code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Tuple=13 , __lowercase : int=7 , __lowercase : Any=True , __lowercase : Any=True , __lowercase : List[Any]=False , __lowercase : Tuple=True , __lowercase : List[str]=99 , __lowercase : Optional[int]=32 , __lowercase : List[str]=5 , __lowercase : Optional[int]=4 , __lowercase : List[str]=37 , __lowercase : str="gelu" , __lowercase : Any=0.1 , __lowercase : int=0.1 , __lowercase : Any=512 , __lowercase : Optional[int]=16 , __lowercase : Optional[int]=2 , __lowercase : Dict=0.02 , __lowercase : Tuple=3 , __lowercase : Optional[Any]=4 , __lowercase : Dict=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , use_stable_embedding=__lowercase , ) def UpperCamelCase_ ( self : List[str] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[str] , __lowercase : Dict , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Any ): '''simple docstring''' __a = OpenLlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase ) __a = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Dict , __lowercase : Tuple , __lowercase : int , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Optional[int] , ): '''simple docstring''' __a = True __a = OpenLlamaModel(__lowercase ) model.to(__lowercase ) model.eval() __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) __a = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Tuple , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[Any] , ): '''simple docstring''' __a = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : str , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : int , __lowercase : Dict , __lowercase : Dict , ): '''simple docstring''' __a = True __a = True __a = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )["""hidden_states"""][0] __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )["""hidden_states"""][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : List[str] =(OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : Tuple =( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Tuple =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = OpenLlamaModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__lowercase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = """single_label_classification""" __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__lowercase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = """multi_label_classification""" __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__lowercase ) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ids_tensor([1, 10] , config.vocab_size ) __a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = OpenLlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() __a = original_model(__lowercase ).last_hidden_state __a = original_model(__lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = {"""type""": scaling_type, """factor""": 10.0} __a = OpenLlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() __a = scaled_model(__lowercase ).last_hidden_state __a = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) )
302
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : Optional[int] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['''CLIPFeatureExtractor'''] lowerCAmelCase_ : Optional[int] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( __a ): def snake_case_ (self ): _UpperCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """depth_multiplier""" ) ) class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.2_5 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : int = image_size _UpperCAmelCase : List[str] = depth_multiplier _UpperCAmelCase : Any = min_depth _UpperCAmelCase : Dict = tf_padding _UpperCAmelCase : Dict = int(last_hidden_size * depth_multiplier ) _UpperCAmelCase : Dict = output_stride _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[Any] = classifier_dropout_prob _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Any = is_training _UpperCAmelCase : int = num_labels _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Any = scope def snake_case_ (self ): _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ (self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : Tuple = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ (self ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = config_and_inputs _UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __a , __a , unittest.TestCase ): snake_case : Tuple = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case : Optional[Any] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case : str = False snake_case : str = False snake_case : Optional[Any] = False snake_case : Optional[int] = False def snake_case_ (self ): _UpperCAmelCase : Optional[int] = MobileNetVaModelTester(self ) _UpperCAmelCase : str = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def snake_case_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCAmelCase__ ) _UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case_ (self ): def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = outputs.hidden_states _UpperCAmelCase : Tuple = 2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def snake_case_ (self ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __A ( ): _UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def snake_case_ (self ): _UpperCAmelCase : Optional[int] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
170
0
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _a : int= WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' __snake_case : Optional[int] = test_results.split(' ' ) __snake_case : Tuple = 0 __snake_case : Optional[int] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __snake_case : str = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' __snake_case : Dict = {} __snake_case : Any = None __snake_case : int = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , UpperCAmelCase_ ): __snake_case : Union[str, Any] = True __snake_case : Optional[Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): __snake_case : Optional[int] = line __snake_case : List[str] = False return failures class UpperCamelCase : def __init__(self : Any , _A : str , _A : Dict) -> List[str]: __snake_case : List[str] = title __snake_case : List[Any] = doc_test_results['time_spent'].split(',')[0] __snake_case : List[Any] = doc_test_results['success'] __snake_case : Tuple = doc_test_results['failures'] __snake_case : List[str] = self.n_success + self.n_failures # Failures and success of the modeling tests __snake_case : Any = doc_test_results @property def _lowercase (self : Tuple) -> str: __snake_case : List[str] = [self._time_spent] __snake_case : Any = 0 for time in time_spent: __snake_case : int = time.split(':') # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A) == 1: __snake_case : str = [0, 0, time_parts[0]] __snake_case , __snake_case , __snake_case : Dict = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 36_00 + minutes * 60 + seconds __snake_case , __snake_case , __snake_case : List[Any] = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f"{int(_A)}h{int(_A)}m{int(_A)}s" @property def _lowercase (self : List[str]) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _lowercase (self : Union[str, Any]) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _lowercase (self : str) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _lowercase (self : Any) -> Dict: __snake_case : str = 40 __snake_case : Optional[Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(_A , _A)} __snake_case : List[str] = '' for category, failures in category_failures.items(): if len(_A) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2).rjust(line_length // 2) + "\n" report += "`" report += "`\n`".join(_A) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _lowercase (self : List[str]) -> str: __snake_case : Tuple = [self.header] if self.n_failures > 0: blocks.append(self.failures) if self.n_failures > 0: blocks.extend([self.category_failures]) if self.n_failures == 0: blocks.append(self.no_failures) return json.dumps(_A) @staticmethod def _lowercase () -> Any: __snake_case : Optional[int] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('Sending the following payload') print(json.dumps({'blocks': json.loads(_A)})) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=_A , ) def _lowercase (self : List[Any]) -> Optional[Any]: print('Sending the following payload') print(json.dumps({'blocks': json.loads(self.payload)})) __snake_case : str = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else 'All tests passed.' __snake_case : Any = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=_A , ) def _lowercase (self : Tuple , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : Any) -> Optional[int]: __snake_case : Tuple = '' for key, value in failures.items(): __snake_case : List[str] = value[:2_00] + ' [Truncated]' if len(_A) > 2_50 else value failures_text += f"*{key}*\n_{value}_\n\n" __snake_case : Optional[int] = job_name __snake_case : Union[str, Any] = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: __snake_case : Union[str, Any] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _lowercase (self : Dict) -> Dict: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.') __snake_case : Optional[int] = self.doc_test_results.pop('job_link') self.doc_test_results.pop('failures') self.doc_test_results.pop('success') self.doc_test_results.pop('time_spent') __snake_case : List[Any] = sorted(self.doc_test_results.items() , key=lambda _A: t[0]) for job, job_result in sorted_dict: if len(job_result['failures']): __snake_case : Any = f"*Num failures* :{len(job_result['failed'])} \n" __snake_case : Tuple = job_result['failures'] __snake_case : str = self.get_reply_blocks(_A , _A , _A , text=_A) print('Sending the following reply') print(json.dumps({'blocks': blocks})) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f"Results for {job}" , blocks=_A , thread_ts=self.thread_ts['ts'] , ) time.sleep(1) def __UpperCAmelCase ( ) -> Any: '''simple docstring''' __snake_case : Any = os.environ['GITHUB_RUN_ID'] __snake_case : Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __snake_case : Optional[int] = requests.get(UpperCAmelCase_ ).json() __snake_case : int = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) __snake_case : Optional[int] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(UpperCAmelCase_ ): __snake_case : Optional[Any] = requests.get(url + F"&page={i + 2}" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , UpperCAmelCase_ ) return {} def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> Any: '''simple docstring''' __snake_case : Any = {} if os.path.exists(UpperCAmelCase_ ): __snake_case : List[Any] = os.listdir(UpperCAmelCase_ ) for file in files: try: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , encoding='utf-8' ) as f: __snake_case : List[str] = f.read() except UnicodeDecodeError as e: raise ValueError(F"Could not open {os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )}." ) from e return _artifact def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' class UpperCamelCase : def __init__(self : str , _A : str) -> Dict: __snake_case : List[str] = name __snake_case : str = [] def __str__(self : Dict) -> int: return self.name def _lowercase (self : Any , _A : str) -> Optional[int]: self.paths.append({'name': self.name, 'path': path}) __snake_case : Dict[str, Artifact] = {} __snake_case : Optional[Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: __snake_case : Any = directory if artifact_name not in _available_artifacts: __snake_case : Optional[int] = Artifact(UpperCAmelCase_ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase_ ) return _available_artifacts if __name__ == "__main__": _a : Optional[Any]= get_job_links() _a : int= retrieve_available_artifacts() _a : str= collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _a : Union[str, Any]= { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _a : Tuple= github_actions_job_links.get("run_doctests") _a : int= available_artifacts["doc_tests_gpu_test_reports"].paths[0] _a : str= retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _a, _a, _a : List[Any]= handle_test_results(artifact["stats"]) _a : Optional[Any]= failed _a : Optional[int]= success _a : Optional[Any]= time_spent[1:-1] + ", " _a : str= extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _a : List[str]= line.replace("FAILED ", "") _a : Dict= line.split()[0].replace("\n", "") if "::" in line: _a, _a : Union[str, Any]= line.split("::") else: _a, _a : int= line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _a : List[Any]= docs[file_regex] doc_test_results[category]["failed"].append(test) _a : Any= all_failures[test] if test in all_failures else "N/A" _a : int= failure break _a : str= Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
172
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
1
from __future__ import annotations __UpperCAmelCase = 10 def __UpperCamelCase ( lowercase__ : list[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : Tuple = max(lowercase__ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ : list[list] = [[] for _ in range(lowercase__ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ : Dict = int((i / placement) % RADIX ) buckets[tmp].append(lowercase__ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ : List[Any] = 0 for b in range(lowercase__ ): for i in buckets[b]: lowerCAmelCase_ : int = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
28
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=8 ) -> Optional[int]: lowerCamelCase : Union[str, Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCamelCase : Any = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Any: super().__init__() self.register_modules( text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , movq=UpperCamelCase__ , ) lowerCamelCase : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: if latents is None: lowerCamelCase : Dict = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase : str = latents.to(UpperCamelCase__ ) lowerCamelCase : Dict = latents * scheduler.init_noise_sigma return latents def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , ) -> Tuple: lowerCamelCase : int = len(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else 1 # get prompt text embeddings lowerCamelCase : Optional[int] = self.tokenizer( UpperCamelCase__ , padding="max_length" , truncation=UpperCamelCase__ , max_length=77 , return_attention_mask=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="pt" , ) lowerCamelCase : str = text_inputs.input_ids lowerCamelCase : Dict = self.tokenizer(UpperCamelCase__ , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase : int = text_input_ids.to(UpperCamelCase__ ) lowerCamelCase : int = text_inputs.attention_mask.to(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : Union[str, Any] = self.text_encoder( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowerCamelCase : Any = prompt_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : str = text_encoder_hidden_states.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : List[str] = text_mask.repeat_interleave(UpperCamelCase__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase : List[str] if negative_prompt is None: lowerCamelCase : Optional[int] = [""] * batch_size elif type(UpperCamelCase__ ) is not type(UpperCamelCase__ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase__ )} !=''' F''' {type(UpperCamelCase__ )}.''' ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Any = [negative_prompt] elif batch_size != len(UpperCamelCase__ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase__ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: lowerCamelCase : int = negative_prompt lowerCamelCase : str = self.tokenizer( UpperCamelCase__ , padding="max_length" , max_length=77 , truncation=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="pt" , ) lowerCamelCase : Optional[int] = uncond_input.input_ids.to(UpperCamelCase__ ) lowerCamelCase : Any = uncond_input.attention_mask.to(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : Any = self.text_encoder( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase : Tuple = negative_prompt_embeds.shape[1] lowerCamelCase : str = negative_prompt_embeds.repeat(1 , UpperCamelCase__ ) lowerCamelCase : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase__ ) lowerCamelCase : int = uncond_text_encoder_hidden_states.shape[1] lowerCamelCase : str = uncond_text_encoder_hidden_states.repeat(1 , UpperCamelCase__ , 1 ) lowerCamelCase : List[str] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , UpperCamelCase__ , -1 ) lowerCamelCase : Any = uncond_text_mask.repeat_interleave(UpperCamelCase__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCamelCase : Union[str, Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCamelCase : List[Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _lowercase ( self , UpperCamelCase__=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase : Union[str, Any] = torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase : Any = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowerCamelCase : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase : str = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCamelCase , lowerCamelCase : Union[str, Any] = cpu_offload_with_hook(UpperCamelCase__ , UpperCamelCase__ , prev_module_hook=UpperCamelCase__ ) if self.safety_checker is not None: lowerCamelCase , lowerCamelCase : int = cpu_offload_with_hook(self.safety_checker , UpperCamelCase__ , prev_module_hook=UpperCamelCase__ ) # We'll offload the last model manually. lowerCamelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self ) -> List[Any]: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 100 , UpperCamelCase__ = 4.0 , UpperCamelCase__ = 1 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> Union[str, Any]: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Optional[int] = 1 elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Any = len(UpperCamelCase__ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase__ )}''' ) lowerCamelCase : Tuple = self._execution_device lowerCamelCase : int = batch_size * num_images_per_prompt lowerCamelCase : Dict = guidance_scale > 1.0 lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = self._encode_prompt( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : int = torch.cat(UpperCamelCase__ , dim=0 ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Union[str, Any] = torch.cat(UpperCamelCase__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase : List[str] = image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : Optional[Any] = negative_image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=UpperCamelCase__ ) self.scheduler.set_timesteps(UpperCamelCase__ , device=UpperCamelCase__ ) lowerCamelCase : int = self.scheduler.timesteps lowerCamelCase : Optional[Any] = self.unet.config.in_channels lowerCamelCase , lowerCamelCase : List[str] = get_new_h_w(UpperCamelCase__ , UpperCamelCase__ , self.movq_scale_factor ) # create initial latent lowerCamelCase : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase : str = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowerCamelCase : List[Any] = self.unet( sample=UpperCamelCase__ , timestep=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , added_cond_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase , lowerCamelCase : Tuple = noise_pred.chunk(2 ) lowerCamelCase , lowerCamelCase : Tuple = variance_pred.chunk(2 ) lowerCamelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase , lowerCamelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase : Optional[int] = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ , ).prev_sample # post-processing lowerCamelCase : Any = self.movq.decode(UpperCamelCase__ , force_not_quantize=UpperCamelCase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowerCamelCase : List[str] = image * 0.5 + 0.5 lowerCamelCase : Union[str, Any] = image.clamp(0 , 1 ) lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase : Union[str, Any] = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
48
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCAmelCase_ ( a): def __init__( self, __a = "▁", __a = True, __a = "<unk>", __a = "</s>", __a = "<pad>", ): '''simple docstring''' _lowerCAmelCase : List[str] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } _lowerCAmelCase : str = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): _lowerCAmelCase : Dict = token_dict["token"] _lowerCAmelCase : int = Tokenizer(Unigram()) _lowerCAmelCase : Any = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " "), normalizers.Lowercase(), ]) _lowerCAmelCase : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__a, add_prefix_space=__a), pre_tokenizers.Digits(individual_digits=__a), pre_tokenizers.Punctuation(), ]) _lowerCAmelCase : List[str] = decoders.Metaspace(replacement=__a, add_prefix_space=__a) _lowerCAmelCase : Tuple = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) _lowerCAmelCase : List[Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__a, __a) def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Dict = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) if isinstance(__a, __a): _lowerCAmelCase : Union[str, Any] = [files] self._tokenizer.train(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) self._tokenizer.train_from_iterator(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = json.loads(self._tokenizer.to_str()) _lowerCAmelCase : Tuple = self.special_tokens["unk"]["id"] _lowerCAmelCase : Any = Tokenizer.from_str(json.dumps(__a))
36
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
"""simple docstring""" from math import sqrt def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' UpperCamelCase__ : str =0 for i in range(1 , int(sqrt(UpperCAmelCase ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCAmelCase ): total += i + n // i elif i == sqrt(UpperCAmelCase ): total += i return total - n def _lowerCAmelCase ( UpperCAmelCase : int = 10_000 ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] =sum( i for i in range(1 , UpperCAmelCase ) if sum_of_divisors(sum_of_divisors(UpperCAmelCase ) ) == i and sum_of_divisors(UpperCAmelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
157
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _SCREAMING_SNAKE_CASE : str = False class __a ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Any =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase__ : Dict =torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] =pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCamelCase__ : str =VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : int =generator.manual_seed(0 ) UpperCamelCase__ : str =pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Dict =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : str ='''cyberpunk 2077''' UpperCamelCase__ : str =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase__ : int =torch.manual_seed(0 ) UpperCamelCase__ : int =pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase__ : List[str] =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Dict =np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Dict ='''A painting of a squirrel eating a burger ''' UpperCamelCase__ : Optional[int] =torch.manual_seed(0 ) UpperCamelCase__ : str =pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCamelCase__ : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : List[Any] =np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Optional[Any] =pipe.image_variation(lowercase_ , generator=lowercase_ , output_type='''numpy''' ).images UpperCamelCase__ : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Tuple =np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
157
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a ( snake_case__: List[str] ): '''simple docstring''' lowercase_ = {} lowercase_ = tokenizer(example['''content'''] , truncation=snake_case__ )['''input_ids'''] lowercase_ = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __a = HfArgumentParser(PretokenizationArguments) __a = parser.parse_args() if args.num_workers is None: __a = multiprocessing.cpu_count() __a = AutoTokenizer.from_pretrained(args.tokenizer_dir) __a = time.time() __a = load_dataset(args.dataset_name, split='train') print(f"Dataset loaded in {time.time()-t_start:.2f}s") __a = time.time() __a = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f"Dataset tokenized in {time.time()-t_start:.2f}s") __a = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
30
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : bool = False) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(_lowercase), magnitude * sin(_lowercase)] return [magnitude * cos(radians(_lowercase)), magnitude * sin(radians(_lowercase))] def lowerCAmelCase_ ( _lowercase : NDArray[floataa] , _lowercase : NDArray[floataa] , _lowercase : float = 10**-1) -> bool: """simple docstring""" a__ : NDArray[floataa] = cross(_lowercase , _lowercase) a__ : float = sum(_lowercase) return abs(_lowercase) < eps if __name__ == "__main__": # Test to check if it works _lowercase : int =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowercase : NDArray[floataa] =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowercase : Union[str, Any] =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowercase : Dict =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowercase : Tuple =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) _lowercase : Any =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
170
0
import math def A ( a_ ,a_ ) -> int: __UpperCamelCase : Optional[Any] =len(a_ ) __UpperCamelCase : int =int(math.floor(math.sqrt(a_ ) ) ) __UpperCamelCase : Any =0 while arr[min(a_ ,a_ ) - 1] < x: __UpperCamelCase : Tuple =step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __UpperCamelCase : Any =prev + 1 if prev == min(a_ ,a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ :List[str] = input('''Enter numbers separated by a comma:\n''').strip() A_ :Dict = [int(item) for item in user_input.split(''',''')] A_ :Optional[Any] = int(input('''Enter the number to be searched:\n''')) A_ :List[Any] = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f"Number {x} is at index {res}")
245
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def A ( a_ ) -> int: __UpperCamelCase : List[Any] =botoa.client('iam' ) __UpperCamelCase : List[str] ={ 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=a_ ,AssumeRolePolicyDocument=json.dumps(a_ ,indent=2 ) ) __UpperCamelCase : List[str] ={ 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=a_ ,PolicyName=F'{role_name}_policy_permission' ,PolicyDocument=json.dumps(a_ ,indent=2 ) ,) except iam_client.exceptions.EntityAlreadyExistsException: print(F'role {role_name} already exists. Using existing one' ) def A ( a_ ) -> Optional[Any]: __UpperCamelCase : List[Any] =botoa.client('iam' ) return iam_client.get_role(RoleName=a_ )["Role"]["Arn"] def A ( ) -> Tuple: __UpperCamelCase : Any =_ask_options( 'How do you want to authorize?' ,['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] ,a_ ,) __UpperCamelCase : str =None if credentials_configuration == 0: __UpperCamelCase : str =_ask_field('Enter your AWS Profile name: [default] ' ,default='default' ) __UpperCamelCase : Optional[Any] =aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) __UpperCamelCase : int =_ask_field('AWS Access Key ID: ' ) __UpperCamelCase : Dict =aws_access_key_id __UpperCamelCase : Any =_ask_field('AWS Secret Access Key: ' ) __UpperCamelCase : Optional[Any] =aws_secret_access_key __UpperCamelCase : Tuple =_ask_field('Enter your AWS Region: [us-east-1]' ,default='us-east-1' ) __UpperCamelCase : List[str] =aws_region __UpperCamelCase : Any =_ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' ,['Provide IAM Role name', 'Create new IAM role using credentials'] ,a_ ,) if role_management == 0: __UpperCamelCase : Optional[Any] =_ask_field('Enter your IAM role name: ' ) else: __UpperCamelCase : Dict ='accelerate_sagemaker_execution_role' print(F'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(a_ ) __UpperCamelCase : List[Any] =_ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) __UpperCamelCase : int =None if is_custom_docker_image: __UpperCamelCase : List[Any] =_ask_field('Enter your Docker image: ' ,lambda a_ : str(a_ ).lower() ) __UpperCamelCase : Union[str, Any] =_ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) __UpperCamelCase : Optional[Any] =None if is_sagemaker_inputs_enabled: __UpperCamelCase : Optional[Any] =_ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' ,lambda a_ : str(a_ ).lower() ,) __UpperCamelCase : str =_ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) __UpperCamelCase : Dict =None if is_sagemaker_metrics_enabled: __UpperCamelCase : Optional[Any] =_ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' ,lambda a_ : str(a_ ).lower() ,) __UpperCamelCase : int =_ask_options( 'What is the distributed mode?' ,['No distributed training', 'Data parallelism'] ,_convert_sagemaker_distributed_mode ,) __UpperCamelCase : int ={} __UpperCamelCase : str =_ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) if use_dynamo: __UpperCamelCase : Dict ='dynamo_' __UpperCamelCase : Optional[int] =_ask_options( 'Which dynamo backend would you like to use?' ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,) __UpperCamelCase : Tuple =_ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) if use_custom_options: __UpperCamelCase : List[str] =_ask_options( 'Which mode do you want to use?' ,a_ ,lambda a_ : TORCH_DYNAMO_MODES[int(a_ )] ,default='default' ,) __UpperCamelCase : Union[str, Any] =_ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) __UpperCamelCase : Tuple =_ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' ,_convert_yes_no_to_bool ,default=a_ ,error_message='Please enter yes or no.' ,) __UpperCamelCase : Tuple ='Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: __UpperCamelCase : int =_ask_options( a_ ,a_ ,lambda a_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __UpperCamelCase : List[str] =_ask_field(a_ ,lambda a_ : str(a_ ).lower() ,default='ml.p3.2xlarge' ) __UpperCamelCase : Union[str, Any] =1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __UpperCamelCase : List[str] =_ask_field( 'How many machines do you want use? [1]: ' ,a_ ,default=1 ,) __UpperCamelCase : Optional[Any] =_ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' ,['no', 'fp16', 'bf16', 'fp8'] ,_convert_mixed_precision ,) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=a_ ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=a_ ,use_cpu=a_ ,dynamo_config=a_ ,eca_instance_type=a_ ,profile=a_ ,region=a_ ,iam_role_name=a_ ,mixed_precision=a_ ,num_machines=a_ ,sagemaker_inputs_file=a_ ,sagemaker_metrics_file=a_ ,)
245
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCamelCase ( A__ , A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(A__ ): os.makedirs(A__ ) UpperCamelCase = model.state_dict() def to_tf_var_name(A__ ): for patt, repl in iter(A__ ): UpperCamelCase = name.replace(A__ , A__ ) return F"""bert/{name}""" def create_tf_var(A__ , A__ , A__ ): UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase = tf.get_variable(dtype=A__ , shape=tensor.shape , name=A__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(A__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase = to_tf_var_name(A__ ) UpperCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase = torch_tensor.T UpperCamelCase = create_tf_var(tensor=A__ , name=A__ , session=A__ ) tf.keras.backend.set_value(A__ , A__ ) UpperCamelCase = session.run(A__ ) print(F"""Successfully created {tf_name}: {np.allclose(A__ , A__ )}""" ) UpperCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(A__ , os.path.join(A__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def __lowerCamelCase ( A__=None ) -> Optional[int]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=A__ , required=A__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=A__ , default=A__ , required=A__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=A__ , required=A__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=A__ , required=A__ , help='Directory in which to save tensorflow model' ) UpperCamelCase = parser.parse_args(A__ ) UpperCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=A__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
28
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : List[str] = 5_0000 _lowerCamelCase : Optional[int] = 5000 _lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__) _lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" for i in range(0 , len(A__ ) , A__ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): UpperCamelCase = dataset[i : i + batch_size] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) UpperCamelCase = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) UpperCamelCase = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) UpperCamelCase = func(A__ , **A__ ) print('shuffling dataset' ) UpperCamelCase = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(A__ ) ) UpperCamelCase = func( A__ , **A__ ) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ : Union[str, Any] = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ : Any = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" UpperCamelCase__ : Tuple = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if number >= 0: # Get binary representation of positive number UpperCamelCase__ : Optional[Any] = "0" + str(bin(__snake_case ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number UpperCamelCase__ : Dict = len(bin(__snake_case )[3:] ) # Find 2's complement of number UpperCamelCase__ : Any = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] UpperCamelCase__ : List[str] = ( "1" + "0" * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
362
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __a ( A__ ): _lowerCAmelCase : str = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCAmelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowerCAmelCase : ClassVar[Features] = Features({} ) _lowerCAmelCase : str = "text" @property def __lowercase ( self : str ): '''simple docstring''' return {self.text_column: "text"}
196
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''ctrl''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , _A : int=24_6534 , _A : str=256 , _A : List[Any]=1280 , _A : Tuple=8192 , _A : List[str]=48 , _A : List[str]=16 , _A : str=0.1 , _A : Any=0.1 , _A : str=1e-6 , _A : str=0.02 , _A : Union[str, Any]=True , **_A : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = n_positions __SCREAMING_SNAKE_CASE : Dict = n_embd __SCREAMING_SNAKE_CASE : List[Any] = n_layer __SCREAMING_SNAKE_CASE : Tuple = n_head __SCREAMING_SNAKE_CASE : str = dff __SCREAMING_SNAKE_CASE : List[str] = resid_pdrop __SCREAMING_SNAKE_CASE : Optional[int] = embd_pdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache super().__init__(**_A )
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __a = logging.getLogger(__name__) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = np.argmax(lowerCAmelCase__ , axis=1 ) return np.sum(outputs == labels ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' with open(lowerCAmelCase__ , encoding='''utf_8''' ) as f: UpperCAmelCase_ : Union[str, Any] = csv.reader(lowerCAmelCase__ ) UpperCAmelCase_ : Any = [] next(lowerCAmelCase__ ) # skip the first line for line in tqdm(lowerCAmelCase__ ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = [] for dataset in encoded_datasets: UpperCAmelCase_ : List[str] = len(lowerCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCAmelCase_ : Optional[Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCAmelCase_ : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) UpperCAmelCase_ : Dict = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase_ : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase_ : Tuple = with_conta UpperCAmelCase_ : str = with_conta UpperCAmelCase_ : Dict = len(lowerCAmelCase__ ) - 1 UpperCAmelCase_ : Tuple = len(lowerCAmelCase__ ) - 1 UpperCAmelCase_ : Tuple = with_conta UpperCAmelCase_ : Optional[Any] = with_conta UpperCAmelCase_ : Dict = mc_label UpperCAmelCase_ : Tuple = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase__ ) for t in all_inputs ) ) return tensor_datasets def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=lowerCAmelCase__ , default='''''' ) parser.add_argument('''--eval_dataset''' , type=lowerCAmelCase__ , default='''''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase__ , default=42 ) parser.add_argument('''--num_train_epochs''' , type=lowerCAmelCase__ , default=3 ) parser.add_argument('''--train_batch_size''' , type=lowerCAmelCase__ , default=8 ) parser.add_argument('''--eval_batch_size''' , type=lowerCAmelCase__ , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowerCAmelCase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=lowerCAmelCase__ , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=lowerCAmelCase__ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=lowerCAmelCase__ , default=6.2_5E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowerCAmelCase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=lowerCAmelCase__ , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=lowerCAmelCase__ , default=0.01 ) parser.add_argument('''--lm_coef''' , type=lowerCAmelCase__ , default=0.9 ) parser.add_argument('''--n_valid''' , type=lowerCAmelCase__ , default=374 ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase__ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase__ , default='''''' , help='''Can be used for distant debugging.''' ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() print(lowerCAmelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCAmelCase_ : Optional[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase_ : Tuple = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCAmelCase_ : List[Any] = ["""_start_""", """_delimiter_""", """_classify_"""] UpperCAmelCase_ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase__ ) ) model.to(lowerCAmelCase__ ) # Load and encode the datasets def tokenize_and_encode(_lowercase ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase__ ) ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return obj return [tokenize_and_encode(lowerCAmelCase__ ) for o in obj] logger.info('''Encoding dataset...''' ) UpperCAmelCase_ : Any = load_rocstories_dataset(args.train_dataset ) UpperCAmelCase_ : Optional[Any] = load_rocstories_dataset(args.eval_dataset ) UpperCAmelCase_ : Optional[int] = (train_dataset, eval_dataset) UpperCAmelCase_ : str = tokenize_and_encode(lowerCAmelCase__ ) # Compute the max input length for the Transformer UpperCAmelCase_ : Optional[Any] = model.config.n_positions // 2 - 2 UpperCAmelCase_ : Dict = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCAmelCase_ : Any = min(lowerCAmelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCAmelCase_ : Any = pre_process_datasets(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] UpperCAmelCase_ : Optional[Any] = TensorDataset(*lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = RandomSampler(lowerCAmelCase__ ) UpperCAmelCase_ : int = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.train_batch_size ) UpperCAmelCase_ : Optional[int] = TensorDataset(*lowerCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = SequentialSampler(lowerCAmelCase__ ) UpperCAmelCase_ : Any = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCAmelCase_ : Dict = args.max_steps UpperCAmelCase_ : str = args.max_steps // (len(lowerCAmelCase__ ) // args.gradient_accumulation_steps) + 1 else: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCAmelCase_ : Union[str, Any] = list(model.named_parameters() ) UpperCAmelCase_ : Dict = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] UpperCAmelCase_ : List[str] = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] UpperCAmelCase_ : Union[str, Any] = AdamW(lowerCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCAmelCase_ : Dict = get_linear_schedule_with_warmup( lowerCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase__ ) if args.do_train: UpperCAmelCase_ : List[str] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Optional[int] = tqdm(lowerCAmelCase__ , desc='''Training''' ) for step, batch in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ : Optional[Any] = tuple(t.to(lowerCAmelCase__ ) for t in batch ) UpperCAmelCase_ : str = batch UpperCAmelCase_ : List[str] = model(lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCAmelCase_ : Tuple = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCAmelCase_ : Optional[Any] = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCAmelCase__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCAmelCase_ : Dict = model.module if hasattr(lowerCAmelCase__ , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCAmelCase_ : Any = os.path.join(args.output_dir , lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir , lowerCAmelCase__ ) torch.save(model_to_save.state_dict() , lowerCAmelCase__ ) model_to_save.config.to_json_file(lowerCAmelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCAmelCase_ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCAmelCase_ : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase__ ) if args.do_eval: model.eval() UpperCAmelCase_ : Union[str, Any] = 0, 0 UpperCAmelCase_ : int = 0, 0 for batch in tqdm(lowerCAmelCase__ , desc='''Evaluating''' ): UpperCAmelCase_ : str = tuple(t.to(lowerCAmelCase__ ) for t in batch ) UpperCAmelCase_ : Dict = batch with torch.no_grad(): UpperCAmelCase_ : List[str] = model( lowerCAmelCase__ , mc_token_ids=lowerCAmelCase__ , lm_labels=lowerCAmelCase__ , mc_labels=lowerCAmelCase__ ) UpperCAmelCase_ : str = mc_logits.detach().cpu().numpy() UpperCAmelCase_ : str = mc_labels.to('''cpu''' ).numpy() UpperCAmelCase_ : Dict = accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCAmelCase_ : Optional[Any] = eval_loss / nb_eval_steps UpperCAmelCase_ : Any = eval_accuracy / nb_eval_examples UpperCAmelCase_ : Any = tr_loss / nb_tr_steps if args.do_train else None UpperCAmelCase_ : Optional[int] = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} UpperCAmelCase_ : List[str] = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(lowerCAmelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCAmelCase__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
366
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
235
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : Any = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) return image def _UpperCamelCase ( snake_case__ ) -> List[str]: __UpperCAmelCase : List[str] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = dct.pop(snake_case__ ) __UpperCAmelCase : Dict = val def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase : List[str] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCAmelCase : str = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCAmelCase : Dict = torch.cat((q_bias, torch.zeros_like(snake_case__, requires_grad=snake_case__ ), v_bias) ) __UpperCAmelCase : Any = qkv_bias def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase : Union[str, Any] = 364 if "coco" in model_name else 224 __UpperCAmelCase : Union[str, Any] = InstructBlipVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase : Optional[Any] = TaConfig.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCAmelCase : Optional[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf", vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: __UpperCAmelCase : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf", vocab_size=3_2001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCAmelCase : List[Any] = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() __UpperCAmelCase : List[Any] = InstructBlipConfig(vision_config=snake_case__, text_config=snake_case__, qformer_config=snake_case__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> Tuple: __UpperCAmelCase : str = AutoTokenizer.from_pretrained("bert-base-uncased", truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __UpperCAmelCase : Tuple = TaTokenizerFast.from_pretrained("google/flan-t5-xl", truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCAmelCase : str = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b", truncation_side="left", bos_token="</s>", unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __UpperCAmelCase , __UpperCAmelCase : List[str] = get_blipa_config(snake_case__ ) __UpperCAmelCase : Any = InstructBlipForConditionalGeneration(snake_case__ ).eval() __UpperCAmelCase : Optional[int] = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) __UpperCAmelCase : Any = "cuda:1" if torch.cuda.is_available() else "cpu" __UpperCAmelCase : Optional[int] = "cuda:2" if torch.cuda.is_available() else "cpu" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = load_model_and_preprocess( name=snake_case__, model_type=snake_case__, is_eval=snake_case__, device=snake_case__ ) original_model.eval() print("Done!" ) # update state dict keys __UpperCAmelCase : Tuple = original_model.state_dict() __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase : Optional[int] = state_dict.pop(snake_case__ ) if key.startswith("Qformer.bert" ): __UpperCAmelCase : Tuple = key.replace("Qformer.bert", "qformer" ) if "attention.self" in key: __UpperCAmelCase : List[Any] = key.replace("self", "attention" ) if "llm_proj" in key: __UpperCAmelCase : Optional[Any] = key.replace("llm_proj", "language_projection" ) if "t5_proj" in key: __UpperCAmelCase : Optional[Any] = key.replace("t5_proj", "language_projection" ) if key.startswith("llm_model" ): __UpperCAmelCase : List[Any] = key.replace("llm_model", "language_model" ) if key.startswith("t5" ): __UpperCAmelCase : Union[str, Any] = key.replace("t5", "language" ) __UpperCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(snake_case__, snake_case__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : Dict = load_demo_image() __UpperCAmelCase : Dict = "What is unusual about this image?" # create processor __UpperCAmelCase : Dict = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=snake_case__, image_std=snake_case__ ) __UpperCAmelCase : Any = InstructBlipProcessor( image_processor=snake_case__, tokenizer=snake_case__, qformer_tokenizer=snake_case__, ) __UpperCAmelCase : Union[str, Any] = processor(images=snake_case__, text=snake_case__, return_tensors="pt" ).to(snake_case__ ) # make sure processor creates exact same pixel values __UpperCAmelCase : str = vis_processors["eval"](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) __UpperCAmelCase : int = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "vicuna" in model_name: __UpperCAmelCase : Optional[int] = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __UpperCAmelCase : Union[str, Any] = hf_model(**snake_case__ ).logits else: __UpperCAmelCase : int = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __UpperCAmelCase : str = tokenizer("\n", return_tensors="pt" ).input_ids.to(snake_case__ ) __UpperCAmelCase : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -100 ) __UpperCAmelCase : Dict = hf_model(**snake_case__, labels=snake_case__ ).logits print("First values of original logits:", original_logits[0, :3, :3] ) print("First values of HF logits:", logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCAmelCase : int = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ), snake_case__, atol=snake_case__ ) print("Looks ok!" ) print("Generating with original model..." ) __UpperCAmelCase : str = original_model.generate({"image": original_pixel_values, "prompt": prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __UpperCAmelCase : List[str] = hf_model.generate( **snake_case__, do_sample=snake_case__, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCAmelCase : List[Any] = 2 print("Original generation:", snake_case__ ) __UpperCAmelCase : int = processor.batch_decode(snake_case__, skip_special_tokens=snake_case__ ) __UpperCAmelCase : List[Any] = [text.strip() for text in output_text] print("HF generation:", snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() _snake_case = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
157
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["image_processor", "tokenizer"] lowerCamelCase__: Tuple = "BlipImageProcessor" lowerCamelCase__: str = "AutoTokenizer" def __init__( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: int ) -> List[str]: __UpperCAmelCase : Dict = False super().__init__(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[Any] = self.image_processor def __call__( self: Tuple , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Optional[int] , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __UpperCAmelCase : int = self.tokenizer __UpperCAmelCase : Optional[int] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding # add pixel_values __UpperCAmelCase : List[str] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) if text is not None: __UpperCAmelCase : Optional[int] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) else: __UpperCAmelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def _lowerCamelCase ( self: Union[str, Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> Dict: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Any , *__lowerCamelCase: str , **__lowerCamelCase: Dict ) -> Union[str, Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : int = self.tokenizer.model_input_names __UpperCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
157
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = StableUnCLIPPipeline __snake_case = TEXT_TO_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __snake_case = False def _snake_case ( self: Union[str, Any] ) -> Tuple: __lowerCamelCase : List[str] = 32 __lowerCamelCase : Union[str, Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) __lowerCamelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __lowerCamelCase : Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a , projection_dim=a , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __lowerCamelCase : str = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a , num_layers=1 , ) torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=a , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) __lowerCamelCase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=a ) __lowerCamelCase : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __lowerCamelCase : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a , layers_per_block=1 , upcast_attention=a , use_linear_projection=a , ) torch.manual_seed(0 ) __lowerCamelCase : List[str] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=a , steps_offset=1 , ) torch.manual_seed(0 ) __lowerCamelCase : List[str] = AutoencoderKL() __lowerCamelCase : List[str] = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def _snake_case ( self: Optional[int] , a: List[Any] , a: int=0 ) -> Optional[int]: if str(a ).startswith('mps' ): __lowerCamelCase : str = torch.manual_seed(a ) else: __lowerCamelCase : List[str] = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _snake_case ( self: List[Any] ) -> List[str]: __lowerCamelCase : Tuple = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=a ) def _snake_case ( self: str ) -> Optional[int]: __lowerCamelCase : Tuple = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=a ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: str ) -> str: __lowerCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) __lowerCamelCase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCamelCase : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase : Optional[Any] = pipe('anime turle' , generator=a , output_type='np' ) __lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a ) def _snake_case ( self: Union[str, Any] ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase : int = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) __lowerCamelCase : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCamelCase : str = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) __lowerCamelCase : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
360
import warnings from .generation import TFGenerationMixin class A_ ( __UpperCamelCase ): '''simple docstring''' warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , __UpperCamelCase , )
194
0
def __lowercase ( _A ) -> tuple[int, int]: try: SCREAMING_SNAKE_CASE : Dict = float(_A ) except ValueError: raise ValueError("""Please enter a valid number""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = decimal - int(_A ) if fractional_part == 0: return int(_A ), 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = len(str(_A ).split(""".""" )[1] ) SCREAMING_SNAKE_CASE : List[str] = int(decimal * (10**number_of_frac_digits) ) SCREAMING_SNAKE_CASE : int = 10**number_of_frac_digits SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = denominator, numerator while True: SCREAMING_SNAKE_CASE : List[str] = dividend % divisor if remainder == 0: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = divisor, remainder SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = numerator / divisor, denominator / divisor return int(_A ), int(_A ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
245
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCAmelCase__ : Tuple = logging.getLogger(__name__) class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] ="""token-classification""" def __init__( self : Tuple , UpperCAmelCase__ : Tuple ) ->Optional[Any]: """simple docstring""" if type(UpperCAmelCase__ ) == dict: SCREAMING_SNAKE_CASE : List[str] = Namespace(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = import_module("""tasks""" ) try: SCREAMING_SNAKE_CASE : str = getattr(UpperCAmelCase__ , hparams.task_type ) SCREAMING_SNAKE_CASE : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) SCREAMING_SNAKE_CASE : List[Any] = self.token_classification_task.get_labels(hparams.labels ) SCREAMING_SNAKE_CASE : List[Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCAmelCase__ , len(self.labels ) , self.mode ) def _lowercase ( self : List[str] , **UpperCAmelCase__ : Optional[int] ) ->Any: """simple docstring""" return self.model(**UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE : List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = self(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowercase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.hparams for mode in ["train", "dev", "test"]: SCREAMING_SNAKE_CASE : Any = self._feature_file(UpperCAmelCase__ ) if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = torch.load(UpperCAmelCase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) SCREAMING_SNAKE_CASE : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.token_classification_task.convert_examples_to_features( UpperCAmelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCAmelCase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , UpperCAmelCase__ ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) ->DataLoader: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self._feature_file(UpperCAmelCase__ ) logger.info("""Loading features from cached file %s""" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.load(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: SCREAMING_SNAKE_CASE : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) SCREAMING_SNAKE_CASE : Dict = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , batch_size=UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) ->Tuple: """simple docstring""" """Compute validation""" "" SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE : str = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE : Dict = self(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = outputs[:2] SCREAMING_SNAKE_CASE : Optional[Any] = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE : Tuple = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowercase ( self : int , UpperCAmelCase__ : List[str] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() SCREAMING_SNAKE_CASE : str = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE : Tuple = np.argmax(UpperCAmelCase__ , axis=2 ) SCREAMING_SNAKE_CASE : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = dict(enumerate(self.labels ) ) SCREAMING_SNAKE_CASE : int = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) SCREAMING_SNAKE_CASE : Tuple = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ), """precision""": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ), """recall""": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ), """f1""": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ), } SCREAMING_SNAKE_CASE : Optional[int] = dict(results.items() ) SCREAMING_SNAKE_CASE : Optional[Any] = results return ret, preds_list, out_label_list def _lowercase ( self : Dict , UpperCAmelCase__ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self._eval_end(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowercase ( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self._eval_end(UpperCAmelCase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 SCREAMING_SNAKE_CASE : Dict = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowercase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) ->List[Any]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCAmelCase__ , UpperCAmelCase__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=UpperCAmelCase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=UpperCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=UpperCAmelCase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=UpperCAmelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": UpperCAmelCase__ : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCAmelCase__ : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase__ : int = parser.parse_args() UpperCAmelCase__ : Union[str, Any] = NERTransformer(args) UpperCAmelCase__ : str = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCAmelCase__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) UpperCAmelCase__ : Any = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
245
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self : Any , *, __lowerCAmelCase : int = 4 , __lowerCAmelCase : int = 7_68 , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , ) -> Dict: """simple docstring""" super().__init__() A__ = nn.Parameter(torch.zeros(__lowerCAmelCase ) ) # parameters for additional clip time embeddings A__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) A__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # parameters for encoder hidden states A__ = clip_extra_context_tokens A__ = nn.Linear( __lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) A__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) A__ = nn.LayerNorm(__lowerCAmelCase ) def a_ ( self : Tuple , *, __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings A__ = image_embeddings.shape[0] A__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) A__ = classifier_free_guidance_embeddings.expand( __lowerCAmelCase , -1 ) A__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] A__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... A__ = self.embedding_proj(__lowerCAmelCase ) A__ = self.clip_image_embeddings_project_to_time_embeddings(__lowerCAmelCase ) A__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" A__ = self.clip_extra_context_tokens_proj(__lowerCAmelCase ) A__ = clip_extra_context_tokens.reshape(__lowerCAmelCase , -1 , self.clip_extra_context_tokens ) A__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) A__ = self.encoder_hidden_states_proj(__lowerCAmelCase ) A__ = self.text_encoder_hidden_states_norm(__lowerCAmelCase ) A__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : Optional[Any] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys A : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
0
"""simple docstring""" def _snake_case ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowercase__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"{solution() = }")
96
def snake_case_ ( snake_case ) -> int: if n == 1 or not isinstance(snake_case , snake_case ): return 0 elif n == 2: return 1 else: lowercase__: Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ ( snake_case ) -> int: lowercase__: int = 0 lowercase__: int = 2 while digits < n: index += 1 lowercase__: Tuple = len(str(fibonacci(snake_case ) ) ) return index def snake_case_ ( snake_case = 10_00 ) -> int: return fibonacci_digits_index(snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
196
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A = json.load(f) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' return FSMTTokenizer.from_pretrained(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =FSMTForConditionalGeneration.from_pretrained(UpperCAmelCase_).to(UpperCAmelCase_) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =F"""facebook/wmt19-{pair}""" lowerCamelCase__: str =self.get_tokenizer(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.get_model(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =bleu_data[pair]["src"] lowerCamelCase__: Optional[int] =bleu_data[pair]["tgt"] lowerCamelCase__: Union[str, Any] =tokenizer(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_ , padding="longest").to(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase__: Union[str, Any] =tokenizer.batch_decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_) lowerCamelCase__: str =calculate_bleu(UpperCAmelCase_ , UpperCAmelCase_) print(UpperCAmelCase_) self.assertGreaterEqual(scores["bleu"] , UpperCAmelCase_)
10
a__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
235
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Optional[int] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : Optional[Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _UpperCAmelCase : Optional[int] = s_dict.pop(UpperCamelCase__ ) elif "subsample" in key: _UpperCAmelCase : Tuple = s_dict.pop(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Any = emb.weight.shape _UpperCAmelCase : Any = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) _UpperCAmelCase : Any = emb.weight.data return lin_layer def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Dict ): _UpperCAmelCase : Tuple = torch.load(UpperCamelCase__ , map_location='''cpu''' ) _UpperCAmelCase : Optional[int] = mam_aaa['''args'''] _UpperCAmelCase : str = mam_aaa['''model'''] _UpperCAmelCase : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) _UpperCAmelCase : str = state_dict['''decoder.embed_tokens.weight'''].shape[0] _UpperCAmelCase : str = args.share_decoder_input_output_embed _UpperCAmelCase : str = [int(UpperCamelCase__ ) for i in args.conv_kernel_sizes.split(''',''' )] _UpperCAmelCase : Optional[int] = SpeechaTextConfig( vocab_size=UpperCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase__ , num_beams=5 , max_length=200 , use_cache=UpperCamelCase__ , decoder_start_token_id=2 , early_stopping=UpperCamelCase__ , ) _UpperCAmelCase : Any = SpeechaTextForConditionalGeneration(UpperCamelCase__ ) _UpperCAmelCase : Tuple = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F' but all the following weights are missing {missing}' ) if tie_embeds: _UpperCAmelCase : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase : List[Any] = lm_head_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowerCAmelCase :Optional[int] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
358
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase :Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
68
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example snake_case__ : str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Optional[int] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( _snake_case : Any ): lowerCAmelCase : Optional[int] = [] for i in range(len(__snake_case ) ): lowerCAmelCase : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : int = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(__snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : Optional[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__snake_case ) return next_generation def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): lowerCAmelCase : Optional[int] = [] for _ in range(__snake_case ): # Create output image lowerCAmelCase : Any = Image.new('''RGB''' , (len(cells[0] ), len(__snake_case )) ) lowerCAmelCase : Optional[int] = img.load() # Save cells to image for x in range(len(__snake_case ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : int = 255 - cells[y][x] * 255 lowerCAmelCase : int = (colour, colour, colour) # Save image images.append(__snake_case ) lowerCAmelCase : List[str] = new_generation(__snake_case ) return images if __name__ == "__main__": snake_case__ : Union[str, Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
60
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = credit_card_number _UpperCamelCase = 0 _UpperCamelCase = len(__snake_case ) - 2 for i in range(__snake_case, -1, -2 ): # double the value of every second digit _UpperCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCamelCase = cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__snake_case ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(__snake_case ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(__snake_case ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__snake_case ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
194
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = StableDiffusionInstructPixaPixPipeline __a: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} __a: int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __a: int = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCAmelCase_ = CLIPTextModel(snake_case_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ) if str(snake_case_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(snake_case_ ) else: lowerCAmelCase_ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) lowerCAmelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) lowerCAmelCase_ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase_ = self.get_dummy_inputs(snake_case_ ) lowerCAmelCase_ = sd_pipe(**snake_case_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) lowerCAmelCase_ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase_ = self.get_dummy_inputs(snake_case_ ) lowerCAmelCase_ = """french fries""" lowerCAmelCase_ = sd_pipe(**snake_case_ , negative_prompt=snake_case_ ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) lowerCAmelCase_ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase_ = self.get_dummy_inputs(snake_case_ ) lowerCAmelCase_ = [inputs["""prompt"""]] * 2 lowerCAmelCase_ = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0 lowerCAmelCase_ = torch.from_numpy(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) lowerCAmelCase_ = image / 2 + 0.5 lowerCAmelCase_ = image.permute(0 , 3 , 1 , 2 ) lowerCAmelCase_ = image.repeat(2 , 1 , 1 , 1 ) lowerCAmelCase_ = sd_pipe(**snake_case_ ).images lowerCAmelCase_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) lowerCAmelCase_ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase_ = self.get_dummy_inputs(snake_case_ ) lowerCAmelCase_ = sd_pipe(**snake_case_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [round(snake_case_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(snake_case_ ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) lowerCAmelCase_ = VaeImageProcessor(do_resize=snake_case_ , do_normalize=snake_case_ ) lowerCAmelCase_ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs_by_type(snake_case_ , input_image_type='pt' ) )[0] lowerCAmelCase_ = components["""vae"""] lowerCAmelCase_ = self.get_dummy_inputs_by_type(snake_case_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCAmelCase_ = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCAmelCase_ = pipe(**snake_case_ )[0] lowerCAmelCase_ = np.abs(out - out_latents_inputs ).max() self.assertLess(snake_case_ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self , lowercase_=0 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = torch.manual_seed(snake_case_ ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) lowerCAmelCase_ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**snake_case_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**snake_case_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) lowerCAmelCase_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**snake_case_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = 0 def callback_fn(lowercase_ , lowercase_ , lowercase_ ) -> None: lowerCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCAmelCase_ = latents[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCAmelCase_ = latents[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase_ = False lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**snake_case_ ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase_ = inputs["""image"""].resize((5_0_4, 5_0_4) ) lowerCAmelCase_ = """timbrooks/instruct-pix2pix""" lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = pipe(**snake_case_ ) lowerCAmelCase_ = output.images[0] lowerCAmelCase_ = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) lowerCAmelCase_ = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
370
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
0
a_ = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' a_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] a_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
340
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract A__: Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ) -> int: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : np.ndarray ,_UpperCAmelCase : Optional[str] ,_UpperCAmelCase : Optional[str] = None ) -> Optional[int]: _a : Any =tesseract_config if tesseract_config is not None else """""" # apply OCR _a : Optional[Any] =to_pil_image(_UpperCAmelCase ) _a , _a : List[Any] =pil_image.size _a : List[str] =pytesseract.image_to_data(_UpperCAmelCase ,lang=_UpperCAmelCase ,output_type="""dict""" ,config=_UpperCAmelCase ) _a , _a , _a , _a , _a : str =data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates _a : Tuple =[idx for idx, word in enumerate(_UpperCAmelCase ) if not word.strip()] _a : List[Any] =[word for idx, word in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _a : Dict =[coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _a : List[str] =[coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _a : Union[str, Any] =[coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _a : Union[str, Any] =[coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : List[str] =[] for x, y, w, h in zip(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ): _a : int =[x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase ) # finally, normalize the bounding boxes _a : str =[] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[Any] = ["pixel_values"] def __init__( self :Tuple , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[str] = None , SCREAMING_SNAKE_CASE :Optional[str] = "" , **SCREAMING_SNAKE_CASE :Tuple , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : List[Any] =size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _a : Tuple =get_size_dict(SCREAMING_SNAKE_CASE ) _a : Dict =do_resize _a : Tuple =size _a : str =resample _a : Dict =apply_ocr _a : Union[str, Any] =ocr_lang _a : Dict =tesseract_config def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Dict , ) -> np.ndarray: '''simple docstring''' _a : int =get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) _a : Any =(size["""height"""], size["""width"""]) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :ImageInput , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :PILImageResampling = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :Optional[str] = None , SCREAMING_SNAKE_CASE :Optional[str] = None , SCREAMING_SNAKE_CASE :Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE :ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' _a : Optional[int] =do_resize if do_resize is not None else self.do_resize _a : Optional[int] =size if size is not None else self.size _a : str =get_size_dict(SCREAMING_SNAKE_CASE ) _a : List[str] =resample if resample is not None else self.resample _a : int =apply_ocr if apply_ocr is not None else self.apply_ocr _a : str =ocr_lang if ocr_lang is not None else self.ocr_lang _a : Union[str, Any] =tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[str] =make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. _a : List[Any] =[to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) _a : Any =[] _a : Any =[] for image in images: _a , _a : int =apply_tesseract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) words_batch.append(SCREAMING_SNAKE_CASE ) boxes_batch.append(SCREAMING_SNAKE_CASE ) if do_resize: _a : Union[str, Any] =[self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _a : Dict =[flip_channel_order(SCREAMING_SNAKE_CASE ) for image in images] _a : str =[to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] _a : str =BatchFeature(data={"""pixel_values""": images} , tensor_type=SCREAMING_SNAKE_CASE ) if apply_ocr: _a : List[Any] =words_batch _a : Dict =boxes_batch return data
276
0
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :int , __lowerCamelCase :int ): if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) _lowerCAmelCase = number_of_bytes // partitions _lowerCAmelCase = [] for i in range(__lowerCamelCase ): _lowerCAmelCase = i * bytes_per_partition + 1 _lowerCAmelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
229
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
229
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : List[str] = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = """speech_to_text""" _SCREAMING_SNAKE_CASE : Optional[int] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str]=1_00_00 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : str=20_48 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=6 , SCREAMING_SNAKE_CASE__ : List[Any]=20_48 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : int="relu" , SCREAMING_SNAKE_CASE__ : str=2_56 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=60_00 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10_24 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5, 5) , SCREAMING_SNAKE_CASE__ : Any=10_24 , SCREAMING_SNAKE_CASE__ : int=80 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , **SCREAMING_SNAKE_CASE__ : str , ) -> Optional[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_source_positions __lowerCAmelCase = max_target_positions __lowerCAmelCase = num_conv_layers __lowerCAmelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = conv_channels __lowerCAmelCase = input_feat_per_channel __lowerCAmelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
229
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] __lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(snake_case_ ) __lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = MaMaaaConfig( vocab_size=snake_case_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCAmelCase = MaMaaaForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str = parser.parse_args() _A : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
229
1
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _UpperCAmelCase : List[str] = gray_code_sequence_string(lowerCAmelCase ) # # convert them to integers for i in range(len(lowerCAmelCase ) ): _UpperCAmelCase : List[str] = int(sequence[i] , 2 ) return sequence def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase : int = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase : Dict = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase : List[str] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase : List[Any] = "0" + smaller_sequence[i] sequence.append(lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase : Union[str, Any] = "1" + smaller_sequence[i] sequence.append(lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
189
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class a : _lowercase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) _lowercase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) _lowercase = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the training data."} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the validation data."} ) _lowercase = field(default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: _UpperCAmelCase : int = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase : Optional[int] = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class a : _lowercase = field( default=UpperCAmelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _lowercase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) datasets.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCAmelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase : int = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase : Tuple = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[Any] = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase : Union[str, Any] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _UpperCAmelCase : List[str] = load_dataset("csv" , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase : Dict = load_dataset("json" , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase : List[str] = raw_datasets["train"].features["label"].names _UpperCAmelCase : Tuple = len(lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase : Tuple = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase , ) _UpperCAmelCase : Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase : Tuple = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase : List[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase : List[Any] = {"Refused": 0, "Entailed": 1} _UpperCAmelCase : Optional[int] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _UpperCAmelCase : int = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase: str ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase: List[Any] ): _UpperCAmelCase : Any = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _UpperCAmelCase : List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase : Tuple = examples["statement"] _UpperCAmelCase : List[Any] = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ) _UpperCAmelCase : List[str] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _UpperCAmelCase : List[Any] = raw_datasets.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : Dict = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Union[str, Any] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _UpperCAmelCase : Dict = raw_datasets["test"] if data_args.max_predict_samples is not None: _UpperCAmelCase : Any = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: EvalPrediction ): _UpperCAmelCase : Optional[int] = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase ) else p.predictions _UpperCAmelCase : Optional[Any] = np.argmax(lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase : str = default_data_collator elif training_args.fpaa: _UpperCAmelCase : int = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase : List[str] = None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Dict = last_checkpoint _UpperCAmelCase : str = trainer.train(resume_from_checkpoint=lowerCAmelCase ) _UpperCAmelCase : Tuple = train_result.metrics _UpperCAmelCase : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) _UpperCAmelCase : Any = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCAmelCase ) trainer.save_metrics("train" , lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase ) _UpperCAmelCase : Any = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics("eval" , lowerCAmelCase ) trainer.save_metrics("eval" , lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase : int = predict_dataset.remove_columns("label" ) _UpperCAmelCase : Any = trainer.predict(lowerCAmelCase , metric_key_prefix="predict" ).predictions _UpperCAmelCase : List[str] = np.argmax(lowerCAmelCase , axis=1 ) _UpperCAmelCase : int = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCAmelCase ): _UpperCAmelCase : List[Any] = label_list[item] writer.write(F'{index}\t{item}\n' ) _UpperCAmelCase : int = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
189
1
"""simple docstring""" import argparse import os import re _A = """src/diffusers""" # Pattern that looks at the indentation in a line. _A = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _A = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _A = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _A = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _A = re.compile(r"""\[([^\]]+)\]""") def lowercase_ ( __UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE_ ) return "" if search is None else search.groups()[0] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> int: lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[str] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE_ ): index += 1 lowerCAmelCase__ : int = ["""\n""".join(lines[:index] )] else: lowerCAmelCase__ : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase__ : str = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE_ ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) if index < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCAmelCase__ : int = [lines[index + 1]] index += 1 else: lowerCAmelCase__ : Union[str, Any] = [] else: blocks.append("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE_ ) > 0: blocks.append("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def lowercase_ ( __UpperCAmelCase ) -> int: def _inner(__UpperCAmelCase ): return key(SCREAMING_SNAKE_CASE_ ).lower().replace("""_""" , """""" ) return _inner def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> int: def noop(__UpperCAmelCase ): return x if key is None: lowerCAmelCase__ : Tuple = noop # Constants are all uppercase, they go first. lowerCAmelCase__ : Optional[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase__ : Optional[int] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE_ )[0].isupper() and not key(SCREAMING_SNAKE_CASE_ ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase__ : List[str] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE_ )[0].isupper()] lowerCAmelCase__ : Tuple = ignore_underscore(SCREAMING_SNAKE_CASE_ ) return sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ ) + sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ ) + sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( __UpperCAmelCase ) -> str: def _replace(__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase__ : Optional[Any] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase__ : List[Any] = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE_ )] ) + "]" lowerCAmelCase__ : int = import_statement.split("""\n""" ) if len(SCREAMING_SNAKE_CASE_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase__ : str = 2 if lines[1].strip() == """[""" else 1 lowerCAmelCase__ : Optional[int] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase__ : str = sort_objects(SCREAMING_SNAKE_CASE_ , key=lambda __UpperCAmelCase : x[1] ) lowerCAmelCase__ : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase__ : str = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase__ : str = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase__ : str = keys[:-1] lowerCAmelCase__ : List[str] = get_indent(lines[1] ) + """, """.join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE_ )] ) return "\n".join(SCREAMING_SNAKE_CASE_ ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase__ : List[Any] = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE_ ) return import_statement def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=True ) -> List[Any]: with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: lowerCAmelCase__ : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase__ : str = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase__ : Optional[Any] = main_blocks[block_idx] lowerCAmelCase__ : Dict = block.split("""\n""" ) # Get to the start of the imports. lowerCAmelCase__ : List[Any] = 0 while line_idx < len(SCREAMING_SNAKE_CASE_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE_ ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase__ : Tuple = """\n""".join(block_lines[line_idx:-1] ) lowerCAmelCase__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase__ : int = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE_ , indent_level=SCREAMING_SNAKE_CASE_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase__ : Dict = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase__ : Optional[Any] = [(pattern.search(SCREAMING_SNAKE_CASE_ ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase__ : Optional[Any] = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE_ ) if key is not None] lowerCAmelCase__ : int = [x[0] for x in sorted(SCREAMING_SNAKE_CASE_ , key=lambda __UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : List[str] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase__ : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(SCREAMING_SNAKE_CASE_ ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase__ : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE_ ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE_ , """w""" ) as f: f.write("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( __UpperCAmelCase=True ) -> Optional[Any]: lowerCAmelCase__ : int = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: lowerCAmelCase__ : Union[str, Any] = sort_imports(os.path.join(SCREAMING_SNAKE_CASE_ , """__init__.py""" ) , check_only=SCREAMING_SNAKE_CASE_ ) if result: lowerCAmelCase__ : Dict = [os.path.join(SCREAMING_SNAKE_CASE_ , """__init__.py""" )] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE_ )} files, run `make style`.""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _A = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
242
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = CLIPConfig __lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(lowercase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(lowercase ): A__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) A__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) A__ = cosine_distance(lowercase , self.special_care_embeds ) A__ = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
68
0
import numpy as np from PIL import Image def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: """simple docstring""" __lowerCamelCase = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # compute the shape of the output matrix __lowerCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCamelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCamelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase = 0 __lowerCamelCase = 0 return updated_arr def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: """simple docstring""" __lowerCamelCase = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # compute the shape of the output matrix __lowerCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCamelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCamelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase = 0 __lowerCamelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __A = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
357
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = """wav2vec2""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="sum" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=(512, 512, 512, 512, 1_500) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=512 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=False , __lowercase=3 , __lowercase=2 , __lowercase=3 , __lowercase=None , __lowercase=None , **__lowercase , ) -> int: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :Any = hidden_size __UpperCamelCase :int = feat_extract_norm __UpperCamelCase :Tuple = feat_extract_activation __UpperCamelCase :Union[str, Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :int = list(__lowercase) __UpperCamelCase :List[Any] = conv_bias __UpperCamelCase :Optional[int] = num_conv_pos_embeddings __UpperCamelCase :Dict = num_conv_pos_embedding_groups __UpperCamelCase :Any = len(self.conv_dim) __UpperCamelCase :List[str] = num_hidden_layers __UpperCamelCase :int = intermediate_size __UpperCamelCase :str = hidden_act __UpperCamelCase :Any = num_attention_heads __UpperCamelCase :int = hidden_dropout __UpperCamelCase :Tuple = attention_dropout __UpperCamelCase :List[str] = activation_dropout __UpperCamelCase :Optional[Any] = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Any = layerdrop __UpperCamelCase :str = layer_norm_eps __UpperCamelCase :Optional[Any] = initializer_range __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :str = do_stable_layer_norm __UpperCamelCase :Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Tuple = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Dict = mask_time_min_masks __UpperCamelCase :str = mask_feature_prob __UpperCamelCase :List[str] = mask_feature_length __UpperCamelCase :Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :List[Any] = num_codevector_groups __UpperCamelCase :Tuple = contrastive_logits_temperature __UpperCamelCase :Optional[int] = feat_quantizer_dropout __UpperCamelCase :Optional[int] = num_negatives __UpperCamelCase :List[Any] = codevector_dim __UpperCamelCase :str = proj_codevector_dim __UpperCamelCase :List[str] = diversity_loss_weight # ctc loss __UpperCamelCase :Tuple = ctc_loss_reduction __UpperCamelCase :Tuple = ctc_zero_infinity # adapter __UpperCamelCase :List[str] = add_adapter __UpperCamelCase :Tuple = adapter_kernel_size __UpperCamelCase :str = adapter_stride __UpperCamelCase :Tuple = num_adapter_layers __UpperCamelCase :Tuple = output_hidden_size or hidden_size __UpperCamelCase :Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase :Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase :Optional[int] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :str = xvector_output_dim @property def UpperCamelCase__ ( self) -> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1)
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
import math def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list: """simple docstring""" UpperCamelCase_ = [True] * n UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase_ = i * 2 while index < n: UpperCamelCase_ = False UpperCamelCase_ = index + i UpperCamelCase_ = [2] for i in range(3 , SCREAMING_SNAKE_CASE_ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 9_9_9_9_6_6_6_6_3_3_3_3 )-> int: """simple docstring""" UpperCamelCase_ = math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) + 1_0_0 UpperCamelCase_ = prime_sieve(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase_ = primes[prime_index + 1] UpperCamelCase_ = last_prime**2 UpperCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
370
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , )-> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_choices def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_attention_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase_ ( self )-> str: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("albert-base-v2" ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class __magic_name__ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) UpperCamelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase )[0] UpperCamelCase_ = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) UpperCamelCase_ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
60
0
'''simple docstring''' from __future__ import annotations _A : Tuple = [] def UpperCamelCase_ ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int ) -> bool: '''simple docstring''' for i in range(len(snake_case_ ) ): if board[row][i] == 1: return False for i in range(len(snake_case_ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case_ , -1 , -1 ) , range(snake_case_ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case_ , -1 , -1 ) , range(snake_case_ , len(snake_case_ ) ) ): if board[i][j] == 1: return False return True def UpperCamelCase_ ( snake_case_ : list[list[int]] , snake_case_ : int ) -> bool: '''simple docstring''' if row >= len(snake_case_ ): solution.append(snake_case_ ) printboard(snake_case_ ) print() return True for i in range(len(snake_case_ ) ): if is_safe(snake_case_ , snake_case_ , snake_case_ ): __lowerCAmelCase = 1 solve(snake_case_ , row + 1 ) __lowerCAmelCase = 0 return False def UpperCamelCase_ ( snake_case_ : list[list[int]] ) -> None: '''simple docstring''' for i in range(len(snake_case_ ) ): for j in range(len(snake_case_ ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) _A : Any = 8 _A : int = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : Union[str, Any]=2_81_23 ) -> str: '''simple docstring''' __lowerCAmelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowerCAmelCase = set() __lowerCAmelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
229
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" snake_case = '''nat''' snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Any=64 , __UpperCAmelCase : Dict=[3, 4, 6, 5] , __UpperCAmelCase : Dict=[2, 4, 8, 16] , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : List[Any]=3.0 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : List[Any]=1E-5 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Any , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = len(__UpperCAmelCase ) _A = num_heads _A = kernel_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = layer_norm_eps _A = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) _A = layer_scale_init_value _A = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] _A , _A = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
174
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowerCamelCase_ = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowercase ( ) -> Dict: '''simple docstring''' _A = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _A = bs[:] _A = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 _A = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def __lowercase ( __lowercase ) -> Dict: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple="replace" , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : Any="<s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Any=False , **__UpperCAmelCase : Any , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: _A = json.load(__UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} _A = errors # how to handle errors in decoding _A = bytes_to_unicode() _A = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: _A = merges_handle.read().split("\n" )[1:-1] _A = [tuple(merge.split() ) for merge in bpe_merges] _A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A = {} _A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : str ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] ): '''simple docstring''' if token in self.cache: return self.cache[token] _A = tuple(__UpperCAmelCase ) _A = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: _A = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__UpperCAmelCase ): try: _A = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__UpperCAmelCase ) _A = new_word if len(__UpperCAmelCase ) == 1: break else: _A = get_pairs(__UpperCAmelCase ) _A = " ".join(__UpperCAmelCase ) _A = word return word def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = [] for token in re.findall(self.pat , __UpperCAmelCase ): _A = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple ): '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Dict ): '''simple docstring''' _A = "".join(__UpperCAmelCase ) _A = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) _A = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _A = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict=False , **__UpperCAmelCase : Any ): '''simple docstring''' _A = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): _A = " " + text return (text, kwargs) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , ): '''simple docstring''' _A = super()._pad( encoded_inputs=__UpperCAmelCase , max_length=__UpperCAmelCase , padding_strategy=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: _A = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _A = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _A = len(encoded_inputs["global_attention_mask"] ) != len(__UpperCAmelCase ) if needs_to_be_padded: _A = len(__UpperCAmelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _A = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _A = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
174
1
from itertools import product def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: UpperCamelCase__ : Union[str, Any] = sides_number UpperCamelCase__ : Optional[int] = max_face_number * dice_number UpperCamelCase__ : Tuple = [0] * (max_total + 1) UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Optional[int] = range(__lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCAmelCase , repeat=__lowerCAmelCase ): UpperCamelCase__ : Tuple = sum(__lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE ( ) -> float: UpperCamelCase__ : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCamelCase__ : Any = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Dict = 9 UpperCamelCase__ : Tuple = 4 * 9 UpperCamelCase__ : int = 6 for peter_total in range(__lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCamelCase__ : Any = (4**9) * (6**6) UpperCamelCase__ : Optional[Any] = peter_wins_count / total_games_number UpperCamelCase__ : Any = round(__lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
189
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while b: UpperCamelCase__ , UpperCamelCase__ : int = b, a % b return a def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def SCREAMING_SNAKE_CASE ( ) -> str: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
189
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( snake_case__ ): def __init__( self , _A , _A=7_6_8 ): """simple docstring""" super().__init__(_A ) __lowerCAmelCase = proj_size __lowerCAmelCase = CLIPVisionModel(_A ) __lowerCAmelCase = PaintByExampleMapper(_A ) __lowerCAmelCase = nn.LayerNorm(config.hidden_size ) __lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __SCREAMING_SNAKE_CASE( self , _A , _A=False ): """simple docstring""" __lowerCAmelCase = self.model(pixel_values=_A ) __lowerCAmelCase = clip_output.pooler_output __lowerCAmelCase = self.mapper(latent_states[:, None] ) __lowerCAmelCase = self.final_layer_norm(_A ) __lowerCAmelCase = self.proj_out(_A ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a__ ( nn.Module ): def __init__( self , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = (config.num_hidden_layers + 1) // 5 __lowerCAmelCase = config.hidden_size __lowerCAmelCase = 1 __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(_A , _A , _A , activation_fn="gelu" , attention_bias=_A ) for _ in range(_A ) ] ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" for block in self.blocks: __lowerCAmelCase = block(_A ) return hidden_states
371
UpperCamelCase__ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
102
0
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """schedule.bin""" ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self , _a , _a , _a ) -> str: """simple docstring""" self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for a, b in zip(snake_case__ , snake_case__ ): self.assertAlmostEqual(snake_case__ , snake_case__ , delta=snake_case__ ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE__ : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE__ : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): SCREAMING_SNAKE_CASE__ : str = criterion(snake_case__ , snake_case__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE__ : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE__ : Union[str, Any] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case__ , weight_decay=0.0 , relative_step=snake_case__ , scale_parameter=snake_case__ , warmup_init=snake_case__ , ) for _ in range(1_000 ): SCREAMING_SNAKE_CASE__ : Dict = criterion(snake_case__ , snake_case__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __a (unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = nn.Linear(50 , 50) if is_torch_available() else None _SCREAMING_SNAKE_CASE :int = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None _SCREAMING_SNAKE_CASE :Any = 10 def _a ( self , _a , _a , _a , _a=None ) -> List[Any]: """simple docstring""" self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for a, b in zip(snake_case__ , snake_case__ ): self.assertAlmostEqual(snake_case__ , snake_case__ , delta=snake_case__ , msg=snake_case__ ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE__ : List[Any] = data SCREAMING_SNAKE_CASE__ : List[str] = scheduler_func(self.optimizer , **snake_case__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = unwrap_schedule(snake_case__ , self.num_steps ) self.assertListAlmostEqual( snake_case__ , snake_case__ , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_func(self.optimizer , **snake_case__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case__ ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE__ : Optional[Any] = unwrap_and_save_reload_schedule(snake_case__ , self.num_steps ) self.assertListEqual(snake_case__ , snake_case__ , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : '''simple docstring''' def __init__( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = fn def __call__( self , *_a , **_a ) -> Optional[Any]: """simple docstring""" return self.fn(*snake_case__ , **snake_case__ ) @classmethod def _a ( self , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = list(map(self , scheduler.lr_lambdas ) )
132
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "char" __A = "bpe" __A = "wp" _lowercase: List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ["image_processor", "char_tokenizer"] __A = "ViTImageProcessor" __A = "MgpstrTokenizer" def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase_ , ) a = kwargs.pop("feature_extractor" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) a = tokenizer a = AutoTokenizer.from_pretrained("gpt2" ) a = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None: a = self.char_tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: a = encodings["input_ids"] return inputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a , a , a = sequences a = char_preds.size(0 ) a , a = self._decode_helper(lowerCamelCase_ , "char" ) a , a = self._decode_helper(lowerCamelCase_ , "bpe" ) a , a = self._decode_helper(lowerCamelCase_ , "wp" ) a = [] a = [] for i in range(lowerCamelCase_ ): a = [char_scores[i], bpe_scores[i], wp_scores[i]] a = [char_strs[i], bpe_strs[i], wp_strs[i]] a = scores.index(max(lowerCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) a = {} a = final_strs a = final_scores a = char_strs a = bpe_strs a = wp_strs return out def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if format == DecodeType.CHARACTER: a = self.char_decode a = 1 a = "[s]" elif format == DecodeType.BPE: a = self.bpe_decode a = 2 a = "#" elif format == DecodeType.WORDPIECE: a = self.wp_decode a = 102 a = "[SEP]" else: raise ValueError(F'''Format {format} is not supported.''' ) a , a = [], [] a = pred_logits.size(0 ) a = pred_logits.size(1 ) a , a = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase_ , sorted=lowerCamelCase_ ) a = preds_index.view(-1 , lowerCamelCase_ )[:, 1:] a = decoder(lowerCamelCase_ ) a , a = torch.nn.functional.softmax(lowerCamelCase_ , dim=2 ).max(dim=2 ) a = preds_max_prob[:, 1:] for index in range(lowerCamelCase_ ): a = preds_str[index].find(lowerCamelCase_ ) a = preds_str[index][:pred_eos] a = preds_index[index].cpu().tolist() a = pred_index.index(lowerCamelCase_ ) if eos_token in pred_index else -1 a = preds_max_prob[index][: pred_eos_index + 1] a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase_ ) conf_scores.append(lowerCamelCase_ ) return dec_strs, conf_scores def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase_ )] return decode_strs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.bpe_tokenizer.batch_decode(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase_ )] return decode_strs
71
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a( A : List[str] , A : int=0.999 , A : Union[str, Any]="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a = [] for i in range(A ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class _lowercase ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" __A = [e.name for e in KarrasDiffusionSchedulers] __A = 2 @register_to_config def __init__(self , lowerCamelCase_ = 1000 , lowerCamelCase_ = 0.0_0085 , lowerCamelCase_ = 0.012 , lowerCamelCase_ = "linear" , lowerCamelCase_ = None , lowerCamelCase_ = "epsilon" , lowerCamelCase_ = "linspace" , lowerCamelCase_ = 0 , ): """simple docstring""" if trained_betas is not None: a = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": a = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) a = 1.0 - self.betas a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if schedule_timesteps is None: a = self.timesteps a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a = 1 if len(lowerCamelCase_ ) > 1 else 0 else: a = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep a = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ (self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = self.index_for_timestep(lowerCamelCase_ ) if self.state_in_first_order: a = self.sigmas[step_index] else: a = self.sigmas_interpol[step_index] a = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ): """simple docstring""" a = num_inference_steps a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a = np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase_ , dtype=lowerCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(lowerCamelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a = torch.from_numpy(np.log(lowerCamelCase_ ) ).to(lowerCamelCase_ ) a = np.interp(lowerCamelCase_ , np.arange(0 , len(lowerCamelCase_ ) ) , lowerCamelCase_ ) a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ ) # interpolate sigmas a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase_ ).startswith("mps" ): # mps does not support float64 a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ , dtype=torch.floataa ) else: a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) # interpolate timesteps a = self.sigma_to_t(lowerCamelCase_ ).to(lowerCamelCase_ , dtype=timesteps.dtype ) a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a = torch.cat([timesteps[:1], interleaved_timesteps] ) a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a = defaultdict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = sigma.log() # get distribution a = log_sigma - self.log_sigmas[:, None] # get sigmas range a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a = low_idx + 1 a = self.log_sigmas[low_idx] a = self.log_sigmas[high_idx] # interpolate sigmas a = (low - log_sigma) / (low - high) a = w.clamp(0 , 1 ) # transform interpolation to time range a = (1 - w) * low_idx + w * high_idx a = t.view(sigma.shape ) return t @property def UpperCamelCase_ (self ): """simple docstring""" return self.sample is None def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ): """simple docstring""" a = self.index_for_timestep(lowerCamelCase_ ) # advance index counter by 1 a = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a = self.sigmas[step_index] a = self.sigmas_interpol[step_index + 1] a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a = self.sigmas[step_index - 1] a = self.sigmas_interpol[step_index] a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a = 0 a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a = sigma_hat if self.state_in_first_order else sigma_interpol a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a = sigma_hat if self.state_in_first_order else sigma_interpol a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a = sigma_interpol - sigma_hat # store for 2nd order step a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a = sigma_next - sigma_hat a = self.sample a = None a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase_ ): # mps does not support float64 a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a = self.timesteps.to(original_samples.device ) a = timesteps.to(original_samples.device ) a = [self.index_for_timestep(lowerCamelCase_ , lowerCamelCase_ ) for t in timesteps] a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a = sigma.unsqueeze(-1 ) a = original_samples + noise * sigma return noisy_samples def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
71
1
'''simple docstring''' from __future__ import annotations import math def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool ,__UpperCamelCase: list[int] ,__UpperCamelCase: float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 ,node_index * 2 ,_snake_case ,_snake_case ,_snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_snake_case ,_snake_case ,_snake_case ) ,) if is_max else min( minimax(depth + 1 ,node_index * 2 ,_snake_case ,_snake_case ,_snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_snake_case ,_snake_case ,_snake_case ) ,) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE : Union[str, Any] = math.log(len(_snake_case ) ,2 ) print(f"Optimal value : {minimax(0 ,0 ,_snake_case ,_snake_case ,_snake_case )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
251
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class snake_case_( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Optional[Any]=3_7 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : str=5_1_2 , UpperCamelCase_ : Optional[Any]=1_6 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ): lowerCAmelCase : str = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : Tuple = use_attention_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : int = num_choices def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_attention_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[Any] = config_and_inputs lowerCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCamelCase__ ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Any = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ )[0] lowerCAmelCase : str = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , UpperCamelCase_ ) # compare the actual values for a slice. lowerCAmelCase : Optional[Any] = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : str = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] # compare the actual values for a slice. lowerCAmelCase : str = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
0
from pathlib import Path import fire from tqdm import tqdm def __lowerCamelCase (UpperCAmelCase__ : int="ro" , UpperCAmelCase__ : Any="en" , UpperCAmelCase__ : Optional[Any]="wmt16" , UpperCAmelCase__ : Any=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) SCREAMING_SNAKE_CASE = F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) SCREAMING_SNAKE_CASE = datasets.load_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if save_dir is None: SCREAMING_SNAKE_CASE = F"{dataset}-{pair}" SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) save_dir.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets SCREAMING_SNAKE_CASE = """val""" if split == """validation""" else split SCREAMING_SNAKE_CASE = save_dir.joinpath(F"{fn}.source" ) SCREAMING_SNAKE_CASE = save_dir.joinpath(F"{fn}.target" ) SCREAMING_SNAKE_CASE = src_path.open("w+" ) SCREAMING_SNAKE_CASE = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): SCREAMING_SNAKE_CASE = x["""translation"""] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
370
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCamelCase : str = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def __lowerCamelCase (UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] ): SCREAMING_SNAKE_CASE = to_pil_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pil_image.size SCREAMING_SNAKE_CASE = pytesseract.image_to_data(UpperCAmelCase__ , lang=UpperCAmelCase__ , output_type="dict" , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(UpperCAmelCase__ ) if not word.strip()] SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase__ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase ( a ): lowercase__ : Optional[int] = ["""pixel_values"""] def __init__( self : int , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : float = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = "" , **_UpperCamelCase : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_value SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE = apply_ocr SCREAMING_SNAKE_CASE = ocr_lang SCREAMING_SNAKE_CASE = tesseract_config def __snake_case( self : Dict , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, Iterable[float]] , _UpperCamelCase : Union[float, Iterable[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Tuple , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(_UpperCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for image in images: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = BatchFeature(data={"pixel_values": images} , tensor_type=_UpperCamelCase ) if apply_ocr: SCREAMING_SNAKE_CASE = words_batch SCREAMING_SNAKE_CASE = boxes_batch return data
206
0
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : List[Any] = logging.get_logger(__name__) class a__ ( enum.Enum ): """simple docstring""" __UpperCamelCase : Any = 0 __UpperCamelCase : List[str] = 1 @add_end_docstrings(__A ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'generated' def __init__(self , *__lowercase , **__lowercase ): super().__init__(*__lowercase , **__lowercase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , **__lowercase , ): __lowerCAmelCase = {} if truncation is not None: __lowerCAmelCase = truncation __lowerCAmelCase = generate_kwargs __lowerCAmelCase = {} if return_tensors is not None and return_type is None: __lowerCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase = self.tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) if len(__lowercase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case (self , __lowercase , __lowercase , __lowercase ): return True def _snake_case (self , *__lowercase , __lowercase ): __lowerCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , __lowercase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) __lowerCAmelCase = ([prefix + arg for arg in args[0]],) __lowerCAmelCase = True elif isinstance(args[0] , __lowercase ): __lowerCAmelCase = (prefix + args[0],) __lowerCAmelCase = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) __lowerCAmelCase = self.tokenizer(*__lowercase , padding=__lowercase , truncation=__lowercase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self , *__lowercase , **__lowercase ): __lowerCAmelCase = super().__call__(*__lowercase , **__lowercase ) if ( isinstance(args[0] , __lowercase ) and all(isinstance(__lowercase , __lowercase ) for el in args[0] ) and all(len(__lowercase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _snake_case (self , __lowercase , __lowercase=TruncationStrategy.DO_NOT_TRUNCATE , **__lowercase ): __lowerCAmelCase = self._parse_and_tokenize(__lowercase , truncation=__lowercase , **__lowercase ) return inputs def _snake_case (self , __lowercase , **__lowercase ): if self.framework == "pt": __lowerCAmelCase , __lowerCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": __lowerCAmelCase , __lowerCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() __lowerCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) __lowerCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(__lowercase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) __lowerCAmelCase = self.model.generate(**__lowercase , **__lowercase ) __lowerCAmelCase = output_ids.shape[0] if self.framework == "pt": __lowerCAmelCase = output_ids.reshape(__lowercase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase = tf.reshape(__lowercase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _snake_case (self , __lowercase , __lowercase=ReturnType.TEXT , __lowercase=False ): __lowerCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __lowerCAmelCase = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: __lowerCAmelCase = { F"""{self.return_name}_text""": self.tokenizer.decode( __lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , ) } records.append(__lowercase ) return records @add_end_docstrings(__A ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[int] = 'summary' def __call__(self , *__lowercase , **__lowercase ): return super().__call__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(__A ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = 'translation' def _snake_case (self , __lowercase , __lowercase , __lowercase ): if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def _snake_case (self , *__lowercase , __lowercase=TruncationStrategy.DO_NOT_TRUNCATE , __lowercase=None , __lowercase=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , __lowercase ): return self.tokenizer._build_translation_inputs( *__lowercase , return_tensors=self.framework , truncation=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase ) else: return super()._parse_and_tokenize(*__lowercase , truncation=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , **__lowercase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = super()._sanitize_parameters(**__lowercase ) if src_lang is not None: __lowerCAmelCase = src_lang if tgt_lang is not None: __lowerCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __lowerCAmelCase = kwargs.get('''task''' , self.task ) __lowerCAmelCase = task.split('''_''' ) if task and len(__lowercase ) == 4: # translation, XX, to YY __lowerCAmelCase = items[1] __lowerCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self , *__lowercase , **__lowercase ): return super().__call__(*__lowercase , **__lowercase )
174
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Tuple = """▁""" _UpperCAmelCase : str = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCAmelCase : Dict = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCAmelCase : List[Any] = {"""vinai/bartpho-syllable""": 1_0_2_4} class a__ ( __A ): """simple docstring""" __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase = None , **__lowercase , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = monolingual_vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __lowerCAmelCase = {} __lowerCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowercase ) not in self.fairseq_tokens_to_ids: __lowerCAmelCase = cnt cnt += 1 with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): __lowerCAmelCase = line.strip().split()[0] __lowerCAmelCase = len(self.fairseq_tokens_to_ids ) if str(__lowercase ) not in self.fairseq_tokens_to_ids: __lowerCAmelCase = len(self.fairseq_tokens_to_ids ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case (self ): return len(self.fairseq_ids_to_tokens ) def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _snake_case (self , __lowercase ): return self.fairseq_ids_to_tokens[index] def _snake_case (self , __lowercase ): __lowerCAmelCase = ''''''.join(__lowercase ).replace(__lowercase , ''' ''' ).strip() return out_string def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowercase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(__lowercase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
174
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Any = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : Any = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ): for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE = "lm_head" SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(UpperCAmelCase__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace("*" , UpperCAmelCase__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE = "weight" else: SCREAMING_SNAKE_CASE = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE = name.split("." ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : str=True ): if config_path is not None: SCREAMING_SNAKE_CASE = UniSpeechConfig.from_pretrained(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE = Dictionary.load_from_json(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE = target_dict.pad_index SCREAMING_SNAKE_CASE = target_dict.bos_index SCREAMING_SNAKE_CASE = target_dict.eos_index SCREAMING_SNAKE_CASE = len(target_dict.symbols ) SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , "vocab.json" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_3 with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = UniSpeechForCTC(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = UniSpeechForPreTraining(UpperCAmelCase__ ) if is_finetuned: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) hf_unispeech.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
206
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase : lowercase__ : str = None @experimental def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return _map_with_joblib(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = num_proc if num_proc <= len(UpperCAmelCase__ ) else len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // num_proc SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) % num_proc SCREAMING_SNAKE_CASE = div * index + min(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(UpperCAmelCase__ )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(UpperCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (RLock(),), tqdm.set_lock with Pool(UpperCAmelCase__ , initargs=UpperCAmelCase__ , initializer=UpperCAmelCase__ ) as pool: SCREAMING_SNAKE_CASE = pool.map(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"Finished {num_proc} processes" ) SCREAMING_SNAKE_CASE = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(UpperCAmelCase__ )} objects" ) return mapped def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCAmelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def __lowerCamelCase (UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE = None
206
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Any = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class __a (__snake_case ): __a : Any = "imagegpt" __a : List[str] = ["past_key_values"] __a : int = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , __magic_name__ : List[str]=5_12 + 1 , __magic_name__ : Dict=32 * 32 , __magic_name__ : str=5_12 , __magic_name__ : List[str]=24 , __magic_name__ : Optional[Any]=8 , __magic_name__ : List[str]=None , __magic_name__ : int="quick_gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Optional[Any]=0.0_2 , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=False , __magic_name__ : Any=False , __magic_name__ : List[str]=False , **__magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : int = n_embd UpperCAmelCase_ : List[Any] = n_layer UpperCAmelCase_ : Any = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Tuple = activation_function UpperCAmelCase_ : Optional[Any] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : List[str] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Any = scale_attn_weights UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : int = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Optional[int] = reorder_and_upcast_attn UpperCAmelCase_ : Dict = tie_word_embeddings super().__init__(tie_word_embeddings=a_ , **a_ ) class __a (__snake_case ): @property def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def UpperCAmelCase__ ( self : str , __magic_name__ : List[str] , __magic_name__ : Optional[Any] = 1 , __magic_name__ : str = -1 , __magic_name__ : Optional[Any] = False , __magic_name__ : Optional[Any] = None , __magic_name__ : List[str] = 3 , __magic_name__ : Optional[int] = 32 , __magic_name__ : Any = 32 , ) -> int: """simple docstring""" UpperCAmelCase_ : List[Any] = self._generate_dummy_images(a_ , a_ , a_ , a_ ) UpperCAmelCase_ : List[Any] = dict(preprocessor(images=a_ , return_tensors=a_ ) ) return inputs
125
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( _snake_case : Any ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case : Dict = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Tuple = [3, 3, 3, 3] __snake_case : Dict = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Any = [4, 4, 4, 4] __snake_case : List[str] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : Optional[int] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Any = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : str = 96 elif "small" in model_name: __snake_case : Optional[int] = 96 elif "base" in model_name: __snake_case : Any = 128 elif "large" in model_name: __snake_case : Optional[Any] = 192 elif "xlarge" in model_name: __snake_case : List[Any] = 256 elif "huge" in model_name: __snake_case : Union[str, Any] = 352 # set label information __snake_case : Union[str, Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case : int = '''imagenet-22k-id2label.json''' else: __snake_case : Optional[Any] = '''imagenet-1k-id2label.json''' __snake_case : int = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : Dict = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} __snake_case : Optional[Any] = FocalNetConfig( embed_dim=_snake_case , depths=_snake_case , focal_levels=_snake_case , focal_windows=_snake_case , use_conv_embed=_snake_case , idalabel=_snake_case , labelaid=_snake_case , use_post_layernorm=_snake_case , use_layerscale=_snake_case , ) return config def lowercase ( _snake_case : Dict ) ->List[Any]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case : List[Any] = '''encoder.''' + name if "encoder.layers" in name: __snake_case : Optional[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case : Any = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case : List[str] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Any = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : List[Any] = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case : Optional[Any] = '''layernorm.weight''' if name == "norm.bias": __snake_case : List[str] = '''layernorm.bias''' if "head" in name: __snake_case : Union[str, Any] = name.replace('''head''' , '''classifier''' ) else: __snake_case : int = '''focalnet.''' + name return name def lowercase ( _snake_case : Tuple , _snake_case : Dict , _snake_case : List[str]=False ) ->Any: """simple docstring""" __snake_case : List[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case : int = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _snake_case ) __snake_case : int = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case : str = state_dict.pop(_snake_case ) __snake_case : Tuple = val __snake_case : Any = get_focalnet_config(_snake_case ) __snake_case : List[Any] = FocalNetForImageClassification(_snake_case ) model.eval() # load state dict model.load_state_dict(_snake_case ) # verify conversion __snake_case : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case : Any = BitImageProcessor( do_resize=_snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_snake_case , crop_size=224 , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , ) __snake_case : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __snake_case : int = processor(images=_snake_case , return_tensors='''pt''' ) __snake_case : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : Optional[Any] = image_transforms(_snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _snake_case , atol=1e-4 ) __snake_case : Tuple = model(**_snake_case ) __snake_case : str = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Any = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : int = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : Optional[int] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : List[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Union[str, Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : List[str] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
102
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ): """simple docstring""" UpperCAmelCase__ : Dict = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase , _lowerCamelCase ) )] if identifier is not None: UpperCAmelCase__ : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ): for n_ in n_identifier: UpperCAmelCase__ : Optional[int] = [file for file in files if n_ not in file] else: UpperCAmelCase__ : List[Any] = [file for file in files if n_identifier not in file] UpperCAmelCase__ : str = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _lowerCamelCase ) if only_modules: UpperCAmelCase__ : List[str] = file.split(""".""" )[0] try: UpperCAmelCase__ : Any = getattr(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = doctest.DocTestSuite(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase__ : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : Union[str, Any] = """modeling""" UpperCAmelCase__ : int = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase , ignore_files=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = """tokenization""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = Path("""src/transformers""" ) UpperCAmelCase__ : Optional[int] = """configuration""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_lowerCamelCase , n_identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = Path("""docs/source""" ) UpperCAmelCase__ : str = ["""favicon.ico"""] self.analyze_directory(_lowerCamelCase , ignore_files=_lowerCamelCase , only_modules=_lowerCamelCase )
166
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'OwlViTImageProcessor' SCREAMING_SNAKE_CASE = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__(self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__(self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="max_length" , _lowerCamelCase="np" , **_lowerCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ) or (isinstance(_lowerCamelCase , _lowerCamelCase ) and not isinstance(text[0] , _lowerCamelCase )): UpperCAmelCase__ : Any = [self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(text[0] , _lowerCamelCase ): UpperCAmelCase__ : Any = [] # Maximum number of queries across batch UpperCAmelCase__ : int = max([len(_lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCamelCase ) != max_num_queries: UpperCAmelCase__ : Optional[int] = t + [""" """] * (max_num_queries - len(_lowerCamelCase )) UpperCAmelCase__ : Union[str, Any] = self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) encodings.append(_lowerCamelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase__ : Optional[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : Any = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ : Any = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : List[str] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase__ : int = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ : Any = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : Tuple = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase__ : Dict = BatchEncoding() UpperCAmelCase__ : int = input_ids UpperCAmelCase__ : Optional[int] = attention_mask if query_images is not None: UpperCAmelCase__ : int = BatchEncoding() UpperCAmelCase__ : Optional[int] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ).pixel_values UpperCAmelCase__ : List[Any] = query_pixel_values if images is not None: UpperCAmelCase__ : Any = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: UpperCAmelCase__ : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.image_processor.post_process(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def _a (self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowerCamelCase , ) return self.image_processor_class @property def _a (self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowerCamelCase , ) return self.image_processor
166
1
import os def A ( ) -> List[Any]: with open(os.path.dirname(a_ ) + '/grid.txt' ) as f: __UpperCamelCase : str =[] # noqa: E741 for _ in range(20 ): l.append([int(a_ ) for x in f.readline().split()] ) __UpperCamelCase : List[Any] =0 # right for i in range(20 ): for j in range(17 ): __UpperCamelCase : Tuple =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __UpperCamelCase : Dict =temp # down for i in range(17 ): for j in range(20 ): __UpperCamelCase : Optional[int] =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __UpperCamelCase : int =temp # diagonal 1 for i in range(17 ): for j in range(17 ): __UpperCamelCase : Tuple =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __UpperCamelCase : int =temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): __UpperCamelCase : Optional[Any] =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __UpperCamelCase : Union[str, Any] =temp return maximum if __name__ == "__main__": print(solution())
71
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Any = logging.get_logger(__name__) A_ :int = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[int] ="""vit_msn""" def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-06 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) __UpperCamelCase : int =hidden_size __UpperCamelCase : List[Any] =num_hidden_layers __UpperCamelCase : Union[str, Any] =num_attention_heads __UpperCamelCase : List[str] =intermediate_size __UpperCamelCase : Union[str, Any] =hidden_act __UpperCamelCase : str =hidden_dropout_prob __UpperCamelCase : Union[str, Any] =attention_probs_dropout_prob __UpperCamelCase : Union[str, Any] =initializer_range __UpperCamelCase : Tuple =layer_norm_eps __UpperCamelCase : Optional[Any] =image_size __UpperCamelCase : Optional[int] =patch_size __UpperCamelCase : Any =num_channels __UpperCamelCase : str =qkv_bias
71
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCAmelCase__ = False class lowerCAmelCase__ ( unittest.TestCase ): pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Any ): _snake_case = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe( image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images _snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
364
"""simple docstring""" from __future__ import annotations from random import random class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : int | None = None ): _snake_case = value _snake_case = random() _snake_case = None _snake_case = None def __repr__( self : int ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Optional[int] ): _snake_case = str(self.value ) + ''' ''' _snake_case = str(self.left or '''''' ) _snake_case = str(self.right or '''''' ) return value + left + right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case = split(root.left , __lowerCamelCase ) return left, root else: _snake_case , _snake_case = split(root.right , __lowerCamelCase ) return root, right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case = merge(left.right , __lowerCamelCase ) return left else: _snake_case = merge(__lowerCamelCase , right.left ) return right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case = Node(__lowerCamelCase ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(merge(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case , _snake_case = split(__lowerCamelCase , value - 1 ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case = insert(__lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case = erase(__lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def _UpperCAmelCase ( ) -> None: _snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) _snake_case = input() while args != "q": _snake_case = interact_treap(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) _snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
40
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,A : Tuple ,A : str=13 ,A : List[str]=7 ,A : Dict=True ,A : Optional[Any]=True ,A : Union[str, Any]=False ,A : Optional[int]=True ,A : int=99 ,A : Any=32 ,A : int=5 ,A : Tuple=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : int=0.1 ,A : Optional[Any]=0.1 ,A : int=5_12 ,A : Tuple=16 ,A : Any=2 ,A : int=0.02 ,A : Optional[int]=3 ,A : str=4 ,A : Tuple=None ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __A = ids_tensor([self.batch_size] ,self.num_choices ) __A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[int] ): return BioGptConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Any ,A : Any ,A : Any ,A : int ,A : List[str] ,A : List[Any] ): __A = BioGptModel(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Any ,A : Tuple ,A : str ,A : Optional[Any] ,A : str ,A : Dict ,A : Dict ,A : Tuple ,A : Union[str, Any] ,A : Tuple ,): __A = BioGptForCausalLM(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Union[str, Any] ,A : int ,A : Dict ,A : Optional[Any] ,A : List[Any] ,A : Any ,*A : Optional[Any] ): __A = BioGptModel(config=A ) model.to(A ) model.eval() # create attention mask __A = torch.ones(input_ids.shape ,dtype=torch.long ,device=A ) __A = self.seq_length // 2 __A = 0 # first forward pass __A , __A = model(A ,attention_mask=A ).to_tuple() # create hypothetical next token and extent to next_input_ids __A = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # change a random masked slice from input_ids __A = ids_tensor((1,) ,A ).item() + 1 __A = ids_tensor((self.batch_size, 1) ,config.vocab_size ).squeeze(-1 ) __A = random_other_next_tokens # append to next input_ids and attn_mask __A = torch.cat([input_ids, next_tokens] ,dim=-1 ) __A = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) ,dtype=torch.long ,device=A )] ,dim=1 ,) # get two different outputs __A = model(A ,attention_mask=A )["last_hidden_state"] __A = model(A ,past_key_values=A ,attention_mask=A )["last_hidden_state"] # select random slice __A = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __A = output_from_no_past[:, -1, random_slice_idx].detach() __A = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A ,A ,atol=1E-3 ) ) def UpperCamelCase_ ( self : Dict ,A : List[str] ,A : Dict ,A : Dict ,A : Tuple ,A : Optional[int] ,*A : int ): __A = BioGptModel(config=A ).to(A ).eval() __A = torch.ones(input_ids.shape ,dtype=torch.long ,device=A ) # first forward pass __A = model(A ,attention_mask=A ,use_cache=A ) __A , __A = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __A = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __A = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and __A = torch.cat([input_ids, next_tokens] ,dim=-1 ) __A = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) __A = model(A ,attention_mask=A )["last_hidden_state"] __A = model(A ,attention_mask=A ,past_key_values=A )[ "last_hidden_state" ] # select random slice __A = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __A = output_from_no_past[:, -3:, random_slice_idx].detach() __A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A ,A ,atol=1E-3 ) ) def UpperCamelCase_ ( self : Any ,A : Union[str, Any] ,A : List[Any] ,A : str ,A : List[Any] ,A : Optional[int] ,*A : str ,A : List[Any]=False ): __A = BioGptForCausalLM(A ) model.to(A ) if gradient_checkpointing: model.gradient_checkpointing_enable() __A = model(A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCamelCase_ ( self : Tuple ,A : str ,*A : List[Any] ): __A = BioGptModel(A ) __A = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) ,0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) ,0.01 ) def UpperCamelCase_ ( self : Dict ,A : str ,A : int ,A : str ,A : List[Any] ,A : str ,*A : Optional[Any] ): __A = self.num_labels __A = BioGptForTokenClassification(A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def UpperCamelCase_ ( self : int ): __A = BioGptModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*A ,gradient_checkpointing=A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*A ) @slow def UpperCamelCase_ ( self : List[Any] ): __A = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(A ) __A = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __A = "left" # Define PAD Token = EOS Token = 50256 __A = tokenizer.eos_token __A = model.config.eos_token_id # use different length sentences to test batching __A = [ "Hello, my dog is a little", "Today, I", ] __A = tokenizer(A ,return_tensors="pt" ,padding=A ) __A = inputs["input_ids"].to(A ) __A = model.generate( input_ids=A ,attention_mask=inputs["attention_mask"].to(A ) ,) __A = tokenizer(sentences[0] ,return_tensors="pt" ).input_ids.to(A ) __A = model.generate(input_ids=A ) __A = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() __A = tokenizer(sentences[1] ,return_tensors="pt" ).input_ids.to(A ) __A = model.generate(input_ids=A ,max_length=model.config.max_length - num_paddings ) __A = tokenizer.batch_decode(A ,skip_special_tokens=A ) __A = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=A ) __A = tokenizer.decode(output_padded[0] ,skip_special_tokens=A ) __A = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(A ,A ) self.assertListEqual(A ,[non_padded_sentence, padded_sentence] ) @slow def UpperCamelCase_ ( self : str ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = BioGptModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = 3 __A = input_dict["input_ids"] __A = input_ids.ne(1 ).to(A ) __A = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) __A = BioGptForSequenceClassification(A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,labels=A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = 3 __A = "multi_label_classification" __A = input_dict["input_ids"] __A = input_ids.ne(1 ).to(A ) __A = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) __A = BioGptForSequenceClassification(A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,labels=A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Tuple ): __A = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) __A = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) __A = model(A )[0] __A = 4_23_84 __A = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape ,A ) __A = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : str ): __A = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __A = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(A ) torch.manual_seed(0 ) __A = tokenizer("COVID-19 is" ,return_tensors="pt" ).to(A ) __A = model.generate( **A ,min_length=1_00 ,max_length=10_24 ,num_beams=5 ,early_stopping=A ,) __A = tokenizer.decode(output_ids[0] ,skip_special_tokens=A ) __A = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(A ,A )
15
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=3 , lowercase=True , lowercase=True , lowercase=0.1 , lowercase=0.1 , lowercase=224 , lowercase=1000 , lowercase=[3, 3, 6, 4] , lowercase=[48, 56, 112, 220] , ): A_ : Dict = parent A_ : List[Any] = batch_size A_ : Dict = num_channels A_ : Optional[Any] = is_training A_ : List[str] = use_labels A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Tuple = num_labels A_ : List[str] = image_size A_ : str = layer_depths A_ : Optional[int] = embed_dims def _a (self ): A_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) A_ : int = self.get_config() return config, pixel_values, labels def _a (self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase , layer_scale_init_value=1E-5 , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[Any] = SwiftFormerModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = self.num_labels A_ : Any = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A_ : int = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self ): ((A_), (A_), (A_)) : int = self.prepare_config_and_inputs() A_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def _a (self ): A_ : Optional[int] = SwiftFormerModelTester(self ) A_ : Any = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(lowercase ) A_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = SwiftFormerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a (self ): pass def _a (self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): A_ : str = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Any = outputs.hidden_states A_ : Any = 8 self.assertEqual(len(lowercase ) , lowercase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A_, A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) def _a (self ): def _config_zero_init(lowercase ): A_ : Optional[Any] = copy.deepcopy(lowercase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase , lowercase , 1E-10 ) if isinstance(getattr(lowercase , lowercase , lowercase ) , lowercase ): A_ : Any = _config_zero_init(getattr(lowercase , lowercase ) ) setattr(lowercase , lowercase , lowercase ) return configs_no_init A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = _config_zero_init(lowercase ) for model_class in self.all_model_classes: A_ : List[str] = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a (self ): pass def a ( ): '''simple docstring''' A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a (self ): A_ : Any = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowercase ) A_ : Dict = self.default_image_processor A_ : Dict = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(**lowercase ) # verify the logits A_ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : List[str] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
206
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> list[int]: return [ord(lowerCamelCase_ ) - 96 for elem in plain] def __lowerCamelCase ( __lowerCAmelCase : int ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def __lowerCamelCase ( ) -> None: snake_case = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , lowerCamelCase_ ) print("""Decoded:""" , decode(lowerCamelCase_ ) ) if __name__ == "__main__": main()
367
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = ['image_processor', 'tokenizer'] __SCREAMING_SNAKE_CASE : Union[str, Any] = 'BlipImageProcessor' __SCREAMING_SNAKE_CASE : List[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__(self , lowercase , lowercase ): A_ : List[Any] = False super().__init__(lowercase , lowercase ) A_ : Tuple = self.image_processor def __call__(self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: A_ : Optional[Any] = self.tokenizer A_ : Tuple = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding # add pixel_values A_ : int = self.image_processor(lowercase , return_tensors=lowercase ) if text is not None: A_ : Optional[Any] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) else: A_ : List[str] = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def _a (self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _a (self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def _a (self ): A_ : int = self.tokenizer.model_input_names A_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
206
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = VideoMAEConfig() set_architecture_configs(lowerCamelCase__ , lowerCamelCase__ ) if "finetuned" not in model_name: A_ : Dict = False if "finetuned" in model_name: A_ : List[Any] = """huggingface/label-files""" if "kinetics" in model_name: A_ : Dict = 4_00 A_ : List[str] = """kinetics400-id2label.json""" elif "ssv2" in model_name: A_ : Tuple = 1_74 A_ : str = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : Optional[Any] = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if "small" in model_name: A_ : int = 3_84 A_ : Union[str, Any] = 15_36 A_ : List[str] = 12 A_ : Optional[int] = 16 A_ : Any = 12 A_ : int = 3 A_ : Optional[Any] = 1_92 A_ : Union[str, Any] = 7_68 elif "large" in model_name: A_ : List[Any] = 10_24 A_ : Optional[Any] = 40_96 A_ : Optional[Any] = 24 A_ : List[str] = 16 A_ : Any = 12 A_ : str = 8 A_ : str = 5_12 A_ : int = 20_48 elif "huge" in model_name: A_ : Optional[Any] = 12_80 A_ : str = 51_20 A_ : str = 32 A_ : int = 16 A_ : Any = 12 A_ : Union[str, Any] = 8 A_ : Dict = 6_40 A_ : Optional[Any] = 25_60 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a ( lowerCamelCase__ ): '''simple docstring''' if "encoder." in name: A_ : List[Any] = name.replace("""encoder.""" , """""" ) if "cls_token" in name: A_ : List[str] = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: A_ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: A_ : int = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: A_ : Optional[Any] = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A_ : Dict = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: A_ : List[str] = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: A_ : List[str] = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: A_ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: A_ : str = name.replace("""attn""" , """attention.self""" ) if "attn" in name: A_ : Union[str, Any] = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: A_ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A_ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A_ : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: A_ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: A_ : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: A_ : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A_ : Dict = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A_ : List[str] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: A_ : Optional[Any] = name.replace("""head""" , """classifier""" ) return name def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : str = orig_state_dict.pop(lowerCamelCase__ ) if key.startswith("""encoder.""" ): A_ : Tuple = key.replace("""encoder.""" , """""" ) if "qkv" in key: A_ : Optional[int] = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): A_ : Union[str, Any] = config.decoder_hidden_size A_ : Any = int(key_split[2] ) A_ : int = """decoder.decoder_layers.""" if "weight" in key: A_ : Optional[Any] = val[:dim, :] A_ : Any = val[dim : dim * 2, :] A_ : Dict = val[-dim:, :] else: A_ : List[Any] = config.hidden_size A_ : List[Any] = int(key_split[1] ) A_ : int = """videomae.encoder.layer.""" if "weight" in key: A_ : Any = val[:dim, :] A_ : Union[str, Any] = val[dim : dim * 2, :] A_ : List[str] = val[-dim:, :] else: A_ : Union[str, Any] = val return orig_state_dict def a ( ): '''simple docstring''' A_ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A_ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = get_videomae_config(lowerCamelCase__ ) if "finetuned" in model_name: A_ : List[str] = VideoMAEForVideoClassification(lowerCamelCase__ ) else: A_ : Optional[Any] = VideoMAEForPreTraining(lowerCamelCase__ ) # download original checkpoint, hosted on Google Drive A_ : Optional[Any] = """pytorch_model.bin""" gdown.cached_download(lowerCamelCase__ , lowerCamelCase__ , quiet=lowerCamelCase__ ) A_ : Any = torch.load(lowerCamelCase__ , map_location="""cpu""" ) if "model" in files: A_ : Any = files["""model"""] else: A_ : Dict = files["""module"""] A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify model on basic input A_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) A_ : Union[str, Any] = prepare_video() A_ : str = image_processor(lowerCamelCase__ , return_tensors="""pt""" ) if "finetuned" not in model_name: A_ : List[str] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Optional[Any] = torch.load(lowerCamelCase__ ) A_ : Dict = model(**lowerCamelCase__ ) A_ : List[Any] = outputs.logits A_ : Any = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A_ : str = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": A_ : str = torch.Size([1, 1_74] ) A_ : Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": A_ : Tuple = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one A_ : List[Any] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": A_ : str = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": A_ : int = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Optional[int] = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": A_ : List[Any] = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Tuple = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": A_ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) A_ : List[Any] = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : Any = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : str = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": A_ : Optional[int] = outputs.loss assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase__ , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
206
1
'''simple docstring''' class A : def __init__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" _a = name _a = value _a = weight def __repr__( self : Dict ) -> int: """simple docstring""" return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return self.value def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return self.name def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return self.weight def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.value / self.weight def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = [] for i in range(len(UpperCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Dict ): '''simple docstring''' _a = sorted(UpperCamelCase , key=UpperCamelCase , reverse=UpperCamelCase ) _a = [] _a , _a = 0.0, 0.0 for i in range(len(UpperCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case_ (): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
179
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Optional[Any]=10 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Dict=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Union[str, Any]=0.9 , lowerCAmelCase_ : str=None , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = patch_size _a = tubelet_size _a = num_frames _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _a = (image_size // patch_size) ** 2 _a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _a = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.batch_size , -1 ).bool() _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches _a = mask.sum().item() _a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = VideoMAEModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.model_tester.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.model_tester.batch_size , -1 ).bool() _a = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" if not self.has_attentions: pass else: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = self.model_tester.seq_length - self.model_tester.num_masks _a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _a = True _a = False _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _a = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ): _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.hidden_states _a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _a = self.model_tester.seq_length - self.model_tester.num_masks _a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _a = np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask _a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _a = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size([1, 14_08, 15_36] ) _a = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _a = torch.tensor([0.5_1_4_2] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): _a = model(**lowerCAmelCase_ ) _a = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
179
1
'''simple docstring''' from collections import defaultdict def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =1 __lowercase =True for v in tree[start]: if v not in visited: ret += dfs(_lowerCAmelCase ) if ret % 2 == 0: cuts.append(_lowerCAmelCase ) return ret def _A ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": lowerCamelCase , lowerCamelCase = 10, 9 lowerCamelCase = defaultdict(list) lowerCamelCase = {} lowerCamelCase = [] lowerCamelCase = 0 lowerCamelCase = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
166
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """OwlViTImageProcessor""" lowerCAmelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , **_lowerCAmelCase : Any): '''simple docstring''' __lowercase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCAmelCase , ) __lowercase =kwargs.pop('feature_extractor') __lowercase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : Dict , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]="max_length" , _lowerCAmelCase : Optional[Any]="np" , **_lowerCAmelCase : Any): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.') if text is not None: if isinstance(_lowerCAmelCase , _lowerCAmelCase) or (isinstance(_lowerCAmelCase , _lowerCAmelCase) and not isinstance(text[0] , _lowerCAmelCase)): __lowercase =[self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase)] elif isinstance(_lowerCAmelCase , _lowerCAmelCase) and isinstance(text[0] , _lowerCAmelCase): __lowercase =[] # Maximum number of queries across batch __lowercase =max([len(_lowerCAmelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCAmelCase) != max_num_queries: __lowercase =t + [' '] * (max_num_queries - len(_lowerCAmelCase)) __lowercase =self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase) encodings.append(_lowerCAmelCase) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings') if return_tensors == "np": __lowercase =np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) __lowercase =np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowercase =jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) __lowercase =jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch __lowercase =torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0) __lowercase =torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowercase =tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0) __lowercase =tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0) else: raise ValueError('Target return tensor type could not be returned') __lowercase =BatchEncoding() __lowercase =input_ids __lowercase =attention_mask if query_images is not None: __lowercase =BatchEncoding() __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase).pixel_values __lowercase =query_pixel_values if images is not None: __lowercase =self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase) if text is not None and images is not None: __lowercase =image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowercase =image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase) , tensor_type=_lowerCAmelCase) def __lowerCamelCase ( self : int , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Any): '''simple docstring''' return self.image_processor.post_process(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any]): '''simple docstring''' return self.image_processor.post_process_object_detection(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Any): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : str , *_lowerCAmelCase : int , **_lowerCAmelCase : Dict): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCAmelCase , ) return self.image_processor_class @property def __lowerCamelCase ( self : Any): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCAmelCase , ) return self.image_processor
166
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "bloom" snake_case = ["past_key_values"] snake_case = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _SCREAMING_SNAKE_CASE=25_0880 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , )->List[str]: '''simple docstring''' A_ : List[Any] = vocab_size # Backward compatibility with n_embed kwarg A_ : Tuple = kwargs.pop('''n_embed''' , _SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = hidden_size if n_embed is None else n_embed A_ : List[Any] = n_layer A_ : Optional[Any] = n_head A_ : List[str] = layer_norm_epsilon A_ : int = initializer_range A_ : Any = use_cache A_ : Optional[int] = pretraining_tp A_ : Any = apply_residual_connection_post_layernorm A_ : Any = hidden_dropout A_ : Tuple = attention_dropout A_ : Union[str, Any] = bos_token_id A_ : Optional[int] = eos_token_id A_ : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = version.parse("1.12" ) def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "default" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , )->int: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , _SCREAMING_SNAKE_CASE ): # TODO: how to do that better? A_ : Optional[Any] = 0 @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ : List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=_SCREAMING_SNAKE_CASE ) A_ : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: A_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self )->int: '''simple docstring''' return self._config.n_layer @property def _snake_case ( self )->int: '''simple docstring''' return self._config.n_head @property def _snake_case ( self )->float: '''simple docstring''' return 1e-3 def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , )->Mapping[str, Any]: '''simple docstring''' A_ : List[str] = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() A_ : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A_ : Any = seqlen + 2 A_ : Union[str, Any] = self._config.hidden_size // self.num_attention_heads A_ : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) A_ : Dict = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) A_ : List[str] = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] A_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: A_ : str = ordered_inputs['''attention_mask'''].dtype A_ : Tuple = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def _snake_case ( self )->int: '''simple docstring''' return 13
65
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = tempfile.mkdtemp() A_ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A_ : Tuple = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) A_ : int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Any = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) A_ : Optional[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.prepare_image_inputs() A_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : Union[str, Any] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : List[str] = '''lower newer''' A_ : Tuple = processor(text=_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = '''lower newer''' A_ : List[Any] = self.prepare_image_inputs() A_ : Any = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Tuple = processor.batch_decode(_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : int = '''lower newer''' A_ : Dict = self.prepare_image_inputs() A_ : List[Any] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
65
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowercase ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Union[str, Any] ) ->Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = AlbertConfig.from_json_file(_snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case : Tuple = AlbertForPreTraining(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_albert(_snake_case , _snake_case , _snake_case ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
102
"""simple docstring""" import os import sys import unittest __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowercase = os.path.join(git_repo_path, """src""", """diffusers""") class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any): a : List[Any] = find_backend(" if not is_torch_available():") self.assertEqual(__UpperCAmelCase , "torch") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") a : Dict = find_backend(" if not (is_torch_available() and is_transformers_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") a : int = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx") def __snake_case ( self : Union[str, Any]): a : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCAmelCase) self.assertIn("torch_and_transformers" , __UpperCAmelCase) self.assertIn("flax_and_transformers" , __UpperCAmelCase) self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"]) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"]) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"]) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"]) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"]) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"]) def __snake_case ( self : Tuple): a : Optional[int] = create_dummy_object("CONSTANT" , "'torch'") self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n") a : Dict = create_dummy_object("function" , "'torch'") self.assertEqual( __UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n") a : Optional[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" a : int = create_dummy_object("FakeClass" , "'torch'") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" a : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) self.assertEqual(dummy_files["torch"] , __UpperCAmelCase)
40
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[int] = (IPNDMScheduler,) lowercase__ : List[str] = (('''num_inference_steps''', 50),) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : List[Any] = {"""num_train_timesteps""": 10_00} config.update(**lowerCAmelCase__ ) return config def __magic_name__ ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Optional[int] = dict(self.forward_default_kwargs ) __magic_name__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase__ ) __magic_name__ : List[str] = self.dummy_sample __magic_name__ : List[Any] = 0.1 * sample __magic_name__ : int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __magic_name__ : Any = self.get_scheduler_config(**lowerCAmelCase__ ) __magic_name__ : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals __magic_name__ : Optional[int] = dummy_past_residuals[:] if time_step is None: __magic_name__ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) __magic_name__ : Optional[int] = scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals __magic_name__ : Optional[Any] = dummy_past_residuals[:] __magic_name__ : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample __magic_name__ : Optional[int] = new_scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __magic_name__ : List[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample __magic_name__ : List[Any] = new_scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = dict(self.forward_default_kwargs ) __magic_name__ : int = kwargs.pop("""num_inference_steps""" , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.dummy_sample __magic_name__ : Dict = 0.1 * sample __magic_name__ : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __magic_name__ : List[Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ : str = dummy_past_residuals[:] if time_step is None: __magic_name__ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ : List[Any] = dummy_past_residuals[:] __magic_name__ : Optional[int] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample __magic_name__ : Union[str, Any] = new_scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __magic_name__ : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample __magic_name__ : Tuple = new_scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __magic_name__ ( self , **lowerCAmelCase__ ) -> Tuple: __magic_name__ : Optional[int] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config(**lowerCAmelCase__ ) __magic_name__ : str = scheduler_class(**lowerCAmelCase__ ) __magic_name__ : str = 10 __magic_name__ : List[str] = self.dummy_model() __magic_name__ : int = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __magic_name__ : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def __magic_name__ ( self ) -> Dict: __magic_name__ : Tuple = dict(self.forward_default_kwargs ) __magic_name__ : Tuple = kwargs.pop("""num_inference_steps""" , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: __magic_name__ : Optional[Any] = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**lowerCAmelCase__ ) __magic_name__ : int = self.dummy_sample __magic_name__ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , """set_timesteps""" ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , """set_timesteps""" ): __magic_name__ : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __magic_name__ : List[str] = dummy_past_residuals[:] __magic_name__ : int = scheduler.timesteps[5] __magic_name__ : str = scheduler.timesteps[6] __magic_name__ : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample __magic_name__ : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __magic_name__ : Any = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample __magic_name__ : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __magic_name__ ( self ) -> Optional[Any]: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ , time_step=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ , time_step=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.full_loop() __magic_name__ : Optional[int] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
369
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__: List[Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: List[str] = ["ConditionalDetrFeatureExtractor"] __magic_name__: int = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: List[Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __magic_name__: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
0
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int: '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Optional[int] = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowercase : Dict = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: A : Union[str, Any] = os.path.abspath(snake_case__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) A : Any = torch.load(snake_case__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean A : Tuple = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var A : Dict = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding A : Any = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 A : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): A : List[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): A : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: A : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} A : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: A : List[str] = flax_model.params['''params'''] else: A : Dict = flax_model.params A : List[Any] = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(snake_case__ ) A : int = {} A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Any = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Dict = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: A : Tuple = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch # Load the index A : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils A : List[str] = torch.load(snake_case__ ) A : int = {k: v.numpy() for k, v in pt_state_dict.items()} A : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : Optional[int] = flax_model.params['''params'''] A : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: A : Dict = flax_model.params A : Tuple = flatten_dict(snake_case__ ) A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Any = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = os.path.abspath(snake_case__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , '''rb''' ) as state_f: try: A : int = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) A : Optional[Any] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A : Union[str, Any] = flatten_dict(snake_case__ ) A : List[Any] = pt_model.state_dict() A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) A : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys A : int = [] A : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: A : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer A : Tuple = flax_key_tuple[:-1] + ('''weight''',) A : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: A : Union[str, Any] = '''.'''.join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. A : int = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: A : Optional[int] = key.split('''.''' ) A : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: A : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: A : List[Any] = key_components[-2] + '''_v''' if name is not None: A : str = key_components[:-3] + [name] A : Optional[Any] = '''.'''.join(snake_case__ ) A : Optional[Any] = key if flax_key in special_pt_names: A : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A : Dict = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A : List[Any] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
3
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase_ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def snake_case( __magic_name__ , __magic_name__=False ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : Optional[int] = create_model( '''HTSAT-tiny''' , '''roberta''' , UpperCamelCase__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=UpperCamelCase__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = {} lowercase : Dict = r'''.*sequential.(\d+).*''' lowercase : List[str] = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase : Dict = key.replace(UpperCamelCase__ , UpperCamelCase__ ) if re.match(UpperCamelCase__ , UpperCamelCase__ ): # replace sequential layers with list lowercase : List[Any] = re.match(UpperCamelCase__ , UpperCamelCase__ ).group(1 ) lowercase : int = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(UpperCamelCase__ )//3}.linear.""" ) elif re.match(UpperCamelCase__ , UpperCamelCase__ ): lowercase : Optional[Any] = int(re.match(UpperCamelCase__ , UpperCamelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase : Tuple = 1 if projecton_layer == 0 else 2 lowercase : int = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase : Optional[Any] = value lowercase : int = mixed_qkv.size(0 ) // 3 lowercase : Any = mixed_qkv[:qkv_dim] lowercase : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase : List[Any] = mixed_qkv[qkv_dim * 2 :] lowercase : Dict = query_layer lowercase : List[Any] = key_layer lowercase : int = value_layer else: lowercase : List[str] = value return model_state_dict def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Optional[int]: '''simple docstring''' lowercase , lowercase : Any = init_clap(UpperCamelCase__ , enable_fusion=UpperCamelCase__ ) clap_model.eval() lowercase : List[str] = clap_model.state_dict() lowercase : Dict = rename_state_dict(UpperCamelCase__ ) lowercase : List[Any] = ClapConfig() lowercase : str = enable_fusion lowercase : Tuple = ClapModel(UpperCamelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) transformers_config.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCAmelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
367
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase_ = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowerCAmelCase_ = '▁' class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , _A : Optional[int] , _A : List[str]="<s>" , _A : Tuple="</s>" , _A : Dict="</s>" , _A : Dict="<s>" , _A : List[str]="<unk>" , _A : str="<pad>" , _A : Any="<mask>" , _A : Optional[Dict[str, Any]] = None , **_A : Union[str, Any] , ) -> None: """simple docstring""" lowercase : List[str] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token lowercase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) lowercase : Any = vocab_file lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) lowercase : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase : Tuple = len(self.sp_model ) - 1 lowercase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __a ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Any = [self.cls_token_id] lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __a ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : List[str] = [self.sep_token_id] lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Union[str, Any] , _A : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __a ( self : Optional[int] , _A : str ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : Optional[int] = self.sp_model.PieceToId(_A ) return spm_id if spm_id else self.unk_token_id def __a ( self : Any , _A : List[str] ) -> List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_A ) def __a ( self : Any , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Dict = [] lowercase : Any = '''''' lowercase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token lowercase : int = True lowercase : Optional[Any] = [] else: current_sub_tokens.append(_A ) lowercase : List[str] = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __getstate__( self : int ) -> Optional[Any]: """simple docstring""" lowercase : str = self.__dict__.copy() lowercase : Any = None return state def __setstate__( self : Optional[int] , _A : Tuple ) -> str: """simple docstring""" lowercase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Union[str, Any] = {} lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Any = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: lowercase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
116
0
"""simple docstring""" from __future__ import annotations import pandas as pd def __lowercase ( snake_case_ : list[int] ,snake_case_ : list[int] ,snake_case_ : int ) ->list[int]: '''simple docstring''' __A : Any = [0] * no_of_processes __A : int = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(snake_case_ ): __A : Any = burst_time[i] __A : Tuple = 0 __A : Tuple = 0 __A : Optional[int] = 999999999 __A : Optional[Any] = 0 __A : Dict = False # Process until all processes are completed while complete != no_of_processes: for j in range(snake_case_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __A : str = remaining_time[j] __A : Tuple = j __A : str = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __A : Any = remaining_time[short] if minm == 0: __A : Optional[int] = 999999999 if remaining_time[short] == 0: complete += 1 __A : Optional[Any] = False # Find finish time of current process __A : Union[str, Any] = increment_time + 1 # Calculate waiting time __A : Optional[int] = finish_time - arrival_time[short] __A : List[Any] = finar - burst_time[short] if waiting_time[short] < 0: __A : Dict = 0 # Increment time increment_time += 1 return waiting_time def __lowercase ( snake_case_ : list[int] ,snake_case_ : int ,snake_case_ : list[int] ) ->list[int]: '''simple docstring''' __A : Dict = [0] * no_of_processes for i in range(snake_case_ ): __A : Dict = burst_time[i] + waiting_time[i] return turn_around_time def __lowercase ( snake_case_ : list[int] ,snake_case_ : list[int] ,snake_case_ : int ) ->None: '''simple docstring''' __A : List[str] = 0 __A : Union[str, Any] = 0 for i in range(snake_case_ ): __A : Optional[Any] = total_waiting_time + waiting_time[i] __A : List[str] = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('''Average turn around time =''' ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") a_ = int(input()) a_ = [0] * no_of_processes a_ = [0] * no_of_processes a_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) a_ , a_ = map(int, input().split()) a_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a_ = burst_time a_ = no_of_processes a_ = waiting_time a_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
179
"""simple docstring""" def __lowercase ( snake_case_ : dict ) ->set: '''simple docstring''' __A : List[str] = set() # edges = list of graph's edges __A : Optional[int] = get_edges(snake_case_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __A , __A : str = edges.pop() chosen_vertices.add(snake_case_ ) chosen_vertices.add(snake_case_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(snake_case_ ) return chosen_vertices def __lowercase ( snake_case_ : dict ) ->set: '''simple docstring''' __A : Tuple = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
179
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join SCREAMING_SNAKE_CASE : Optional[Any] = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A ( ): assert _test_patching.open is open SCREAMING_SNAKE_CASE : Tuple = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A ( ): # pandas.read_csv is not present in _test_patching SCREAMING_SNAKE_CASE : Any = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _lowercase ): pass def A ( ): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point SCREAMING_SNAKE_CASE : Union[str, Any] = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _lowercase ) is None with patch_submodule(_test_patching , '''len''' , _lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def A ( ): SCREAMING_SNAKE_CASE : Optional[Any] = '''__test_patch_submodule_start_and_stop_mock__''' SCREAMING_SNAKE_CASE : int = patch_submodule(_test_patching , '''open''' , _lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join SCREAMING_SNAKE_CASE : Optional[Any] = '''__test_patch_submodule_successive_join__''' SCREAMING_SNAKE_CASE : Any = '''__test_patch_submodule_successive_dirname__''' SCREAMING_SNAKE_CASE : Optional[int] = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): with patch_submodule(_test_patching , '''os.rename''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A ( ): SCREAMING_SNAKE_CASE : int = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _lowercase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _lowercase ): pass
258
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = KandinskyInpaintPipeline UpperCamelCase_ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase_ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ = False @property def __A ( self : Tuple ): '''simple docstring''' return 32 @property def __A ( self : List[str] ): '''simple docstring''' return 32 @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : List[Any] ): '''simple docstring''' return 100 @property def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Any = MultilingualCLIP(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = text_encoder.eval() return text_encoder @property def __A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def __A ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Dict = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[str] = self.dummy_unet SCREAMING_SNAKE_CASE : int = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __A ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase__ ) # create init_image SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE : Tuple = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : List[Any] = 0 if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __A ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : int = np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = '''a hat''' SCREAMING_SNAKE_CASE : Dict = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
258
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = 'informer' __UpperCAmelCase : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__(self : Union[str, Any] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = None , __UpperCAmelCase : Optional[Union[str, bool]] = "mean" , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 6_4 , __UpperCAmelCase : int = 3_2 , __UpperCAmelCase : int = 3_2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.05 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 1_0_0 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : Any=True , __UpperCAmelCase : str = "prob" , __UpperCAmelCase : int = 5 , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" UpperCAmelCase__ = prediction_length UpperCAmelCase__ = context_length or prediction_length UpperCAmelCase__ = distribution_output UpperCAmelCase__ = loss UpperCAmelCase__ = input_size UpperCAmelCase__ = num_time_features UpperCAmelCase__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] UpperCAmelCase__ = scaling UpperCAmelCase__ = num_dynamic_real_features UpperCAmelCase__ = num_static_real_features UpperCAmelCase__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase__ = cardinality else: UpperCAmelCase__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase__ = embedding_dimension else: UpperCAmelCase__ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase__ = num_parallel_samples # Transformer architecture configuration UpperCAmelCase__ = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase__ = d_model UpperCAmelCase__ = encoder_attention_heads UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = encoder_layerdrop UpperCAmelCase__ = decoder_layerdrop UpperCAmelCase__ = activation_function UpperCAmelCase__ = init_std UpperCAmelCase__ = use_cache # Informer UpperCAmelCase__ = attention_type UpperCAmelCase__ = sampling_factor UpperCAmelCase__ = distil super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def lowercase_ (self : Union[str, Any] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
65
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
65
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( snake_case__): """simple docstring""" def __init__( self : int , __UpperCAmelCase : pyspark.sql.DataFrame , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "arrow" , **__UpperCAmelCase : str , ) -> Dict: super().__init__( split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_= load_from_cache_file UpperCAmelCase_= file_format UpperCAmelCase_= Spark( df=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , working_dir=__UpperCAmelCase , **__UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCAmelCase_= None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
277
0
'''simple docstring''' from PIL import Image def lowercase__ ( __lowercase : Any , __lowercase : List[Any] ) -> Image: """simple docstring""" __UpperCamelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(__lowercase : Optional[Any] ) -> int: return int(128 + factor * (c - 128) ) return img.point(_UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 a__ : Optional[Any] =change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
53
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __A : Tuple = logging.get_logger(__name__) __A : List[Any] = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class __A ( lowerCAmelCase ): @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : str ): raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class __A ( lowerCAmelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None ): lowerCAmelCase : str = max_length lowerCAmelCase : Any = max_position_embeddings @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = input_ids.shape[-1] lowerCAmelCase : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " 'exceptions, performance degradation, or nothing at all.' ) return is_done class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " 'with `max_length = start_length + max_new_tokens` instead.' , UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = start_length lowerCAmelCase : List[Any] = max_new_tokens lowerCAmelCase : Union[str, Any] = start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Dict , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[int] ): return input_ids.shape[-1] >= self.max_length class __A ( lowerCAmelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[float] = None ): lowerCAmelCase : List[str] = max_time lowerCAmelCase : Optional[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : List[Any] , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : List[Any] ): return time.time() - self.initial_timestamp > self.max_time class __A ( lowerCAmelCase ): @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[Any] ): return any(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) for criteria in self ) @property def lowercase__ ( self : Tuple ): for stopping_criterium in self: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return stopping_criterium.max_length return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' lowerCAmelCase : Dict = stopping_criteria.max_length lowerCAmelCase : Dict = deepcopy(_UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter', _UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_UpperCAmelCase ) ) return new_stopping_criteria
138
0
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if n == 1 or not isinstance(lowercase , lowercase ): return 0 elif n == 2: return 1 else: lowerCamelCase_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 2 while digits < n: index += 1 lowerCamelCase_ = len(str(fibonacci(lowercase ) ) ) return index def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' return fibonacci_digits_index(lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
363
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : str , lowercase : int , lowercase : List[Any] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCamelCase_ = TOKENIZER_CLASSES else: lowerCamelCase_ = {tokenizer_name: getattr(lowercase , tokenizer_name + 'Fast' )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCamelCase_ = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase_ = True if checkpoint_name is None: lowerCamelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase_ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCamelCase_ = tokenizer_class.from_pretrained(lowercase , force_download=lowercase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase_ , lowerCamelCase_ = checkpoint.split('/' ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) elif add_prefix: lowerCamelCase_ = checkpoint lowerCamelCase_ = dump_path else: lowerCamelCase_ = None lowerCamelCase_ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase_ = file_path.split(lowercase )[-1][0] if next_char == "/": lowerCamelCase_ = os.path.join(lowercase , lowercase ) lowerCamelCase_ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCamelCase_ = tokenizer.save_pretrained( lowercase , legacy_format=lowercase , filename_prefix=lowercase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowercase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
208
0
from pathlib import Path import fire def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = Path(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = Path(_lowerCamelCase ) dest_dir.mkdir(exist_ok=_lowerCamelCase ) for path in src_dir.iterdir(): _lowerCAmelCase : Dict = [x.rstrip() for x in list(path.open().readlines() )][:n] _lowerCAmelCase : Union[str, Any] = dest_dir.joinpath(path.name ) print(_lowerCamelCase ) dest_path.open("w" ).write("\n".join(_lowerCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
36
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" while second != 0: A : int = first & second first ^= second A : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_:int = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
116
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __a :Union[str, Any] = logging.getLogger(__name__) def __snake_case ( ): """simple docstring""" A_ = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" ,type=__UpperCamelCase ,default="wikitext" ,help="Name of the training. Explore datasets at: hf.co/datasets." ,) parser.add_argument( "--dataset_config" ,type=__UpperCamelCase ,default="wikitext-103-raw-v1" ,help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" ,type=__UpperCamelCase ,default="sayakpaul/unigram-tokenizer-wikitext" ,help="Tokenizer identifier. Can be a local filepath or a Hub identifier." ,) parser.add_argument( "--shard_size" ,type=__UpperCamelCase ,default=1000 ,help="Number of entries to go in a single shard." ,) parser.add_argument("--split" ,type=__UpperCamelCase ,default="train" ,choices=["train", "test", "validation"] ) parser.add_argument( "--limit" ,default=__UpperCamelCase ,type=__UpperCamelCase ,help="Limit the number of shards (used for debugging)." ,) parser.add_argument( "--max_length" ,type=__UpperCamelCase ,default=512 ,help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." ,) parser.add_argument( "--output_dir" ,default="tf-tpu" ,type=__UpperCamelCase ,help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." ,) A_ = parser.parse_args() return args def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" def fn(__UpperCamelCase : Union[str, Any] ): return tokenizer(examples["text"] ) return fn def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = [] for i in range(len(tokenized_data["input_ids"] ) ): A_ = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } A_ = tf.train.Features(feature=__UpperCamelCase ) A_ = tf.train.Example(features=__UpperCamelCase ) A_ = example.SerializeToString() records.append(__UpperCamelCase ) return records def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = datasets.load_dataset(args.dataset_name ,args.dataset_config ,split=args.split ) if args.limit is not None: A_ = min(len(__UpperCamelCase ) ,args.limit ) A_ = dataset.select(range(__UpperCamelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) A_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) A_ = os.path.join(args.output_dir ,args.split ) if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) else: A_ = os.path.join(args.output_dir ,args.split ) # Tokenize the whole dataset at once. A_ = tokenize_function(__UpperCamelCase ) A_ = dataset.map(__UpperCamelCase ,batched=__UpperCamelCase ,num_proc=4 ,remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCamelCase : Any ): # Concatenate all texts. A_ = {k: sum(examples[k] ,[] ) for k in examples.keys()} A_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 A_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. A_ = { k: [t[i : i + args.max_length] for i in range(0 ,__UpperCamelCase ,args.max_length )] for k, t in concatenated_examples.items() } return result A_ = dataset_tokenized.map(__UpperCamelCase ,batched=__UpperCamelCase ,batch_size=1000 ,num_proc=4 ) A_ = 0 A_ = 0 for shard in range(0 ,len(__UpperCamelCase ) ,args.shard_size ): A_ = grouped_dataset[shard : shard + args.shard_size] A_ = len(dataset_snapshot["input_ids"] ) A_ = os.path.join(__UpperCamelCase ,f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) A_ = get_serialized_examples(__UpperCamelCase ) with tf.io.TFRecordWriter(__UpperCamelCase ) as out_file: for i in range(len(__UpperCamelCase ) ): A_ = serialized_examples[i] out_file.write(__UpperCamelCase ) print("Wrote file {} containing {} records".format(__UpperCamelCase ,__UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' ,"w" ) as f: print(f'''Total {args.split} records: {total_records}''' ,file=__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = parse_args() main(args)
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
'''simple docstring''' import re def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(UpperCAmelCase , UpperCAmelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
258
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Union[str, Any] ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A = model A = kwargs.get("""model_save_dir""" , _lowerCAmelCase ) A = kwargs.get("""latest_model_name""" , _lowerCAmelCase ) def __call__(self : Tuple , **_lowerCAmelCase : Optional[Any] ): A = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def A (_lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A = """CPUExecutionProvider""" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : List[str] ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME A = self.model_save_dir.joinpath(self.latest_model_name ) A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def A (self : Tuple , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : str , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : Optional[int] , ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): A = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) A = Path(_lowerCAmelCase ) # load model from hub else: # download model A = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) A = Path(_lowerCAmelCase ).parent A = Path(_lowerCAmelCase ).name A = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : str , ): A = None if len(str(_lowerCAmelCase ).split("""@""" ) ) == 2: A , A = model_id.split("""@""" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
258
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "mvp" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCAmelCase=50267 , UpperCAmelCase=1024 , UpperCAmelCase=12 , UpperCAmelCase=4096 , UpperCAmelCase=16 , UpperCAmelCase=12 , UpperCAmelCase=4096 , UpperCAmelCase=16 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase="gelu" , UpperCAmelCase=1024 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=0.0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=100 , UpperCAmelCase=800 , **UpperCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = classifier_dropout lowercase_ = use_cache lowercase_ = encoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = use_prompt lowercase_ = prompt_length lowercase_ = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , UpperCAmelCase ): lowercase_ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' "The config can simply be saved and uploaded again to be fixed." )
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
from __future__ import annotations from math import ceil, floor, sqrt def _a ( SCREAMING_SNAKE_CASE : int = 2_00_00_00 ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: list[int] = [0] __lowerCAmelCase: int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCAmelCase: int = 0 # the area corresponding to the grid that gives the product closest to target __lowerCAmelCase: int = 0 # an estimate of b, using the quadratic formula __lowerCAmelCase: float # the largest integer less than b_estimate __lowerCAmelCase: int # the largest integer less than b_estimate __lowerCAmelCase: int # the triangle number corresponding to b_floor __lowerCAmelCase: int # the triangle number corresponding to b_ceil __lowerCAmelCase: int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCAmelCase: Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCAmelCase: Optional[Any] = floor(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = ceil(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = triangle_numbers[b_floor] __lowerCAmelCase: Any = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase: List[str] = triangle_b_first_guess * triangle_a __lowerCAmelCase: Dict = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase: int = triangle_b_second_guess * triangle_a __lowerCAmelCase: List[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
322
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case__ : """simple docstring""" def __init__( self : List[str], _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=7, _snake_case : int=True, _snake_case : Optional[Any]=True, _snake_case : Optional[Any]=True, _snake_case : Union[str, Any]=9_9, _snake_case : Optional[Any]=3_2, _snake_case : Tuple=5, _snake_case : str=4, _snake_case : Any=3_7, _snake_case : int="gelu", _snake_case : Optional[Any]=0.1, _snake_case : str=0.1, _snake_case : str=5_1_2, _snake_case : Dict=1_6, _snake_case : str=2, _snake_case : Union[str, Any]=0.0_2, _snake_case : Optional[int]=3, _snake_case : Union[str, Any]=4, _snake_case : Tuple=None, ) ->Optional[Any]: snake_case__ : Optional[int] = parent snake_case__ : List[Any] = batch_size snake_case__ : Tuple = seq_length snake_case__ : str = is_training snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Dict = vocab_size snake_case__ : str = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = num_choices snake_case__ : int = scope snake_case__ : List[str] = self.vocab_size - 1 def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : str = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case__ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : Any, _snake_case : List[Any], _snake_case : Tuple, *_snake_case : Optional[Any] ) ->Tuple: snake_case__ : Union[str, Any] = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, head_mask=_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case, token_type_ids=_snake_case ) snake_case__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : List[Any], *_snake_case : Dict ) ->Optional[int]: snake_case__ : Optional[Any] = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], *_snake_case : List[Any] ) ->Optional[int]: snake_case__ : List[str] = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : Tuple, _snake_case : Dict, _snake_case : List[str], _snake_case : Optional[Any], *_snake_case : Union[str, Any] ) ->str: snake_case__ : List[str] = self.num_labels snake_case__ : Dict = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : List[str] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict ) ->int: snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[Any] = config_and_inputs snake_case__ : str = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : Optional[int], _snake_case : Union[str, Any], _snake_case : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : List[str] ) ->Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ ( self : Optional[Any], _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : Any=False ) ->Tuple: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=_snake_case, ) snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=_snake_case, ) snake_case__ : Tuple = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_snake_case ) return inputs_dict def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : List[str] = OpenAIGPTModelTester(self ) snake_case__ : Any = ConfigTester(self, config_class=_snake_case, n_embd=3_7 ) def lowercase_ ( self : Optional[int] ) ->str: self.config_tester.run_common_tests() def lowercase_ ( self : int ) ->Tuple: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def lowercase_ ( self : Dict ) ->int: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def lowercase_ ( self : int ) ->str: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def lowercase_ ( self : Optional[Any] ) ->str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Tuple ) ->Optional[int]: snake_case__ : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) snake_case__ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=_snake_case ) # the president is snake_case__ : int = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case__ : Optional[int] = model.generate(_snake_case, do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist(), _snake_case )
277
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class a__ ( __lowercase , unittest.TestCase ): a : Optional[Any] = BarthezTokenizer a : List[Any] = BarthezTokenizerFast a : int = True a : Union[str, Any] = True def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' super().setUp() a = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_a ) a = tokenizer def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_a ) , 101122 ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = ["A long paragraph for summarization.", "Another paragraph for summarization."] a = [0, 57, 3018, 70307, 91, 2] a = self.tokenizer( _a , max_length=len(_a ) , padding=_a , truncation=_a , return_tensors="pt" ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) a = batch.input_ids.tolist()[0] self.assertListEqual(_a , _a ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(_a ) a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) a = tokenizer.encode(_a , add_special_tokens=_a ) a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) a = self.get_rust_tokenizer() a = tokenizer.encode(_a ) a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_a , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=_a , )
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Dict = "▁" lowercase__ : Union[str, Any] = {"vocab_file": "spiece.model"} lowercase__ : Union[str, Any] = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ : Tuple = { "google/reformer-crime-and-punishment": 524_288, } class a__ ( UpperCamelCase__ ): a : List[Any] = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="</s>" , A="<unk>" , A=[] , A = None , **A , ) -> None: '''simple docstring''' a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A , unk_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self ) -> Dict[str, int]: '''simple docstring''' a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: '''simple docstring''' a = self.__dict__.copy() a = None return state def __setstate__( self , A ) -> Union[str, Any]: '''simple docstring''' a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self , A ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A , out_type=A ) def lowerCAmelCase_ ( self , A ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.piece_to_id(A ) def lowerCAmelCase_ ( self , A ) -> Optional[int]: '''simple docstring''' if index < self.sp_model.get_piece_size(): a = self.sp_model.IdToPiece(A ) return token def lowerCAmelCase_ ( self , A ) -> Union[str, Any]: '''simple docstring''' a = [] a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token a = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def lowerCAmelCase_ ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
180
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a : int = 8 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=BITS ) -> Any: '''simple docstring''' snake_case_ = x.device snake_case_ = (x * 255).int().clamp(0, 255 ) snake_case_ = 2 ** torch.arange(bits - 1, -1, -1, device=_lowerCAmelCase ) snake_case_ = rearrange(_lowerCAmelCase, '''d -> d 1 1''' ) snake_case_ = rearrange(_lowerCAmelCase, '''b c h w -> b c 1 h w''' ) snake_case_ = ((x & mask) != 0).float() snake_case_ = rearrange(_lowerCAmelCase, '''b c d h w -> b (c d) h w''' ) snake_case_ = bits * 2 - 1 return bits def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=BITS ) -> Optional[Any]: '''simple docstring''' snake_case_ = x.device snake_case_ = (x > 0).int() snake_case_ = 2 ** torch.arange(bits - 1, -1, -1, device=_lowerCAmelCase, dtype=torch.intaa ) snake_case_ = rearrange(_lowerCAmelCase, '''d -> d 1 1''' ) snake_case_ = rearrange(_lowerCAmelCase, '''b (c d) h w -> b c d h w''', d=8 ) snake_case_ = reduce(x * mask, '''b c d h w -> b c h w''', '''sum''' ) return (dec / 255).clamp(0.0, 1.0 ) def __magic_name__ ( self, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 0.0, __UpperCAmelCase = True, __UpperCAmelCase=None, __UpperCAmelCase = True, ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case_ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case_ = self.alphas_cumprod[timestep] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case_ = self.bit_scale if self.config.clip_sample: snake_case_ = torch.clamp(_lowerCAmelCase, -scale, _lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case_ = self._get_variance(_lowerCAmelCase, _lowerCAmelCase ) snake_case_ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case_ = model_output.device if torch.is_tensor(_lowerCAmelCase ) else 'cpu' snake_case_ = torch.randn(model_output.shape, dtype=model_output.dtype, generator=_lowerCAmelCase ).to(_lowerCAmelCase ) snake_case_ = self._get_variance(_lowerCAmelCase, _lowerCAmelCase ) ** 0.5 * eta * noise snake_case_ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase, pred_original_sample=_lowerCAmelCase ) def __magic_name__ ( self, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase="epsilon", __UpperCAmelCase=None, __UpperCAmelCase = True, ) -> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' snake_case_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case_ = torch.split(_lowerCAmelCase, sample.shape[1], dim=1 ) else: snake_case_ = None # 1. compute alphas, betas snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case_ = model_output else: raise ValueError(F"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" snake_case_ = self.bit_scale if self.config.clip_sample: snake_case_ = torch.clamp(_lowerCAmelCase, -scale, _lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case_ = 0 if t > 0: snake_case_ = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=_lowerCAmelCase ).to(model_output.device ) snake_case_ = (self._get_variance(_lowerCAmelCase, predicted_variance=_lowerCAmelCase ) ** 0.5) * noise snake_case_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCAmelCase, pred_original_sample=_lowerCAmelCase ) class a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, DDPMScheduler] , lowercase_ : Optional[float] = 1.0 , ): super().__init__() snake_case_ = bit_scale snake_case_ = ( ddim_bit_scheduler_step if isinstance(_a , _a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : Tuple , lowercase_ : Optional[int] = 256 , lowercase_ : Optional[int] = 256 , lowercase_ : Optional[int] = 50 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[int] = 1 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , **lowercase_ : Dict , ): snake_case_ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_a , ) snake_case_ = decimal_to_bits(_a ) * self.bit_scale snake_case_ = latents.to(self.device ) self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case_ = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(_a , _a , _a ).prev_sample snake_case_ = bits_to_decimal(_a ) if output_type == "pil": snake_case_ = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
56
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase ,'rb' ) as fp: __lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) __lowerCamelCase : str = corpus.vocab.__dict__ torch.save(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase : int = os.path.abspath(_lowerCAmelCase ) __lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase : Optional[int] = TransfoXLConfig() else: __lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) __lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Save pytorch-model __lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() ,_lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
208
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): lowerCamelCase__: str =model_result["result"][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] ="sshleifer/tiny-gpt2" lowerCamelCase__: Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: Any =TensorFlowBenchmark(UpperCAmelCase_) lowerCamelCase__: Optional[int] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Any ="sgugger/tiny-distilbert-classification" lowerCamelCase__: Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , only_pretrain_model=UpperCAmelCase_ , ) lowerCamelCase__: str =TensorFlowBenchmark(UpperCAmelCase_) lowerCamelCase__: str =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] ="sshleifer/tiny-gpt2" lowerCamelCase__: Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =TensorFlowBenchmark(UpperCAmelCase_) lowerCamelCase__: List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict ="sshleifer/tiny-gpt2" lowerCamelCase__: Any =AutoConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: str =TensorFlowBenchmark(UpperCAmelCase_ , [config]) lowerCamelCase__: Any =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int ="sshleifer/tiny-gpt2" lowerCamelCase__: Dict =AutoConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =TensorFlowBenchmark(UpperCAmelCase_ , [config]) lowerCamelCase__: Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="sshleifer/tiny-gpt2" lowerCamelCase__: Any =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: int =TensorFlowBenchmark(UpperCAmelCase_) lowerCamelCase__: Any =benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] ="sshleifer/tiny-gpt2" lowerCamelCase__: Any =AutoConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =TensorFlowBenchmark(UpperCAmelCase_ , [config]) lowerCamelCase__: Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ="patrickvonplaten/t5-tiny-random" lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: int =TensorFlowBenchmark(UpperCAmelCase_ , configs=[config]) lowerCamelCase__: List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0 , "Cannot do xla on CPU.") def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: List[Any] ="sshleifer/tiny-gpt2" lowerCamelCase__: Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: Tuple =TensorFlowBenchmark(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] ="sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__: Any =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase_ , save_to_csv=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase_ , "inf_time.csv") , inference_memory_csv_file=os.path.join(UpperCAmelCase_ , "inf_mem.csv") , env_info_csv_file=os.path.join(UpperCAmelCase_ , "env.csv") , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: int =TensorFlowBenchmark(UpperCAmelCase_) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase_ , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , "env.csv")).exists()) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] ="sshleifer/tiny-gpt2" def _check_summary_is_not_empty(UpperCAmelCase_ : Optional[int]): self.assertTrue(hasattr(UpperCAmelCase_ , "sequential")) self.assertTrue(hasattr(UpperCAmelCase_ , "cumulative")) self.assertTrue(hasattr(UpperCAmelCase_ , "current")) self.assertTrue(hasattr(UpperCAmelCase_ , "total")) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__: Any =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase_ , "log.txt") , log_print=UpperCAmelCase_ , trace_memory_line_by_line=UpperCAmelCase_ , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =TensorFlowBenchmark(UpperCAmelCase_) lowerCamelCase__: Tuple =benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , "log.txt")).exists())
355
def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" assert x is not None assert y is not None lowerCamelCase__: Any =len(__a ) lowerCamelCase__: int =len(__a ) # declaring the array for storing the dp values lowerCamelCase__: List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__: str =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__: str =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__: Any ="" lowerCamelCase__ , lowerCamelCase__: str =m, n while i > 0 and j > 0: lowerCamelCase__: Union[str, Any] =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__: Any =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
273
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[Any] = original_name.split("." )[0] lowerCAmelCase : Any = key.split("." ) lowerCAmelCase : List[str] = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowerCAmelCase : Tuple = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowerCAmelCase : str = orig_block_num - offset lowerCAmelCase : Optional[int] = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : int = OrderedDict() lowerCAmelCase , lowerCAmelCase : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): lowerCAmelCase : Optional[Any] = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 lowerCAmelCase : Any = key[: key.find("proj" )] lowerCAmelCase : Any = key.replace(SCREAMING_SNAKE_CASE , f"""patch_embeddings.{total_embed_found}.""" ) lowerCAmelCase : int = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: lowerCAmelCase : Optional[int] = "poolformer.encoder." + key if "mlp.fc1" in key: lowerCAmelCase : Optional[int] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: lowerCAmelCase : List[str] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: lowerCAmelCase : Optional[Any] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: lowerCAmelCase : int = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: lowerCAmelCase : Tuple = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: lowerCAmelCase : List[Any] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: lowerCAmelCase : Optional[int] = key.replace("head" , "classifier" ) lowerCAmelCase : List[str] = value return new_state_dict def a__ ( ): '''simple docstring''' lowerCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = PoolFormerConfig() # set attributes based on model_name lowerCAmelCase : List[str] = "huggingface/label-files" lowerCAmelCase : str = model_name[-3:] lowerCAmelCase : List[Any] = 1_0_0_0 lowerCAmelCase : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase : int = (1, 1_0_0_0) # set config attributes lowerCAmelCase : int = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : List[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase : List[Any] = idalabel lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "s12": lowerCAmelCase : Union[str, Any] = [2, 2, 6, 2] lowerCAmelCase : Tuple = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase : str = 4.0 lowerCAmelCase : Dict = 0.9 elif size == "s24": lowerCAmelCase : Dict = [4, 4, 1_2, 4] lowerCAmelCase : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase : Optional[int] = 4.0 lowerCAmelCase : List[str] = 0.9 elif size == "s36": lowerCAmelCase : List[Any] = [6, 6, 1_8, 6] lowerCAmelCase : int = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase : Dict = 4.0 lowerCAmelCase : int = 1E-6 lowerCAmelCase : Union[str, Any] = 0.9 elif size == "m36": lowerCAmelCase : List[Any] = [6, 6, 1_8, 6] lowerCAmelCase : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] lowerCAmelCase : Tuple = 4.0 lowerCAmelCase : int = 1E-6 lowerCAmelCase : Optional[Any] = 0.95 elif size == "m48": lowerCAmelCase : Tuple = [8, 8, 2_4, 8] lowerCAmelCase : Tuple = [9_6, 1_9_2, 3_8_4, 7_6_8] lowerCAmelCase : str = 4.0 lowerCAmelCase : Optional[Any] = 1E-6 lowerCAmelCase : Tuple = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor lowerCAmelCase : Optional[Any] = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : str = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict lowerCAmelCase : Dict = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys lowerCAmelCase : str = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCAmelCase : List[Any] = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowerCAmelCase : Any = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass lowerCAmelCase : List[Any] = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = outputs.logits # define expected logit slices for different models if size == "s12": lowerCAmelCase : Optional[Any] = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowerCAmelCase : Any = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowerCAmelCase : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowerCAmelCase : str = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowerCAmelCase : Optional[Any] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
108
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : str = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ : List[Any] = '''OwlViTImageProcessor''' UpperCamelCase__ : str = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _A=None , _A=None , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) __SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) def __call__( self , _A=None , _A=None , _A=None , _A="max_length" , _A="np" , **_A ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(_A , _A ) or (isinstance(_A , _A ) and not isinstance(text[0] , _A )): __SCREAMING_SNAKE_CASE = [self.tokenizer(_A , padding=_A , return_tensors=_A , **_A )] elif isinstance(_A , _A ) and isinstance(text[0] , _A ): __SCREAMING_SNAKE_CASE = [] # Maximum number of queries across batch __SCREAMING_SNAKE_CASE = max([len(_A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_A ) != max_num_queries: __SCREAMING_SNAKE_CASE = t + [' '] * (max_num_queries - len(_A )) __SCREAMING_SNAKE_CASE = self.tokenizer(_A , padding=_A , return_tensors=_A , **_A ) encodings.append(_A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __SCREAMING_SNAKE_CASE = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __SCREAMING_SNAKE_CASE = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __SCREAMING_SNAKE_CASE = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __SCREAMING_SNAKE_CASE = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __SCREAMING_SNAKE_CASE = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __SCREAMING_SNAKE_CASE = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __SCREAMING_SNAKE_CASE = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __SCREAMING_SNAKE_CASE = BatchEncoding() __SCREAMING_SNAKE_CASE = input_ids __SCREAMING_SNAKE_CASE = attention_mask if query_images is not None: __SCREAMING_SNAKE_CASE = BatchEncoding() __SCREAMING_SNAKE_CASE = self.image_processor( _A , return_tensors=_A , **_A ).pixel_values __SCREAMING_SNAKE_CASE = query_pixel_values if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: __SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif query_images is not None and images is not None: __SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.image_processor.post_process(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.image_processor.post_process_object_detection(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @property def _A ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def _A ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
350
import os def __lowercase ( a__ = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(',' )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
118
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class lowercase ( lowerCamelCase__ ): lowercase_ : Optional[int] =field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase_ : List[str] =Features({'''audio''': Audio()} ) lowercase_ : str =Features({'''labels''': ClassLabel} ) lowercase_ : List[Any] ='''audio''' lowercase_ : List[Any] ='''labels''' def A__ ( self ,A__): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] ,__snake_case): raise ValueError(f'Column {self.label_column} is not a ClassLabel.') lowercase = copy.deepcopy(self) lowercase = self.label_schema.copy() lowercase = features[self.label_column] lowercase = label_schema return task_template @property def A__ ( self): return { self.audio_column: "audio", self.label_column: "labels", }
101
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase: List[str] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a__( lowerCamelCase__ ): def __init__( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : Optional[Any]=1 ): a : Union[str, Any] = tokenizer a : Union[str, Any] = dataset a : Any = len(__snake_case ) if n_tasks is None else n_tasks a : List[str] = n_copies def __iter__( self : str ): a : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) a : Dict = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a__( lowerCamelCase__ ): def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str ): a : Dict = start_length a : Dict = eof_strings a : str = tokenizer def __call__( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Any , **__snake_case : Union[str, Any] ): a : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) a : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def lowerCamelCase__ ( _A ): a : Optional[Any] = re.split('(%s)' % '|'.join(_A ) , _A ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A=20 , **_A ): a : Optional[Any] = defaultdict(_A ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_A ) ): with torch.no_grad(): a : Optional[Any] = batch['ids'].shape[-1] a : Optional[Any] = accelerator.unwrap_model(_A ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_A , **_A ) # each task is generated batch_size times a : Tuple = batch['task_id'].repeat(_A ) a : List[Any] = accelerator.pad_across_processes( _A , dim=1 , pad_index=tokenizer.pad_token_id ) a , a : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) a : List[str] = generated_tokens.cpu().numpy() a : int = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_A , _A ): gen_token_dict[task].append(_A ) a : Any = [[] for _ in range(_A )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: a : Optional[int] = tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) code_gens[task].append(remove_last_block(_A ) ) return code_gens def lowerCamelCase__ ( ): # Setup configuration a : Dict = HfArgumentParser(_A ) a : Any = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric a : List[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing a : int = 'false' if args.num_workers is None: a : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate a : List[Any] = Accelerator() set_seed(args.seed , device_specific=_A ) # Load model and tokenizer a : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) a : str = tokenizer.eos_token a : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings a : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _A , _A )] ), } # Load evaluation dataset and metric a : Optional[int] = load_dataset('openai_humaneval' ) a : Optional[Any] = load_metric('code_eval' ) a : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) a : Optional[Any] = args.n_samples // args.batch_size a : Any = TokenizedDataset(_A , human_eval['test'] , n_copies=_A , n_tasks=_A ) # do not confuse args.batch_size, which is actually the num_return_sequences a : int = DataLoader(_A , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: a : int = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception a , a : int = accelerator.prepare(_A , _A ) a : int = complete_code( _A , _A , _A , _A , n_tasks=_A , batch_size=args.batch_size , **_A , ) if accelerator.is_main_process: a : List[str] = [] for task in tqdm(range(_A ) ): a : int = human_eval['test'][task]['test'] a : int = f"""check({human_eval["test"][task]["entry_point"]})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric a , a : Tuple = code_eval_metric.compute( references=_A , predictions=_A , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_A , _A ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
297
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__(self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=None , __a=True , __a=True , __a=None , ) -> Dict: UpperCamelCase = size if size is not None else {"height": 20, "width": 20} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = do_convert_rgb UpperCamelCase = [5_12, 10_24, 20_48, 40_96] UpperCamelCase = patch_size if patch_size is not None else {"height": 16, "width": 16} def snake_case_ (self ) -> List[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def snake_case_ (self ) -> int: UpperCamelCase = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCamelCase = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = PixaStructImageProcessor if is_vision_available() else None def snake_case_ (self ) -> Tuple: UpperCamelCase = PixaStructImageProcessingTester(self ) @property def snake_case_ (self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_convert_rgb" ) ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = self.image_processor_tester.prepare_dummy_image() UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase = 20_48 UpperCamelCase = image_processor(__a , return_tensors="pt" , max_patches=__a ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def snake_case_ (self ) -> Optional[Any]: # Initialize image_processor UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __a , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case_ (self ) -> Any: # Initialize image_processor UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__a ): UpperCamelCase = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__a ).flattened_patches UpperCamelCase = "Hello" UpperCamelCase = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__a , header_text=__a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __a , return_tensors="pt" , max_patches=__a , header_text=__a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case_ (self ) -> List[str]: # Initialize image_processor UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) UpperCamelCase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __a , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case_ (self ) -> Dict: # Initialize image_processor UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __a , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = PixaStructImageProcessor if is_vision_available() else None def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase = 3 @property def snake_case_ (self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ (self ) -> Optional[int]: UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_convert_rgb" ) ) def snake_case_ (self ) -> List[Any]: # Initialize image_processor UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( __a , return_tensors="pt" , max_patches=__a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
244
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) UpperCamelCase = DetaConfig( backbone_config=_SCREAMING_SNAKE_CASE , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=_SCREAMING_SNAKE_CASE , with_box_refine=_SCREAMING_SNAKE_CASE , two_stage=_SCREAMING_SNAKE_CASE , ) # set labels UpperCamelCase = "huggingface/label-files" if "o365" in model_name: UpperCamelCase = 366 UpperCamelCase = "object365-id2label.json" else: UpperCamelCase = 91 UpperCamelCase = "coco-detection-id2label.json" UpperCamelCase = num_labels UpperCamelCase = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = dct.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) UpperCamelCase = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:dim, :] UpperCamelCase = in_proj_bias[: dim] UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase = in_proj_bias[ dim : dim * 2 ] UpperCamelCase = in_proj_weight[ -dim :, : ] UpperCamelCase = in_proj_bias[-dim :] # fmt: on def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCamelCase = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:hidden_size, :] UpperCamelCase = in_proj_bias[:hidden_size] UpperCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase = in_proj_weight[-hidden_size:, :] UpperCamelCase = in_proj_bias[-hidden_size:] def a__ ( ): """simple docstring""" UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = get_deta_config(_SCREAMING_SNAKE_CASE ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": UpperCamelCase = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) UpperCamelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_SCREAMING_SNAKE_CASE , param.shape ) # rename keys UpperCamelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(_SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val if "input_proj" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = DetaForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" model.to(_SCREAMING_SNAKE_CASE ) # load image processor UpperCamelCase = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image UpperCamelCase = prepare_img() UpperCamelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase = encoding["pixel_values"] UpperCamelCase = model(pixel_values.to(_SCREAMING_SNAKE_CASE ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) UpperCamelCase = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) UpperCamelCase = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
244
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCamelCase : Union[str, Any] = TypeVar('''T''') def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return (position - 1) // 2 def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return (2 * position) + 1 def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return (2 * position) + 2 class a__ ( Generic[T] ): def __init__( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE_ : dict[T, int] = {} SCREAMING_SNAKE_CASE_ : int = 0 def __len__( self : List[str] ): """simple docstring""" return self.elements def __repr__( self : Dict ): """simple docstring""" return str(self.heap ) def __UpperCamelCase ( self : int ): """simple docstring""" return self.elements == 0 def __UpperCamelCase ( self : str,_A : T,_A : int ): """simple docstring""" self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.elements > 1: self._swap_nodes(0,self.elements - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.heap[0] self._bubble_down(_A ) return elem def __UpperCamelCase ( self : Union[str, Any],_A : T,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.position_map[elem] SCREAMING_SNAKE_CASE_ : int = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE_ : int = get_parent_position(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_A ) else: self._bubble_down(_A ) else: self._bubble_down(_A ) def __UpperCamelCase ( self : List[Any],_A : T ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE_ : Tuple = get_parent_position(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_A,_A ) return self._bubble_up(_A ) return None def __UpperCamelCase ( self : Optional[Any],_A : T ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ : Optional[int] = get_child_left_position(_A ) SCREAMING_SNAKE_CASE_ : int = get_child_right_position(_A ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.heap[child_left_position] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_A,_A ) return self._bubble_down(_A ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_A,_A ) return self._bubble_down(_A ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_A,_A ) return self._bubble_down(_A ) return None def __UpperCamelCase ( self : Optional[int],_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ : List[Any] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE_ : Tuple = nodea_pos SCREAMING_SNAKE_CASE_ : List[Any] = nodea_pos class a__ ( Generic[T] ): def __init__( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE_ : int = 0 def __repr__( self : Optional[Any] ): """simple docstring""" return str(self.connections ) def __len__( self : str ): """simple docstring""" return self.nodes def __UpperCamelCase ( self : Tuple,_A : T ): """simple docstring""" if node not in self.connections: SCREAMING_SNAKE_CASE_ : Optional[int] = {} self.nodes += 1 def __UpperCamelCase ( self : Tuple,_A : T,_A : T,_A : int ): """simple docstring""" self.add_node(_A ) self.add_node(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight def _snake_case ( lowerCAmelCase : GraphUndirectedWeighted[T] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE_ : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE_ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase , lowerCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE_ : Optional[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE_ : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ : Optional[int] = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE_ : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ : int = node return dist, parent
18
from math import isqrt, loga def snake_case ( snake_case__ :int) -> list[int]: _A = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , snake_case__ , snake_case__): _A = False return [i for i in range(2 , snake_case__) if is_prime[i]] def snake_case ( snake_case__ :int = 800_800 , snake_case__ :int = 800_800) -> int: _A = degree * loga(snake_case__) _A = int(snake_case__) _A = calculate_prime_numbers(snake_case__) _A = 0 _A = 0 _A = len(snake_case__) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
180
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase : int =logging.get_logger(__name__) # TODO: upload to AWS lowerCamelCase : Optional[Any] ={ '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __a ( A__ ): _lowerCAmelCase : List[Any] = '''retribert''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any]=3_05_22 , SCREAMING_SNAKE_CASE : int=7_68 , SCREAMING_SNAKE_CASE : int=8 , SCREAMING_SNAKE_CASE : Dict=12 , SCREAMING_SNAKE_CASE : List[str]=30_72 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Tuple=5_12 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : Tuple=0.0_2 , SCREAMING_SNAKE_CASE : int=1e-1_2 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : str=1_28 , SCREAMING_SNAKE_CASE : Dict=0 , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : Tuple = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : List[Any] = attention_probs_dropout_prob UpperCamelCase__ : Optional[Any] = max_position_embeddings UpperCamelCase__ : str = type_vocab_size UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : List[str] = share_encoders UpperCamelCase__ : List[Any] = projection_dim
361
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict =logging.get_logger(__name__) class __a ( A__ ): _lowerCAmelCase : Optional[int] = '''timm_backbone''' def __init__( self : Dict , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[Any]=3 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Union[str, Any]=None , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = backbone UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : str = features_only UpperCamelCase__ : Dict = use_pretrained_backbone UpperCamelCase__ : Tuple = True UpperCamelCase__ : List[Any] = out_indices if out_indices is not None else (-1,)
196
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[Any] ) -> Optional[int]: if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__ , "config.json" ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , "config.json" ) ): os.remove(os.path.join(UpperCamelCase__ , "config.json" ) ) if os.path.exists(os.path.join(UpperCamelCase__ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , "pytorch_model.bin" ) ): os.remove(os.path.join(UpperCamelCase__ , "pytorch_model.bin" ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : str=False ) -> Any: __snake_case : str = 2 if unlogit: __snake_case : List[Any] = torch.pow(UpperCamelCase__ , UpperCamelCase__ ) __snake_case : str = p * torch.log(UpperCamelCase__ ) __snake_case : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def lowerCAmelCase__( lowercase : Tuple ) -> Union[str, Any]: logger.info("lv, h >\t" + "\t".join(f"""{x + 1}""" for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + "\t".join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + "\t".join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : List[Any]=True , lowercase : Any=True , lowercase : str=None , lowercase : Union[str, Any]=False ) -> Any: __snake_case , __snake_case : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads __snake_case : List[str] = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) __snake_case : Optional[Any] = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) if head_mask is None: __snake_case : List[str] = torch.ones(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __snake_case : Union[str, Any] = None __snake_case : Optional[int] = 0.0 __snake_case : List[Any] = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((__snake_case ) , ) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __snake_case : Optional[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ , head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __snake_case , __snake_case , __snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): __snake_case : Any = entropy(attn.detach() , UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __snake_case : List[str] = 2 __snake_case : Tuple = torch.pow(torch.pow(UpperCamelCase__ , UpperCamelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: __snake_case : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(UpperCamelCase__ ) logger.info("Head ranked by importance scores" ) __snake_case : Optional[int] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __snake_case : Tuple = torch.arange( head_importance.numel() , device=args.device ) __snake_case : List[str] = head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def lowerCAmelCase__( lowercase : str , lowercase : Any , lowercase : Any ) -> Optional[Any]: __snake_case , __snake_case , __snake_case : Union[str, Any] = compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ ) __snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , UpperCamelCase__ , original_score * args.masking_threshold ) __snake_case : Optional[Any] = torch.ones_like(UpperCamelCase__ ) __snake_case : Optional[int] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __snake_case : Any = original_score while current_score >= original_score * args.masking_threshold: __snake_case : Optional[int] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __snake_case : Union[str, Any] = float("Inf" ) __snake_case : List[Any] = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __snake_case : Dict = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __snake_case : List[str] = new_head_mask.view(-1 ) __snake_case : Any = 0.0 __snake_case : Tuple = new_head_mask.view_as(UpperCamelCase__ ) __snake_case : Union[str, Any] = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again __snake_case , __snake_case , __snake_case : List[Any] = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , head_mask=UpperCamelCase__ ) __snake_case : Optional[int] = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , UpperCamelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCAmelCase__( lowercase : List[Any] , lowercase : Tuple , lowercase : List[Any] , lowercase : Dict ) -> Optional[int]: __snake_case : List[str] = datetime.now() __snake_case , __snake_case , __snake_case : List[Any] = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ ) __snake_case : Tuple = 1 / loss __snake_case : Optional[int] = datetime.now() - before_time __snake_case : Any = sum(p.numel() for p in model.parameters() ) __snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __snake_case : List[Any] = [ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) __snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) __snake_case : Optional[Any] = datetime.now() __snake_case , __snake_case , __snake_case : List[str] = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ , actually_pruned=UpperCamelCase__ , ) __snake_case : Any = 1 / loss __snake_case : List[str] = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , UpperCamelCase__ , UpperCamelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , UpperCamelCase__ , UpperCamelCase__ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(UpperCamelCase__ , args.output_dir ) def lowerCAmelCase__( ) -> Union[str, Any]: __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=UpperCamelCase__ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=UpperCamelCase__ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=UpperCamelCase__ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don\'t normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don\'t normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=UpperCamelCase__ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=UpperCamelCase__ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=UpperCamelCase__ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCamelCase__ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=UpperCamelCase__ , help="Batch size." ) parser.add_argument("--seed" , type=UpperCamelCase__ , default=42 ) parser.add_argument("--local_rank" , type=UpperCamelCase__ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=UpperCamelCase__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=UpperCamelCase__ , default="" , help="Can be used for distant debugging." ) __snake_case : int = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __snake_case : Optional[int] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __snake_case : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __snake_case : List[Any] = torch.device("cuda" , args.local_rank ) __snake_case : List[str] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __snake_case : Tuple = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __snake_case : Optional[int] = nn.parallel.DistributedDataParallel( UpperCamelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: __snake_case : List[Any] = nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , UpperCamelCase__ ) # Prepare dataset __snake_case : Optional[int] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __snake_case : Tuple = (torch.from_numpy(UpperCamelCase__ ),) __snake_case : Optional[int] = TensorDataset(*UpperCamelCase__ ) __snake_case : List[str] = RandomSampler(UpperCamelCase__ ) __snake_case : int = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __snake_case : List[str] = mask_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) prune_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
326
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> int: return int((input_a, input_a).count(0) != 0) def SCREAMING_SNAKE_CASE ( ) -> None: assert nand_gate(0 , 0) == 1 assert nand_gate(0 , 1) == 1 assert nand_gate(1 , 0) == 1 assert nand_gate(1 , 1) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
351
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a__ ( UpperCamelCase__ , unittest.TestCase ): a : List[Any] = RoFormerTokenizer a : Tuple = RoFormerTokenizerFast a : Dict = True a : Optional[Any] = True def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() def lowerCAmelCase_ ( self , **A ) -> Tuple: '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self , **A ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = "永和服装饰品有限公司,今天天气非常好" a = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.get_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = self.get_rust_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass
180
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCAmelCase : int = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): return max(metric_fn(__UpperCamelCase, __UpperCamelCase ) for gt in ground_truths ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :List[str] = [line.strip() for line in open(__UpperCamelCase, "r" ).readlines()] lowercase :Any = [] if args.gold_data_mode == "qa": lowercase :Any = pd.read_csv(__UpperCamelCase, sep="\t", header=__UpperCamelCase ) for answer_list in data[1]: lowercase :List[str] = ast.literal_eval(__UpperCamelCase ) answers.append(__UpperCamelCase ) else: lowercase :Union[str, Any] = [line.strip() for line in open(__UpperCamelCase, "r" ).readlines()] lowercase :Tuple = [[reference] for reference in references] lowercase :Union[str, Any] = 0 for prediction, ground_truths in zip(__UpperCamelCase, __UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) fa += metric_max_over_ground_truths(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) lowercase :Union[str, Any] = 100.0 * em / total lowercase :Optional[int] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :List[Any] = args.k lowercase :Tuple = [line.strip() for line in open(__UpperCamelCase, "r" ).readlines()] lowercase :int = [line.strip() for line in open(__UpperCamelCase, "r" ).readlines()] lowercase :Optional[int] = 0 for hypo, reference in zip(__UpperCamelCase, __UpperCamelCase ): lowercase :str = set(hypo.split("\t" )[:k] ) lowercase :Tuple = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase :str = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): def strip_title(lowerCamelCase ): if title.startswith("\"" ): lowercase :int = title[1:] if title.endswith("\"" ): lowercase :Optional[int] = title[:-1] return title lowercase :Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase, return_tensors="pt", padding=__UpperCamelCase, truncation=__UpperCamelCase, )["input_ids"].to(args.device ) lowercase :Dict = rag_model.rag.question_encoder(__UpperCamelCase ) lowercase :int = question_enc_outputs[0] lowercase :Any = rag_model.retriever( __UpperCamelCase, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) lowercase :Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase :Dict = [] for docs in all_docs: lowercase :Tuple = [strip_title(__UpperCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__UpperCamelCase ) ) return provenance_strings def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): with torch.no_grad(): lowercase :Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase, return_tensors="pt", padding=__UpperCamelCase, truncation=__UpperCamelCase ) lowercase :Union[str, Any] = inputs_dict.input_ids.to(args.device ) lowercase :int = inputs_dict.attention_mask.to(args.device ) lowercase :Optional[Any] = rag_model.generate( # rag_model overwrites generate __UpperCamelCase, attention_mask=__UpperCamelCase, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=__UpperCamelCase, num_return_sequences=1, bad_words_ids=[[0, 0]], ) lowercase :int = rag_model.retriever.generator_tokenizer.batch_decode(__UpperCamelCase, skip_special_tokens=__UpperCamelCase ) if args.print_predictions: for q, a in zip(__UpperCamelCase, __UpperCamelCase ): logger.info("Q: {} - A: {}".format(__UpperCamelCase, __UpperCamelCase ) ) return answers def UpperCAmelCase__ ( ): lowercase :Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=__UpperCamelCase, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=__UpperCamelCase, choices=["exact", "compressed", "legacy"], type=__UpperCamelCase, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=__UpperCamelCase, type=__UpperCamelCase, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=__UpperCamelCase, help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path", default=__UpperCamelCase, type=__UpperCamelCase, required=__UpperCamelCase, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=__UpperCamelCase, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=__UpperCamelCase, help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set", default=__UpperCamelCase, type=__UpperCamelCase, required=__UpperCamelCase, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=__UpperCamelCase, type=__UpperCamelCase, required=__UpperCamelCase, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=__UpperCamelCase, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=__UpperCamelCase, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=__UpperCamelCase, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=__UpperCamelCase, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=__UpperCamelCase, help="Min length of the generated answers" ) parser.add_argument("--max_length", default=50, type=__UpperCamelCase, help="Max length of the generated answers" ) parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) lowercase :Dict = parser.parse_args() lowercase :Optional[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = {} if args.model_type is None: lowercase :List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): lowercase :Optional[Any] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration lowercase :int = args.n_docs if args.index_name is not None: lowercase :Optional[int] = args.index_name if args.index_path is not None: lowercase :Tuple = args.index_path else: lowercase :Union[str, Any] = BartForConditionalGeneration lowercase :Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", __UpperCamelCase ) lowercase :Dict = get_scores if args.eval_mode == "e2e" else get_precision_at_k lowercase :int = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__UpperCamelCase, args.predictions_path, args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__UpperCamelCase ) ) logger.info(" Batch size = %d", args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): lowercase :int = RagRetriever.from_pretrained(__UpperCamelCase, **__UpperCamelCase ) lowercase :Any = model_class.from_pretrained(__UpperCamelCase, retriever=__UpperCamelCase, **__UpperCamelCase ) model.retriever.init_retrieval() else: lowercase :Tuple = model_class.from_pretrained(__UpperCamelCase, **__UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set, "r" ) as eval_file, open(args.predictions_path, "w" ) as preds_file: lowercase :Optional[Any] = [] for line in tqdm(__UpperCamelCase ): questions.append(line.strip() ) if len(__UpperCamelCase ) == args.eval_batch_size: lowercase :int = evaluate_batch_fn(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) preds_file.write("\n".join(__UpperCamelCase ) + "\n" ) preds_file.flush() lowercase :Optional[Any] = [] if len(__UpperCamelCase ) > 0: lowercase :Tuple = evaluate_batch_fn(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) preds_file.write("\n".join(__UpperCamelCase ) ) preds_file.flush() score_fn(__UpperCamelCase, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = get_args() main(args)
236
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A : Tuple = get_tests_dir("fixtures") class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__magic_name__ ) as mock_head: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self : Optional[int] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : int ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="test-feature-extractor" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __A ( self : Dict ) -> str: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __A ( self : List[Any] ) -> Dict: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
118
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=7 ,__UpperCAmelCase=3 ,__UpperCAmelCase=30 ,__UpperCAmelCase=400 ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase=[0.5, 0.5, 0.5] ,__UpperCAmelCase=[0.5, 0.5, 0.5] ,__UpperCAmelCase=True ,__UpperCAmelCase=1 / 255 ,__UpperCAmelCase=True ,) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ : Tuple = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Tuple = min_resolution lowerCAmelCase__ : Optional[Any] = max_resolution lowerCAmelCase__ : Tuple = do_resize lowerCAmelCase__ : Dict = size lowerCAmelCase__ : Dict = do_normalize lowerCAmelCase__ : List[str] = image_mean lowerCAmelCase__ : List[Any] = image_std lowerCAmelCase__ : Any = do_rescale lowerCAmelCase__ : Optional[int] = rescale_factor lowerCAmelCase__ : int = do_pad def UpperCAmelCase_ ( self ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Optional[Any]: if not batched: lowerCAmelCase__ : Tuple = image_inputs[0] if isinstance(__UpperCAmelCase ,Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ : List[str] = image.size else: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : str = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase__ : List[str] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase__ : Union[str, Any] = self.size["""shortest_edge"""] lowerCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase__ : Optional[Any] = self.size["""shortest_edge"""] lowerCAmelCase__ : Optional[Any] = self.size["""shortest_edge"""] else: lowerCAmelCase__ : Optional[int] = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : Union[str, Any] = max(__UpperCAmelCase ,key=lambda __UpperCAmelCase : item[0] )[0] lowerCAmelCase__ : Union[str, Any] = max(__UpperCAmelCase ,key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : str = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : List[Any] = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""size""" ) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase ,batched=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : List[str] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(__UpperCAmelCase ,batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : int = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ,batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def UpperCAmelCase_ ( self ) -> Tuple: # prepare image and target lowerCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f: lowerCAmelCase__ : Tuple = json.loads(f.read() ) lowerCAmelCase__ : Dict = {"""image_id""": 3_9769, """annotations""": target} # encode them lowerCAmelCase__ : List[Any] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) lowerCAmelCase__ : Tuple = image_processing(images=__UpperCAmelCase ,annotations=__UpperCAmelCase ,return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,__UpperCAmelCase ) ) # verify boxes lowerCAmelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : str = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,__UpperCAmelCase ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : int = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,__UpperCAmelCase ) ) # verify is_crowd lowerCAmelCase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,__UpperCAmelCase ) ) # verify class_labels lowerCAmelCase__ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,__UpperCAmelCase ) ) # verify orig_size lowerCAmelCase__ : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,__UpperCAmelCase ) ) # verify size lowerCAmelCase__ : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,__UpperCAmelCase ) ) @slow def UpperCAmelCase_ ( self ) -> str: # prepare image, target and masks_path lowerCAmelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f: lowerCAmelCase__ : str = json.loads(f.read() ) lowerCAmelCase__ : Union[str, Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} lowerCAmelCase__ : List[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase__ : Optional[int] = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase__ : Union[str, Any] = image_processing(images=__UpperCAmelCase ,annotations=__UpperCAmelCase ,masks_path=__UpperCAmelCase ,return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,__UpperCAmelCase ) ) # verify boxes lowerCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,__UpperCAmelCase ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,__UpperCAmelCase ) ) # verify is_crowd lowerCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,__UpperCAmelCase ) ) # verify class_labels lowerCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,__UpperCAmelCase ) ) # verify masks lowerCAmelCase__ : int = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,__UpperCAmelCase ) # verify orig_size lowerCAmelCase__ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,__UpperCAmelCase ) ) # verify size lowerCAmelCase__ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,__UpperCAmelCase ) )
184
'''simple docstring''' from typing import Any class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[Any] = data lowerCAmelCase__ : str = None def __repr__( self ) -> str: return F"""Node({self.data})""" class lowerCAmelCase_: '''simple docstring''' def __init__( self ) -> List[Any]: lowerCAmelCase__ : List[str] = None def __iter__( self ) -> Any: lowerCAmelCase__ : int = self.head while node: yield node.data lowerCAmelCase__ : Optional[Any] = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(__UpperCAmelCase ) for item in self] ) def __getitem__( self ,__UpperCAmelCase ) -> Any: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) lowerCAmelCase__ : List[Any] = self.head for _ in range(__UpperCAmelCase ): lowerCAmelCase__ : List[str] = current.next lowerCAmelCase__ : Dict = data def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: self.insert_nth(len(self ) ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: self.insert_nth(0 ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) lowerCAmelCase__ : str = Node(__UpperCAmelCase ) if self.head is None: lowerCAmelCase__ : List[Any] = new_node elif index == 0: lowerCAmelCase__ : Dict = self.head # link new_node to head lowerCAmelCase__ : int = new_node else: lowerCAmelCase__ : Any = self.head for _ in range(index - 1 ): lowerCAmelCase__ : Tuple = temp.next lowerCAmelCase__ : str = temp.next lowerCAmelCase__ : Optional[int] = new_node def UpperCAmelCase_ ( self ) -> None: # print every node data print(self ) def UpperCAmelCase_ ( self ) -> Any: return self.delete_nth(0 ) def UpperCAmelCase_ ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) lowerCAmelCase__ : List[Any] = self.head # default first node if index == 0: lowerCAmelCase__ : str = self.head.next else: lowerCAmelCase__ : int = self.head for _ in range(index - 1 ): lowerCAmelCase__ : Union[str, Any] = temp.next lowerCAmelCase__ : Optional[Any] = temp.next lowerCAmelCase__ : Any = temp.next.next return delete_node.data def UpperCAmelCase_ ( self ) -> bool: return self.head is None def UpperCAmelCase_ ( self ) -> None: lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : str = self.head while current: # Store the current node's next node. lowerCAmelCase__ : Optional[Any] = current.next # Make the current node's next point backwards lowerCAmelCase__ : Optional[int] = prev # Make the previous node be the current node lowerCAmelCase__ : Optional[Any] = current # Make the current node the next node (to progress iteration) lowerCAmelCase__ : Optional[int] = next_node # Return prev in order to put the head at the end lowerCAmelCase__ : List[str] = prev def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Dict = LinkedList() assert linked_list.is_empty() is True assert str(UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCamelCase ) == i linked_list.insert_nth(UpperCamelCase , i + 1 ) assert str(UpperCamelCase ) == "->".join(str(UpperCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCamelCase ) == "->".join(str(UpperCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCamelCase ) == 9 assert str(UpperCamelCase ) == "->".join(str(UpperCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase__ : str = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCamelCase ) == "->".join(str(UpperCamelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = [ -9, 100, Node(77345112 ), """dlrow olleH""", 7, 5555, 0, -192.5_5555, """Hello, world!""", 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase__ : List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase__ : List[str] = linked_list.delete_head() assert result == -9 assert ( str(UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase__ : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase__ : str = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCamelCase ) assert ( str(UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from doctest import testmod testmod() lowerCAmelCase__ : str = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(UpperCamelCase ) print("""\nReading/changing Node data using indexing:""" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase__ : Dict = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(UpperCamelCase ) print(f"""length of linked_list is : {len(UpperCamelCase )}""" ) if __name__ == "__main__": main()
184
1
from __future__ import annotations def __magic_name__ ( __a : list[int | str] ): '''simple docstring''' create_state_space_tree(__a , [] , 0 , [0 for i in range(len(__a ) )] ) def __magic_name__ ( __a : list[int | str] , __a : list[int | str] , __a : int , __a : list[int] , ): '''simple docstring''' if index == len(__a ): print(__a ) return for i in range(len(__a ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(__a , __a , index + 1 , __a ) current_sequence.pop() UpperCamelCase__ = False lowerCamelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCamelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
244
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCamelCase_ = ['''small''', '''medium''', '''large'''] lowerCamelCase_ = '''lm_head.decoder.weight''' lowerCamelCase_ = '''lm_head.weight''' def __magic_name__ ( __a : str , __a : str ): '''simple docstring''' UpperCamelCase__ = torch.load(__a ) UpperCamelCase__ = d.pop(__a ) os.makedirs(__a , exist_ok=__a ) torch.save(__a , os.path.join(__a , __a ) ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) lowerCamelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCamelCase_ = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') lowerCamelCase_ = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
244
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def lowerCAmelCase_ ( __A, __A, __A=8 ) -> Any: '''simple docstring''' UpperCAmelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A ( UpperCAmelCase_ ): def __init__(self : Union[str, Any] , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : VQModel , ) -> Any: """simple docstring""" super().__init__() self.register_modules( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , movq=__UpperCAmelCase , ) UpperCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase_ (self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if latents is None: UpperCAmelCase__ = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase__ = latents.to(__UpperCAmelCase ) UpperCAmelCase__ = latents * scheduler.init_noise_sigma return latents def lowercase_ (self : Any , __UpperCAmelCase : Any=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase__ = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : Dict , __UpperCAmelCase : List[str]=0 ) -> int: """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase__ = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__ = cpu_offload_with_hook(__UpperCAmelCase , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. UpperCAmelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__(self : Optional[int] , __UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 1_0_0 , __UpperCAmelCase : float = 4.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self._execution_device UpperCAmelCase__ = guidance_scale > 1.0 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = torch.cat(__UpperCAmelCase , dim=0 ) UpperCAmelCase__ = image_embeds.shape[0] * num_images_per_prompt if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = torch.cat(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ = image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) UpperCAmelCase__ = negative_image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) UpperCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase , device=__UpperCAmelCase ) UpperCAmelCase__ = self.scheduler.timesteps UpperCAmelCase__ = self.unet.config.in_channels UpperCAmelCase__ , UpperCAmelCase__ = downscale_height_and_width(__UpperCAmelCase , __UpperCAmelCase , self.movq_scale_factor ) # create initial latent UpperCAmelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = {"image_embeds": image_embeds} UpperCAmelCase__ = self.unet( sample=__UpperCAmelCase , timestep=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , added_cond_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__ = variance_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase , )[0] # post-processing UpperCAmelCase__ = self.movq.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase__ = image * 0.5 + 0.5 UpperCAmelCase__ = image.clamp(0 , 1 ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
143
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__(self : Tuple , __UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = False def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
143
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A : Optional[Any] = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' A : Any = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' A : List[str] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : List[str] ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def a_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str = 1 , __lowerCAmelCase : List[Any] = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ ) }
274
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __a : @staticmethod def SCREAMING_SNAKE_CASE__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' pass def snake_case_ ( snake_case ) -> Optional[Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __a ( unittest.TestCase ): __lowercase : Dict = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Optional[Any] = pipeline( 'document-question-answering' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) lowercase__: int = INVOICE_URL lowercase__: Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '' ) ) ) lowercase__: str = 'What is the placebo?' lowercase__: Any = [ { 'image': load_image(lowerCAmelCase__ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: str = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'score': ANY(lowerCAmelCase__ ), 'answer': ANY(lowerCAmelCase__ ), 'start': ANY(lowerCAmelCase__ ), 'end': ANY(lowerCAmelCase__ )}, {'score': ANY(lowerCAmelCase__ ), 'answer': ANY(lowerCAmelCase__ ), 'start': ANY(lowerCAmelCase__ ), 'end': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowercase__: Optional[Any] = INVOICE_URL lowercase__: int = 'How many cats are there?' lowercase__: List[str] = [ {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowercase__: Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) lowercase__: Tuple = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase__: str = './tests/fixtures/tests_samples/COCO/000000039769.png' lowercase__: Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes lowercase__: int = './tests/fixtures/tests_samples/COCO/000000039769.png' lowercase__: List[Any] = [] lowercase__: Optional[int] = [] lowercase__: Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[str] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowercase__: int = INVOICE_URL lowercase__: str = 'What is the invoice number?' lowercase__: Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowercase__: Any = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowercase__: Optional[int] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Any = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowercase__: Optional[int] = INVOICE_URL lowercase__: Union[str, Any] = 'What is the invoice number?' lowercase__: Optional[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowercase__: Tuple = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowercase__: Dict = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Optional[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCAmelCase__ ) lowercase__: Optional[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCAmelCase__ , revision='3dc6de3' , ) lowercase__: List[str] = INVOICE_URL lowercase__: Union[str, Any] = 'What is the invoice number?' lowercase__: Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowercase__: List[str] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowercase__: int = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowercase__: Any = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '' ) ) ) # This model should also work if `image` is set to None lowercase__: List[Any] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCAmelCase__ ) lowercase__: str = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCAmelCase__ , revision='3dc6de3' , max_seq_len=50 , ) lowercase__: Optional[Any] = INVOICE_URL lowercase__: Optional[Any] = 'What is the invoice number?' lowercase__: Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowercase__: Any = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowercase__: Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '' ) ) ) # This model should also work if `image` is set to None lowercase__: Tuple = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: List[Any] = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowercase__: int = INVOICE_URL lowercase__: int = 'What is the invoice number?' lowercase__: Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' pass
196
0
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __A : int = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __A : Any = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __A : Union[str, Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Any): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int="auto" , __SCREAMING_SNAKE_CASE : Any=-1 , __SCREAMING_SNAKE_CASE : str=0.9 , __SCREAMING_SNAKE_CASE : int=5 , __SCREAMING_SNAKE_CASE : Optional[int]=5_0_0 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gpt2-large" , __SCREAMING_SNAKE_CASE : Any=-1 , __SCREAMING_SNAKE_CASE : List[str]=1_0_2_4 , __SCREAMING_SNAKE_CASE : str=2_5 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[str]=2_5 , ): A = compute_mauve( p_text=_SCREAMING_SNAKE_CASE , q_text=_SCREAMING_SNAKE_CASE , p_features=_SCREAMING_SNAKE_CASE , q_features=_SCREAMING_SNAKE_CASE , p_tokens=_SCREAMING_SNAKE_CASE , q_tokens=_SCREAMING_SNAKE_CASE , num_buckets=_SCREAMING_SNAKE_CASE , pca_max_data=_SCREAMING_SNAKE_CASE , kmeans_explained_var=_SCREAMING_SNAKE_CASE , kmeans_num_redo=_SCREAMING_SNAKE_CASE , kmeans_max_iter=_SCREAMING_SNAKE_CASE , featurize_model_name=_SCREAMING_SNAKE_CASE , device_id=_SCREAMING_SNAKE_CASE , max_text_length=_SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=_SCREAMING_SNAKE_CASE , mauve_scaling_factor=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE , ) return out
355
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ = 600_851_475_143 ): """simple docstring""" try: A = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A = 2 A = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A = i while n % i == 0: A = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
57
0
'''simple docstring''' from functools import reduce lowerCAmelCase_ : Optional[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowerCamelCase ( lowercase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
63
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :Dict) -> Any: _A = [] for part_id in partition_order: _A = df.where(F'''SPARK_PARTITION_ID() = {part_id}''').collect() for row_idx, row in enumerate(snake_case__): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Optional[Any]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(100).repartition(1) _A = Spark(snake_case__) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Union[str, Any]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(10).repartition(2) _A = [1, 0] _A = _generate_iterable_examples(snake_case__ , snake_case__) # Reverse the partitions. _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__) for i, (row_id, row_dict) in enumerate(generate_fn()): _A , _A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> int: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(10).repartition(1) _A = SparkExamplesIterable(snake_case__) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Union[str, Any]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""") as generator_mock: _A = lambda snake_case__: x.reverse() _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0]) _A = SparkExamplesIterable(snake_case__).shuffle_data_sources(snake_case__) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__): _A , _A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> List[str]: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(20).repartition(4) # Partitions 0 and 2 _A = SparkExamplesIterable(snake_case__).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2]) for i, (row_id, row_dict) in enumerate(snake_case__): _A , _A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _A = SparkExamplesIterable(snake_case__).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 _A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3]) for i, (row_id, row_dict) in enumerate(snake_case__): _A , _A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case ( ) -> Tuple: _A = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() _A = spark.range(100).repartition(1) _A = Spark(snake_case__) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
180
0
"""simple docstring""" UpperCAmelCase: List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Dict = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase: list[bool | None] = [None] * 10_000_000 UpperCAmelCase: int = True UpperCAmelCase: Any = False def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowercase : Any = chain(next_number(__UpperCAmelCase ) ) _lowercase : Dict = number_chain while number < 10000000: _lowercase : str = number_chain number *= 10 return number_chain def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 10000000 ): for i in range(1 , __UpperCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar A : int = TypeVar("T") class _lowercase ( Generic[T]): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : bool = True ): '''simple docstring''' lowerCamelCase__ : dict[T, list[T]] = {} # dictionary of lists lowerCamelCase__ : int = directed def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : T , __lowerCamelCase : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCamelCase ) self.adj_list[destination_vertex].append(__lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCamelCase ) lowerCamelCase__ : int = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__lowerCamelCase ) lowerCamelCase__ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCamelCase__ : Optional[int] = [destination_vertex] lowerCamelCase__ : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCamelCase__ : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCamelCase__ : Optional[int] = [destination_vertex] lowerCamelCase__ : Dict = [] return self def __repr__( self : Tuple ): '''simple docstring''' return pformat(self.adj_list )
184
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[Any] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "xlm-roberta" def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any]=30522 , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Dict="absolute" , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=None , **__lowerCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : Any = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
184
1
from __future__ import annotations def A(__a: str , __a: list[str] | None = None ): lowerCAmelCase_ = word_bank or [] # create a table lowerCAmelCase_ = len(__a ) + 1 lowerCAmelCase_ = [] for _ in range(__a ): table.append([] ) # seed value lowerCAmelCase_ = [[]] # because empty string has empty combination # iterate through the indices for i in range(__a ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__a )] == word: lowerCAmelCase_ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__a )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__a )]: combination.reverse() return table[len(__a )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
22
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() def __a ( self ) -> Dict: '''simple docstring''' snake_case__ , snake_case__ : List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ , snake_case__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ : Optional[Any] = controlnet_params snake_case__ : Any = 'bird' snake_case__ : Any = jax.device_count() snake_case__ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) snake_case__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ : Any = jax.random.PRNGKey(0 ) snake_case__ : Dict = jax.random.split(__UpperCamelCase , jax.device_count() ) snake_case__ : Any = replicate(__UpperCamelCase ) snake_case__ : Union[str, Any] = shard(__UpperCamelCase ) snake_case__ : Any = shard(__UpperCamelCase ) snake_case__ : Dict = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ : Optional[int] = images[0, 253:256, 253:256, -1] snake_case__ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ : str = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ , snake_case__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ : List[str] = controlnet_params snake_case__ : Optional[Any] = 'Chef in the kitchen' snake_case__ : List[Any] = jax.device_count() snake_case__ : int = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) snake_case__ : int = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ : Optional[Any] = jax.random.PRNGKey(0 ) snake_case__ : Any = jax.random.split(__UpperCamelCase , jax.device_count() ) snake_case__ : List[Any] = replicate(__UpperCamelCase ) snake_case__ : List[str] = shard(__UpperCamelCase ) snake_case__ : Optional[int] = shard(__UpperCamelCase ) snake_case__ : Any = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ : Optional[int] = images[0, 253:256, 253:256, -1] snake_case__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ : Any = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
143
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase__ : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase__ : Optional[int] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase__ : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase__ : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase__ : Any = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase__ : Dict = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase__ : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def UpperCamelCase__ ( ) -> Any: snake_case__ , snake_case__ : List[str] = randrange(len(A__ ) ), randrange(len(A__ ) ) snake_case__ : str = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] snake_case__ , snake_case__ : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase__ ( A__ = 100 ) -> Optional[int]: return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Any: assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Dict: snake_case__ : Optional[int] = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> str: assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Optional[Any]: assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : Union[str, Any] = [PokerHand(A__ ) for hand in SORTED_HANDS] snake_case__ : Optional[Any] = poker_hands.copy() shuffle(A__ ) snake_case__ : Tuple = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def UpperCamelCase__ ( ) -> str: # Test that five high straights are compared correctly. snake_case__ : int = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase__ ( ) -> Union[str, Any]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. snake_case__ : Optional[int] = PokerHand('2C 4S AS 3D 5C' ) snake_case__ : Optional[int] = True snake_case__ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase__ ( ) -> List[str]: # Problem number 54 from Project Euler # Testing from poker_hands.txt file snake_case__ : Any = 0 snake_case__ : Optional[Any] = os.path.abspath(os.path.dirname(A__ ) ) snake_case__ : List[str] = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: snake_case__ : Tuple = line[:14].strip() snake_case__ : List[str] = line[15:].strip() snake_case__ , snake_case__ : Any = PokerHand(A__ ), PokerHand(A__ ) snake_case__ : Tuple = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
143
1
'''simple docstring''' __snake_case : List[Any] = 256 # Modulus to hash a string __snake_case : Tuple = 1_000_003 def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str ) -> bool: A_ = len(_UpperCamelCase ) A_ = len(_UpperCamelCase ) if p_len > t_len: return False A_ = 0 A_ = 0 A_ = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCamelCase ): A_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A_ = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _UpperCAmelCase ( ) -> None: A_ = '''abc1abc12''' A_ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A_ = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) and not rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 2) A_ = '''ABABX''' A_ = '''ABABZABABYABABX''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 3) A_ = '''AAAB''' A_ = '''ABAAAAAB''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 4) A_ = '''abcdabcy''' A_ = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 5) A_ = '''Lü''' A_ = '''Lüsai''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) A_ = '''Lue''' assert not rabin_karp(_UpperCamelCase, _UpperCamelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
18
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' from statistics import mean import numpy as np def _lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : int ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE =0 # Number of processes finished _SCREAMING_SNAKE_CASE =0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _SCREAMING_SNAKE_CASE =[0] * no_of_process # List to include calculation results _SCREAMING_SNAKE_CASE =[0] * no_of_process # Sort by arrival time. _SCREAMING_SNAKE_CASE =[burst_time[i] for i in np.argsort(_UpperCamelCase )] _SCREAMING_SNAKE_CASE =[process_name[i] for i in np.argsort(_UpperCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: _SCREAMING_SNAKE_CASE =0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _SCREAMING_SNAKE_CASE =arrival_time[i] _SCREAMING_SNAKE_CASE =0 # Index showing the location of the process being performed _SCREAMING_SNAKE_CASE =0 # Saves the current response ratio. _SCREAMING_SNAKE_CASE =0 for i in range(0 , _UpperCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _SCREAMING_SNAKE_CASE =(burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _SCREAMING_SNAKE_CASE =temp _SCREAMING_SNAKE_CASE =i # Calculate the turn around time _SCREAMING_SNAKE_CASE =current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _SCREAMING_SNAKE_CASE =1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : int ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE =[0] * no_of_process for i in range(0 , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCamelCase : Dict = 5 lowerCamelCase : Optional[int] = ["A", "B", "C", "D", "E"] lowerCamelCase : Tuple = [1, 2, 3, 4, 5] lowerCamelCase : str = [1, 2, 3, 4, 5] lowerCamelCase : Tuple = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCamelCase : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
47
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowercase_ = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) _UpperCamelCase : Any = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _UpperCamelCase : Optional[Any] = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _UpperCamelCase : Tuple = field( default=_snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Any: """simple docstring""" lowercase__ = self.task_name.lower() class SCREAMING_SNAKE_CASE (_snake_case ): _UpperCamelCase : Any = 'train' _UpperCamelCase : int = 'dev' _UpperCamelCase : Dict = 'test' class SCREAMING_SNAKE_CASE (_snake_case ): _UpperCamelCase : str = 42 _UpperCamelCase : Tuple = 42 _UpperCamelCase : List[str] = 42 def __init__( self : int , a : Optional[int] , a : int , a : List[str] = None , a : Union[str, Any] = Split.train , a : Any = None , )-> List[Any]: """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCamelCase__ , ) lowercase__ = args lowercase__ = glue_processors[args.task_name]() lowercase__ = glue_output_modes[args.task_name] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: lowercase__ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowercase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) lowercase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ , lowercase__ = label_list[2], label_list[1] lowercase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + '.lock' with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: lowercase__ = time.time() lowercase__ = torch.load(UpperCamelCase__ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: lowercase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase__ = self.processor.get_test_examples(args.data_dir ) else: lowercase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase__ = examples[:limit_length] lowercase__ = glue_convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , max_length=args.max_seq_length , label_list=UpperCamelCase__ , output_mode=self.output_mode , ) lowercase__ = time.time() torch.save(self.features , UpperCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : List[str] )-> str: """simple docstring""" return len(self.features ) def __getitem__( self : List[Any] , a : int )-> InputFeatures: """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Dict: """simple docstring""" return self.label_list
363
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True ) -> Dict: lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) lowercase__ = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def __UpperCamelCase () -> Tuple: PartialState().wait_for_everyone() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __UpperCamelCase (**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: for key, value in kwargs.items(): lowercase__ = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowercase__ = value return destination def __UpperCamelCase (_SCREAMING_SNAKE_CASE = None ) -> bool: if port is None: lowercase__ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
269
0
_lowerCamelCase : Any = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : int = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowerCamelCase : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Dict = False def a__ ( UpperCAmelCase : int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : Optional[int] = chain(next_number(UpperCAmelCase ) ) UpperCAmelCase : Union[str, Any] = number_chain while number < 10_000_000: UpperCAmelCase : Any = number_chain number *= 10 return number_chain def a__ ( UpperCAmelCase : int = 10_000_000 ) -> int: for i in range(1 , UpperCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
336
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : List[str] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a : Optional[int] = 'bert-base-cased' _a : Optional[Any] = 'google/pegasus-xsum' _a : Union[str, Any] = [' Sam ate lunch today.', 'Sams lunch ingredients.'] _a : int = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] _a : Union[str, Any] = 'patrickvonplaten/t5-tiny-random' _a : Tuple = 'sshleifer/bart-tiny-random' _a : str = 'sshleifer/tiny-mbart' _a : Optional[int] = 'sshleifer/tiny-marian-en-de' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Path ,_lowerCamelCase : list ) -> str: _lowerCAmelCase : List[Any] = """\n""".join(_lowerCamelCase ) Path(_lowerCamelCase ).open("""w""" ).writelines(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Union[str, Any]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCamelCase ,f"{split}.source" ) ,_lowerCamelCase ) _dump_articles(os.path.join(_lowerCamelCase ,f"{split}.target" ) ,_lowerCamelCase ) return tmp_dir class __A ( SCREAMING_SNAKE_CASE_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __A ( self , a__ ): _lowerCAmelCase : str = AutoTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCAmelCase : Union[str, Any] = max(len(tokenizer.encode(a__ ) ) for a in ARTICLES ) _lowerCAmelCase : Optional[int] = max(len(tokenizer.encode(a__ ) ) for a in SUMMARIES ) _lowerCAmelCase : str = 4 _lowerCAmelCase : Optional[int] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCAmelCase , _lowerCAmelCase : Optional[int] = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _lowerCAmelCase : Optional[int] = SeqaSeqDataset( a__ , data_dir=a__ , type_path="""train""" , max_source_length=a__ , max_target_length=a__ , src_lang=a__ , tgt_lang=a__ , ) _lowerCAmelCase : int = DataLoader(a__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(a__ , a__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCAmelCase : Any = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __A ( self , a__ ): _lowerCAmelCase : Any = AutoTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCAmelCase : Optional[int] = max(len(tokenizer.encode(a__ ) ) for a in ARTICLES ) _lowerCAmelCase : Any = max(len(tokenizer.encode(a__ ) ) for a in SUMMARIES ) _lowerCAmelCase : int = 4 _lowerCAmelCase : List[str] = LegacySeqaSeqDataset( a__ , data_dir=a__ , type_path="""train""" , max_source_length=20 , max_target_length=a__ , ) _lowerCAmelCase : List[Any] = DataLoader(a__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __A ( self ): _lowerCAmelCase : Any = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) _lowerCAmelCase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCAmelCase : List[Any] = tmp_dir.joinpath("""train.source""" ).open().readlines() _lowerCAmelCase : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(a__ , a__ , 128 , a__ ) _lowerCAmelCase : List[Any] = {x.name for x in tmp_dir.iterdir()} _lowerCAmelCase : Tuple = {x.name for x in save_dir.iterdir()} _lowerCAmelCase : Union[str, Any] = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a__ ) < len(a__ ) assert len(a__ ) == 1 assert len(packed_examples[0] ) == sum(len(a__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def __A ( self ): if not FAIRSEQ_AVAILABLE: return _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = self._get_dataset(max_len=64 ) _lowerCAmelCase : Optional[int] = 64 _lowerCAmelCase : str = ds.make_dynamic_sampler(a__ , required_batch_size_multiple=a__ ) _lowerCAmelCase : int = [len(a__ ) for x in batch_sampler] assert len(set(a__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a__ ) == len(a__ ) # no dropped or added examples _lowerCAmelCase : List[str] = DataLoader(a__ , batch_sampler=a__ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = [] for batch in data_loader: _lowerCAmelCase : int = batch["""input_ids"""].shape _lowerCAmelCase : Union[str, Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCAmelCase : List[str] = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(a__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(a__ ) assert num_src_per_batch[0] == max(a__ ) if failures: raise AssertionError(F"too many tokens in {len(a__ )} batches" ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = self._get_dataset(max_len=512 ) _lowerCAmelCase : int = 2 _lowerCAmelCase : List[str] = ds.make_sortish_sampler(a__ , shuffle=a__ ) _lowerCAmelCase : Dict = DataLoader(a__ , batch_size=a__ , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCAmelCase : int = DataLoader(a__ , batch_size=a__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=a__ ) _lowerCAmelCase : int = tokenizer.pad_token_id def count_pad_tokens(a__ , a__="input_ids" ): return [batch[k].eq(a__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a__ , k="""labels""" ) ) < sum(count_pad_tokens(a__ , k="""labels""" ) ) assert sum(count_pad_tokens(a__ ) ) < sum(count_pad_tokens(a__ ) ) assert len(a__ ) == len(a__ ) def __A ( self , a__=1000 , a__=128 ): if os.getenv("""USE_REAL_DATA""" , a__ ): _lowerCAmelCase : List[str] = """examples/seq2seq/wmt_en_ro""" _lowerCAmelCase : str = max_len * 2 * 64 if not Path(a__ ).joinpath("""train.len""" ).exists(): save_len_file(a__ , a__ ) else: _lowerCAmelCase : List[str] = """examples/seq2seq/test_data/wmt_en_ro""" _lowerCAmelCase : Dict = max_len * 4 save_len_file(a__ , a__ ) _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Dict = SeqaSeqDataset( a__ , data_dir=a__ , type_path="""train""" , max_source_length=a__ , max_target_length=a__ , n_obs=a__ , ) return ds, max_tokens, tokenizer def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self._get_dataset() _lowerCAmelCase : Any = set(DistributedSortishSampler(a__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=a__ ) ) _lowerCAmelCase : Optional[int] = set(DistributedSortishSampler(a__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=a__ ) ) assert idsa.intersection(a__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __A ( self , a__ ): _lowerCAmelCase : int = AutoTokenizer.from_pretrained(a__ , use_fast=a__ ) if tok_name == MBART_TINY: _lowerCAmelCase : Dict = SeqaSeqDataset( a__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) _lowerCAmelCase : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCAmelCase : List[Any] = SeqaSeqDataset( a__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) _lowerCAmelCase : Tuple = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a__ ) == 1 if tok_name == BART_TINY else len(a__ ) == 0
126
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A_ ( lowerCAmelCase_ ): def __init__( self : List[Any] , snake_case_ : Union[str, "sqlalchemy.sql.Selectable"] , snake_case_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , snake_case_ : Optional[Features] = None , snake_case_ : str = None , snake_case_ : bool = False , **snake_case_ : int , ): super().__init__(features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , **snake_case_ ) _UpperCAmelCase = Sql( cache_dir=snake_case_ , features=snake_case_ , sql=snake_case_ , con=snake_case_ , **snake_case_ , ) def lowercase ( self : Tuple ): _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , ) # Build dataset for splits _UpperCAmelCase = self.builder.as_dataset( split="train" , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self : List[Any] , snake_case_ : Dataset , snake_case_ : str , snake_case_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , **snake_case_ : Union[str, Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) _UpperCAmelCase = dataset _UpperCAmelCase = name _UpperCAmelCase = con _UpperCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _UpperCAmelCase = num_proc _UpperCAmelCase = to_sql_kwargs def lowercase ( self : Dict ): _UpperCAmelCase = self.to_sql_kwargs.pop("sql" , snake_case_ ) _UpperCAmelCase = self.to_sql_kwargs.pop("con" , snake_case_ ) _UpperCAmelCase = self.to_sql_kwargs.pop("index" , snake_case_ ) _UpperCAmelCase = self._write(index=snake_case_ , **self.to_sql_kwargs ) return written def lowercase ( self : Tuple , snake_case_ : Any ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = args _UpperCAmelCase = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs _UpperCAmelCase = query_table( table=self.dataset.data , key=slice(snake_case_ , offset + self.batch_size ) , indices=self.dataset._indices , ) _UpperCAmelCase = batch.to_pandas() _UpperCAmelCase = df.to_sql(self.name , self.con , index=snake_case_ , **snake_case_ ) return num_rows or len(snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : Optional[Any] , **snake_case_ : str ): _UpperCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _UpperCAmelCase , _UpperCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , snake_case_ , snake_case_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
22
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(__lowercase ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(__lowercase ) return 2.0 * image - 1.0 class A_ ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , snake_case_ : VQModel , snake_case_ : UNetaDModel , snake_case_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Any , snake_case_ : Union[torch.Tensor, PIL.Image.Image] = None , snake_case_ : Optional[int] = 1 , snake_case_ : Optional[int] = 1_0_0 , snake_case_ : Optional[float] = 0.0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}' ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
22
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class a__ ( a__ ): '''simple docstring''' lowercase__ : int = "levit" def __init__( self , lowerCamelCase_=2_24 , lowerCamelCase_=3 , lowerCamelCase_=3 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=16 , lowerCamelCase_=[1_28, 2_56, 3_84] , lowerCamelCase_=[4, 8, 12] , lowerCamelCase_=[4, 4, 4] , lowerCamelCase_=[16, 16, 16] , lowerCamelCase_=0 , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=0.02 , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = kernel_size lowerCAmelCase__ = stride lowerCAmelCase__ = padding lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = depths lowerCAmelCase__ = key_dim lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = patch_size lowerCAmelCase__ = attention_ratio lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = initializer_range lowerCAmelCase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[Any] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
228
'''simple docstring''' from __future__ import annotations class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = order # a_{0} ... a_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCAmelCase__ = [0.0] * self.order # y[n-1] ... y[n-k] lowerCAmelCase__ = [0.0] * self.order def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if len(lowerCamelCase_ ) < self.order: lowerCAmelCase__ = [1.0, *a_coeffs] if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) lowerCAmelCase__ = a_coeffs lowerCAmelCase__ = b_coeffs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> float: lowerCAmelCase__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCAmelCase__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCAmelCase__ = self.input_history[:-1] lowerCAmelCase__ = self.output_history[:-1] lowerCAmelCase__ = sample lowerCAmelCase__ = result return result
228
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowerCamelCase : int = get_tests_dir('''fixtures/vocab.json''') __lowerCamelCase : Any = get_tests_dir('''fixtures''') class a__ ( unittest.TestCase ): A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 0 def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str = WavaVecaConfig() SCREAMING_SNAKE_CASE_ : str = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(_A ) processor.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_A,os.path.join(_A,_A ) ) copyfile(_A,os.path.join(_A,"vocab.json" ) ) SCREAMING_SNAKE_CASE_ : str = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = WavaVecaProcessor(_A,_A ) # save in new folder processor.save_pretrained(_A ) # drop `processor_class` in tokenizer with open(os.path.join(_A,_A ),"r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(_A ) config_dict.pop("processor_class" ) with open(os.path.join(_A,_A ),"w" ) as f: f.write(json.dumps(_A ) ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Dict = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : Optional[int] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaProcessor(_A,_A ) # save in new folder processor.save_pretrained(_A ) # drop `processor_class` in feature extractor with open(os.path.join(_A,_A ),"r" ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(_A ) config_dict.pop("processor_class" ) with open(os.path.join(_A,_A ),"w" ) as f: f.write(json.dumps(_A ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(_A ) # copy relevant files copyfile(_A,os.path.join(_A,"vocab.json" ) ) # create emtpy sample processor with open(os.path.join(_A,_A ),"w" ) as f: f.write("{}" ) SCREAMING_SNAKE_CASE_ : List[str] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : Dict = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) SCREAMING_SNAKE_CASE_ : Dict = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__,"NewFeatureExtractor" ) SCREAMING_SNAKE_CASE_ : int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,"NewTokenizerFast" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A,use_fast=_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__,"NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__,"NewTokenizer" ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" try: AutoConfig.register("custom",_A ) AutoFeatureExtractor.register(_A,_A ) AutoTokenizer.register(_A,slow_tokenizer_class=_A ) AutoProcessor.register(_A,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoProcessor.register(_A,_A ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ : Optional[int] = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(_A,"vocab.txt" ) with open(_A,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = CustomTokenizer(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = CustomProcessor(_A,_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self : List[str] ): """simple docstring""" class a__ ( A__ ): A = False class a__ ( A__ ): A = False class a__ ( A__ ): A = 'AutoFeatureExtractor' A = 'AutoTokenizer' A = False try: AutoConfig.register("custom",_A ) AutoFeatureExtractor.register(_A,_A ) AutoTokenizer.register(_A,slow_tokenizer_class=_A ) AutoProcessor.register(_A,_A ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__,"BertTokenizerFast" ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__,"ConvNextImageProcessor" ) @is_staging_test class a__ ( unittest.TestCase ): A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __UpperCamelCase ( cls : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TOKEN HfFolder.save_token(_A ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] ): """simple docstring""" try: delete_repo(token=cls._token,repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="test-dynamic-processor" ) except HTTPError: pass def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaProcessor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_A,"test-processor" ),push_to_hub=_A,use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_A,getattr(new_processor.feature_extractor,_A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(),processor.tokenizer.get_vocab() ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = WavaVecaProcessor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_A,"test-processor-org" ),push_to_hub=_A,use_auth_token=self._token,organization="valid_org",) SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_A,getattr(new_processor.feature_extractor,_A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(),processor.tokenizer.get_vocab() ) def __UpperCamelCase ( self : str ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE_ : Optional[int] = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(_A,"vocab.txt" ) with open(_A,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = CustomTokenizer(_A ) SCREAMING_SNAKE_CASE_ : Any = CustomProcessor(_A,_A ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor',token=self._token ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Repository(_A,clone_from=F'{USER}/test-dynamic-processor',token=self._token ) processor.save_pretrained(_A ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map,{ "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", },) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_A,"tokenizer_config.json" ) ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(_A ) self.assertDictEqual( tokenizer_config["auto_map"],{ "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", },) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_A,"custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_A,"custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_A,"custom_processing.py" ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor',trust_remote_code=_A ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__,"CustomProcessor" )
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 100_0000 )-> int: """simple docstring""" snake_case_ = set(range(3 , SCREAMING_SNAKE_CASE , 2 ) ) primes.add(2 ) for p in range(3 , SCREAMING_SNAKE_CASE , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) snake_case_ = [float(SCREAMING_SNAKE_CASE ) for n in range(limit + 1 )] for p in primes: for n in range(SCREAMING_SNAKE_CASE , limit + 1 , SCREAMING_SNAKE_CASE ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
267
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(SCREAMING_SNAKE_CASE , x % y ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return (x * y) // greatest_common_divisor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 20 )-> int: """simple docstring""" snake_case_ = 1 for i in range(1 , n + 1 ): snake_case_ = lcm(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": print(f'''{solution() = }''')
267
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case : Dict = '''facebook/wmt19-en-de''' snake_case : List[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case : Optional[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case : Optional[Any] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test snake_case : Union[str, Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') snake_case : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save snake_case : Optional[int] = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
94
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _lowercase ( __snake_case = "laptop" ) -> DataFrame: __lowerCAmelCase : str = F"""https://www.amazon.in/laptop/s?k={product}""" __lowerCAmelCase : Union[str, Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __lowerCAmelCase : List[str] = BeautifulSoup(requests.get(__snake_case ,headers=__snake_case ).text ) # Initialize a Pandas dataframe with the column titles __lowerCAmelCase : Dict = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" ,attrs={"class": "s-result-item", "data-component-type": "s-search-result"} ,) ,soup.find_all("div" ,attrs={"class": "a-row a-size-base a-color-base"} ) ,): try: __lowerCAmelCase : Any = item.ha.text __lowerCAmelCase : Union[str, Any] = "https://www.amazon.in/" + item.ha.a["href"] __lowerCAmelCase : Any = item.find("span" ,attrs={"class": "a-offscreen"} ).text try: __lowerCAmelCase : Union[str, Any] = item.find("span" ,attrs={"class": "a-icon-alt"} ).text except AttributeError: __lowerCAmelCase : Optional[Any] = "Not available" try: __lowerCAmelCase : Union[str, Any] = ( "₹" + item.find( "span" ,attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __lowerCAmelCase : Dict = "" try: __lowerCAmelCase : str = float( ( ( float(product_mrp.strip("₹" ).replace("," ,"" ) ) - float(product_price.strip("₹" ).replace("," ,"" ) ) ) / float(product_mrp.strip("₹" ).replace("," ,"" ) ) ) * 100 ) except ValueError: __lowerCAmelCase : List[str] = float("nan" ) except AttributeError: pass __lowerCAmelCase : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __lowerCAmelCase : Union[str, Any] = " " __lowerCAmelCase : Union[str, Any] = " " data_frame.index += 1 return data_frame if __name__ == "__main__": __snake_case : Any = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
269
0
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0