperCamelCase ( self : Any ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DebertaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass @slow def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) _UpperCamelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] # compare the actual values for a slice. _UpperCamelCase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
256
0
from __future__ import annotations __snake_case = list[list[int]] # assigning initial values to the grid __snake_case = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase_ ( __lowerCAmelCase )-> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase_ ( __lowerCAmelCase )-> Matrix | None: '''simple docstring''' if location := find_empty_location(__lowerCAmelCase ): UpperCAmelCase , UpperCAmelCase : int =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Dict =digit if sudoku(__lowerCAmelCase ) is not None: return grid UpperCAmelCase : str =0 return None def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' for row in grid: for cell in row: print(__lowerCAmelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __snake_case = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
371
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
78
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase : Union[str, Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split(""".""" ): __UpperCAmelCase : int = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: __UpperCAmelCase : Union[str, Any] = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: __UpperCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": __UpperCAmelCase : str = value elif weight_type == "weight_v": __UpperCAmelCase : Dict = value elif weight_type == "bias": __UpperCAmelCase : Dict = value else: __UpperCAmelCase : Tuple = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : Any ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase : Dict = True if "*" in mapped_key: __UpperCAmelCase : Union[str, Any] = name.split(__lowerCamelCase )[0].split(""".""" )[-2] __UpperCAmelCase : Dict = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: __UpperCAmelCase : int = "weight_g" elif "weight_v" in name: __UpperCAmelCase : Dict = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: __UpperCAmelCase : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : List[Any] = "weight" else: __UpperCAmelCase : List[str] = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase : List[Any] = name.split(""".""" ) __UpperCAmelCase : Tuple = int(items[0] ) __UpperCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Optional[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase : str = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any]=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = torch.load(__lowerCamelCase ) __UpperCAmelCase : List[Any] = WavLMConfigOrig(checkpoint["""cfg"""] ) __UpperCAmelCase : Optional[int] = WavLMOrig(__lowerCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: __UpperCAmelCase : str = WavLMConfig.from_pretrained(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = WavLMConfig() __UpperCAmelCase : Any = WavLMModel(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavlm.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase : Dict = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
115
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = "segformer" def __init__(self : List[Any] , _A : int=3 , _A : List[Any]=4 , _A : Any=[2, 2, 2, 2] , _A : Dict=[8, 4, 2, 1] , _A : List[Any]=[3_2, 6_4, 1_6_0, 2_5_6] , _A : Tuple=[7, 3, 3, 3] , _A : Optional[int]=[4, 2, 2, 2] , _A : Dict=[1, 2, 5, 8] , _A : int=[4, 4, 4, 4] , _A : Dict="gelu" , _A : Tuple=0.0 , _A : Optional[Any]=0.0 , _A : List[Any]=0.1 , _A : Union[str, Any]=0.02 , _A : Dict=0.1 , _A : List[Any]=1E-6 , _A : List[str]=2_5_6 , _A : Optional[Any]=2_5_5 , **_A : str , ) -> Tuple: super().__init__(**_A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , _A , ) snake_case = num_channels snake_case = num_encoder_blocks snake_case = depths snake_case = sr_ratios snake_case = hidden_sizes snake_case = patch_sizes snake_case = strides snake_case = mlp_ratios snake_case = num_attention_heads snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = classifier_dropout_prob snake_case = initializer_range snake_case = drop_path_rate snake_case = layer_norm_eps snake_case = decoder_hidden_size snake_case = kwargs.get("reshape_last_stage" , _A ) snake_case = semantic_loss_ignore_index class lowerCamelCase ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase(self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase(self : Tuple ) -> float: return 1E-4 @property def UpperCAmelCase(self : List[str] ) -> int: return 1_2
354
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Optional[List[str]] = dataclasses.field( default=A_ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=A_ , metadata={"help": "Random seed for initialization."} , ) def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case = dataset.filter(lambda A__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case = int(eval_result * len(A__ ) ) print(A__ ) snake_case = dataset.sort("probability" , reverse=A__ ) snake_case = dataset.select(range(A__ ) ) snake_case = dataset.remove_columns(["label", "probability"] ) snake_case = dataset.rename_column("prediction" , "label" ) snake_case = dataset.map(lambda A__ : {"label": idalabel[example["label"]]} ) snake_case = dataset.shuffle(seed=args.seed ) snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(A__ , index=A__ ) else: dataset.to_json(A__ ) def lowercase_ ( A__ , A__ , A__ , A__ , **A__ ) -> List[Any]: """simple docstring""" snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case = STModelArguments(model_name_or_path=A__ ) snake_case = STDataArguments(train_file=A__ , infer_file=A__ ) snake_case = STTrainingArguments(output_dir=A__ ) snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A__ ).items(): setattr(A__ , A__ , A__ ) for key, value in kwargs.items(): if hasattr(A__ , A__ ): setattr(A__ , A__ , A__ ) # Sanity checks snake_case = {} snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case = args.train_file snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case = args.eval_file for key in data_files: snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: snake_case = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case = F'{args.output_dir}/self-train_iter-{{}}'.format snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A__ ) os.makedirs(A__ , exist_ok=A__ ) accelerator.wait_for_everyone() snake_case = None snake_case = None snake_case = 0 snake_case = False # Show the progress bar snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case = data_dir_format(A__ ) assert os.path.exists(A__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case = os.path.join(A__ , "stage-1" ) snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A__ , A__ ): arguments_dict.update({key: value} ) snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , A__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case = os.path.join(A__ , "best-checkpoint" ) snake_case = os.path.join(A__ , "stage-2" ) # Update arguments_dict snake_case = model_path snake_case = data_files["train"] snake_case = current_output_dir snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , A__ ) snake_case = iteration snake_case = data_dir_format(iteration + 1 ) snake_case = AutoConfig.from_pretrained(os.path.join(A__ , "best-checkpoint" ) ) snake_case = config.idalabel snake_case = os.path.join(A__ , "eval_results_best-checkpoint.json" ) snake_case = os.path.join(A__ , "test_results_best-checkpoint.json" ) assert os.path.exists(A__ ) with open(A__ , "r" ) as f: snake_case = float(json.load(A__ )[args.eval_metric] ) snake_case = os.path.join(A__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(A__ ) # Loading the dataset from local csv or json files. snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(A__ , exist_ok=A__ ) shutil.copy(A__ , os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(A__ ): shutil.copy(A__ , os.path.join(A__ , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(A__ , A__ , A__ , A__ , A__ , A__ ) accelerator.wait_for_everyone() snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case = eval_result if best_iteration is None: snake_case = new_iteration snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case = new_iteration snake_case = new_eval_result snake_case = 0 else: if new_eval_result == best_eval_result: snake_case = new_iteration snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , A__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , )
137
0
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Any: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase = mf_knapsack(i - 1 , snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase = max( mf_knapsack(i - 1 , snake_case__ , snake_case__ , snake_case__ ) , mf_knapsack(i - 1 , snake_case__ , snake_case__ , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase = val return f[i][j] def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: lowerCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase = dp[i - 1][w_] return dp[n][w_], dp def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: if not (isinstance(snake_case__ , (list, tuple) ) and isinstance(snake_case__ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) lowerCAmelCase = len(snake_case__ ) if num_items != len(snake_case__ ): lowerCAmelCase = ( '''The number of weights must be the same as the number of values.\n''' f"But got {num_items} weights and {len(snake_case__ )} values" ) raise ValueError(snake_case__ ) for i in range(snake_case__ ): if not isinstance(wt[i] , snake_case__ ): lowerCAmelCase = ( '''All weights must be integers but got weight of ''' f"type {type(wt[i] )} at index {i}" ) raise TypeError(snake_case__ ) lowerCAmelCase , lowerCAmelCase = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase = set() _construct_solution(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return optimal_val, example_optional_set def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> str: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case__ , snake_case__ , i - 1 , snake_case__ , snake_case__ ) else: optimal_set.add(snake_case__ ) _construct_solution(snake_case__ , snake_case__ , i - 1 , j - wt[i - 1] , snake_case__ ) if __name__ == "__main__": lowercase__ : Optional[Any] = [3, 2, 4, 4] lowercase__ : Tuple = [4, 3, 2, 3] lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 6 lowercase__ : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase__ , lowercase__ : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase__ , lowercase__ : str = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
338
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = (DEISMultistepScheduler,) UpperCAmelCase_ : int = (("""num_inference_steps""", 25),) def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**__SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase = sample, sample for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: pass def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->List[Any]: if scheduler is None: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase = scheduler.timesteps[5] lowerCAmelCase = scheduler.timesteps[6] lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: # make sure that iterating over schedulers with same config names gives same results # for defaults lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = self.full_loop( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
338
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None def lowerCamelCase_ ( ): lowerCamelCase_ = Node(1 ) lowerCamelCase_ = Node(2 ) lowerCamelCase_ = Node(3 ) lowerCamelCase_ = Node(4 ) lowerCamelCase_ = Node(5 ) return tree def lowerCamelCase_ ( lowerCamelCase__ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase_ ( lowerCamelCase__ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase_ ( lowerCamelCase__ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase_ ( lowerCamelCase__ ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [] if root is None: return output lowerCamelCase_ = deque([root] ) while process_queue: lowerCamelCase_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowercase__ , lowercase__ ) return output def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowercase__ , lowercase__ ) return output def lowerCamelCase_ ( lowerCamelCase__ ): if root is None: return [] lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = height(lowercase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase__ , lowercase__ ) ) lowerCamelCase_ = 1 else: output.append(get_nodes_from_right_to_left(lowercase__ , lowercase__ ) ) lowerCamelCase_ = 0 return output def lowerCamelCase_ ( ): # Main function for testing. lowerCamelCase_ = make_tree() print(F'In-order Traversal: {inorder(lowercase__ )}' ) print(F'Pre-order Traversal: {preorder(lowercase__ )}' ) print(F'Post-order Traversal: {postorder(lowercase__ )}' , "\n" ) print(F'Height of Tree: {height(lowercase__ )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowercase__ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowercase__ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(lowercase__ , level=lowercase__ ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
362
import os def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(grid[0] ) lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowerCamelCase__ ): for j in range(n_rows - 3 ): lowerCamelCase_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase_ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase_ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase_ = max( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if max_product > largest: lowerCamelCase_ = max_product return largest def lowerCamelCase_ ( ): lowerCamelCase_ = [] with open(os.path.dirname(lowerCamelCase__ ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase_ = [[int(lowerCamelCase__ ) for i in grid[j]] for j in range(len(lowerCamelCase__ ) )] return largest_product(lowerCamelCase__ ) if __name__ == "__main__": print(solution())
47
0