code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : Dict = '''BlipImageProcessor''' _UpperCAmelCase : List[str] = '''AutoTokenizer''' def __init__( self : str ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : Dict = False super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.image_processor def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : ImageInput = None ,SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False ,SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : int = 0 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: __lowerCamelCase : Dict = self.tokenizer __lowerCamelCase : Tuple = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) return text_encoding # add pixel_values __lowerCamelCase : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__) if text is not None: __lowerCamelCase : Optional[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) else: __lowerCamelCase : Any = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE__) return encoding_image_processor def lowerCAmelCase ( self : str ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : Any): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : Tuple): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase ( self : str): __lowerCamelCase : int = self.tokenizer.model_input_names __lowerCamelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
73
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )-> Optional[Any]: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def _snake_case ( self )-> Dict: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self )-> List[str]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> str: lowerCamelCase_ =FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[Any]: lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[int]: lowerCamelCase_ =FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Any: lowerCamelCase_ =FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Dict: lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> int: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase:str = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> List[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _snake_case ( self )-> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
154
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
44
from sklearn.metrics import mean_squared_error import datasets A__ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A__ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A__ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] ,) def __lowerCamelCase ( self :Tuple ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Any=None ,__lowercase :List[str]="uniform_average" ,__lowercase :List[Any]=True ): snake_case__ : Union[str, Any] = mean_squared_error( __lowercase ,__lowercase ,sample_weight=__lowercase ,multioutput=__lowercase ,squared=__lowercase ) return {"mse": mse}
44
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' ) A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowercase : str = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
3
from __future__ import annotations from typing import Any class UpperCamelCase__ : def __init__(self : Union[str, Any] , snake_case_ : int ): __a : Dict = num_of_nodes __a : list[list[int]] = [] __a : dict[int, int] = {} def lowerCAmelCase (self : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase (self : Any , snake_case_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase (self : str , snake_case_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __a : Optional[int] = self.find_component(snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : list[int] , snake_case_ : int , snake_case_ : int ): if component_size[u_node] <= component_size[v_node]: __a : List[str] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_ ) elif component_size[u_node] >= component_size[v_node]: __a : Optional[int] = self.find_component(snake_case_ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : str = [] __a : int = 0 __a : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __a : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __a , __a , __a : Optional[Any] = edge __a : List[str] = self.m_component[u] __a : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __a : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ , snake_case_ ): __a , __a , __a : str = edge __a : Any = self.m_component[u] __a : Any = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ , snake_case_ , snake_case_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __a : Optional[int] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
360
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __SCREAMING_SNAKE_CASE (_snake_case ): """simple docstring""" __a ="""vivit""" def __init__( self : str , __a : Tuple=2_24 , __a : Union[str, Any]=32 , __a : Dict=[2, 16, 16] , __a : List[Any]=3 , __a : Optional[int]=7_68 , __a : int=12 , __a : str=12 , __a : Any=30_72 , __a : Union[str, Any]="gelu_fast" , __a : Union[str, Any]=0.0 , __a : Tuple=0.0 , __a : Optional[Any]=0.02 , __a : str=1e-0_6 , __a : Any=True , **__a : str , ): _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = image_size _a = num_frames _a = tubelet_size _a = num_channels _a = qkv_bias super().__init__(**lowercase_ )
63
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=2 , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=10 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=32 * 4 , lowercase_ : str=32 * 6 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=32 , ) -> Optional[int]: UpperCAmelCase : List[str] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : int = is_training UpperCAmelCase : int = use_auxiliary_loss UpperCAmelCase : List[Any] = num_queries UpperCAmelCase : List[str] = num_channels UpperCAmelCase : List[str] = min_size UpperCAmelCase : Dict = max_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : str = mask_feature_size def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) UpperCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) UpperCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() UpperCAmelCase : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: UpperCAmelCase : int = output.encoder_hidden_states UpperCAmelCase : Any = output.pixel_decoder_hidden_states UpperCAmelCase : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict=False ) -> Tuple: with torch.no_grad(): UpperCAmelCase : str = MaskFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , output_hidden_states=lowercase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) comm_check_on_output(lowercase_ ) UpperCAmelCase : Any = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Tuple = False def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Optional[Any] = MaskFormerModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCAmelCase_ ( self : str ) -> List[str]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self : int ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(lowercase_ ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase : Tuple = MaskFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCAmelCase : str = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_ ), 'class_labels': torch.zeros(2 , 10 , device=lowercase_ ).long(), } UpperCAmelCase : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowercase_ ) UpperCAmelCase : Optional[int] = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ).to(lowercase_ ) UpperCAmelCase : List[Any] = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Dict = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : Tuple = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def UpperCAmelCase_ ( self : List[str] ) -> str: # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Optional[int] = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : List[str] = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ = 1e-4 def UpperCamelCase( ): UpperCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**lowercase_ ) UpperCAmelCase : str = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Optional[Any] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : int = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCAmelCase : Optional[int] = inputs['pixel_values'].to(lowercase_ ) UpperCAmelCase : Optional[Any] = [el.to(lowercase_ ) for el in inputs['mask_labels']] UpperCAmelCase : List[str] = [el.to(lowercase_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
151
0
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowercase: List[str] = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) __lowercase: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' UpperCamelCase__ = "https://pypi.org/pypi/diffusers/json" UpperCamelCase__ = json.loads(request.urlopen(_UpperCamelCase ).read() )["releases"].keys() return sorted(_UpperCamelCase , key=lambda _UpperCamelCase : version.Version(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( ) -> str: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase__ = Path(_UpperCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, os.PathLike] ) -> int: '''simple docstring''' init_hf_modules() UpperCamelCase__ = Path(_UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase__ = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" ) as f: UpperCamelCase__ = f.read() # Imports of the form `import .xxx` UpperCamelCase__ = re.findall("^\s*import\s+\.(\S+)\s*$" , _UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> int: '''simple docstring''' UpperCamelCase__ = False UpperCamelCase__ = [module_file] UpperCamelCase__ = [] # Let's recurse through all relative imports while not no_change: UpperCamelCase__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(_UpperCamelCase ) ) UpperCamelCase__ = Path(_UpperCamelCase ).parent UpperCamelCase__ = [str(module_path / m ) for m in new_imports] UpperCamelCase__ = [f for f in new_import_files if f not in all_relative_imports] UpperCamelCase__ = [F'{f}.py' for f in new_import_files] UpperCamelCase__ = len(_UpperCamelCase ) == 0 all_relative_imports.extend(_UpperCamelCase ) return all_relative_imports def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" ) as f: UpperCamelCase__ = f.read() # Imports of the form `import xxx` UpperCamelCase__ = re.findall("^\s*import\s+(\S+)\s*$" , _UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , _UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module UpperCamelCase__ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all UpperCamelCase__ = list(set(_UpperCamelCase ) ) UpperCamelCase__ = [] for imp in imports: try: importlib.import_module(_UpperCamelCase ) except ImportError: missing_packages.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'{", ".join(_UpperCamelCase )}. Run `pip install {" ".join(_UpperCamelCase )}`' ) return get_relative_imports(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = module_path.replace(os.path.sep , "." ) UpperCamelCase__ = importlib.import_module(_UpperCamelCase ) if class_name is None: return find_pipeline_class(_UpperCamelCase ) return getattr(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' from ..pipelines import DiffusionPipeline UpperCamelCase__ = dict(inspect.getmembers(_UpperCamelCase , inspect.isclass ) ) UpperCamelCase__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _UpperCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) UpperCamelCase__ = cls return pipeline_class def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, os.PathLike] , _UpperCamelCase : str , _UpperCamelCase : Optional[Union[str, os.PathLike]] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[Dict[str, str]] = None , _UpperCamelCase : Optional[Union[bool, str]] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : bool = False , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): UpperCamelCase__ = module_file_or_url UpperCamelCase__ = "local" elif pretrained_model_name_or_path.count("/" ) == 0: UpperCamelCase__ = get_diffusers_versions() # cut ".dev0" UpperCamelCase__ = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: UpperCamelCase__ = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: UpperCamelCase__ = F'v{revision}' elif revision == "main": UpperCamelCase__ = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub UpperCamelCase__ = COMMUNITY_PIPELINES_URL.format(revision=_UpperCamelCase , pipeline=_UpperCamelCase ) try: UpperCamelCase__ = cached_download( _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , ) UpperCamelCase__ = "git" UpperCamelCase__ = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached UpperCamelCase__ = hf_hub_download( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , ) UpperCamelCase__ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment UpperCamelCase__ = check_imports(_UpperCamelCase ) # Now we move the module inside our cached dynamic modules. UpperCamelCase__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_UpperCamelCase ) UpperCamelCase__ = Path(_UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: UpperCamelCase__ = F'{module_needed}.py' shutil.copy(os.path.join(_UpperCamelCase , _UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = use_auth_token elif use_auth_token is True: UpperCamelCase__ = HfFolder.get_token() else: UpperCamelCase__ = None UpperCamelCase__ = model_info(_UpperCamelCase , revision=_UpperCamelCase , token=_UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCamelCase__ = submodule_path / commit_hash UpperCamelCase__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(_UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _UpperCamelCase , F'{module_needed}.py' , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) return os.path.join(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, os.PathLike] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Union[str, os.PathLike]] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[Dict[str, str]] = None , _UpperCamelCase : Optional[Union[bool, str]] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : bool = False , **_UpperCamelCase : Optional[int] , ) -> Tuple: '''simple docstring''' UpperCamelCase__ = get_cached_module_file( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) return get_class_in_module(_UpperCamelCase , final_module.replace(".py" , "" ) )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
2
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCamelCase ) UpperCamelCase_ = -1 UpperCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) UpperCamelCase_ = model.generate(_lowerCamelCase , max_new_tokens=1_0 , do_sample=_lowerCamelCase ) UpperCamelCase_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase_ = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1_0 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase_ = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCamelCase ) UpperCamelCase_ = -1 UpperCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) UpperCamelCase_ = model.generate(_lowerCamelCase , max_new_tokens=1_0 , do_sample=_lowerCamelCase ) UpperCamelCase_ = tokenizer.decode(greedy_ids[0] ) UpperCamelCase_ = TextIteratorStreamer(_lowerCamelCase ) UpperCamelCase_ = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} UpperCamelCase_ = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() UpperCamelCase_ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCamelCase ) UpperCamelCase_ = -1 UpperCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) UpperCamelCase_ = model.generate(_lowerCamelCase , max_new_tokens=1_0 , do_sample=_lowerCamelCase ) UpperCamelCase_ = greedy_ids[:, input_ids.shape[1] :] UpperCamelCase_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase_ = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1_0 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase_ = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(_lowerCamelCase ) UpperCamelCase_ = -1 UpperCamelCase_ = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCamelCase_ = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCamelCase_ = cs.out[:-1] # Remove the final "\n" UpperCamelCase_ = tokenizer(_lowerCamelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCamelCase ) UpperCamelCase_ = -1 UpperCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) UpperCamelCase_ = TextIteratorStreamer(_lowerCamelCase , timeout=0.001 ) UpperCamelCase_ = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} UpperCamelCase_ = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): UpperCamelCase_ = '''''' for new_text in streamer: streamer_text += new_text
354
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Optional[Any] = CpmAntTokenizer A__ : Tuple = False def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() UpperCamelCase_ = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) UpperCamelCase_ = """今天天气真好!""" UpperCamelCase_ = ["""今天""", """天气""", """真""", """好""", """!"""] UpperCamelCase_ = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = """今天天气真好!""" UpperCamelCase_ = [tokenizer.bos_token] + tokens UpperCamelCase_ = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) UpperCamelCase_ = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
261
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class __A ( nn.Module ): _UpperCamelCase : int _UpperCamelCase : jnp.dtype = jnp.floataa def __A ( self ): _lowerCAmelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , a__ ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = hidden_states.shape _lowerCAmelCase : List[Any] = jax.image.resize( a__ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) _lowerCAmelCase : str = self.conv(a__ ) return hidden_states class __A ( nn.Module ): _UpperCamelCase : int _UpperCamelCase : jnp.dtype = jnp.floataa def __A ( self ): _lowerCAmelCase : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , a__ ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _lowerCAmelCase : Optional[int] = self.conv(a__ ) return hidden_states class __A ( nn.Module ): _UpperCamelCase : int _UpperCamelCase : int = None _UpperCamelCase : float = 0.0 _UpperCamelCase : bool = None _UpperCamelCase : jnp.dtype = jnp.floataa def __A ( self ): _lowerCAmelCase : Tuple = self.in_channels if self.out_channels is None else self.out_channels _lowerCAmelCase : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase : Tuple = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase : Optional[Any] = nn.Dense(a__ , dtype=self.dtype ) _lowerCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase : Any = nn.Dropout(self.dropout_prob ) _lowerCAmelCase : Optional[Any] = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase : Any = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCAmelCase : str = None if use_nin_shortcut: _lowerCAmelCase : Dict = nn.Conv( a__ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , a__ , a__ , a__=True ): _lowerCAmelCase : Union[str, Any] = hidden_states _lowerCAmelCase : Union[str, Any] = self.norma(a__ ) _lowerCAmelCase : Union[str, Any] = nn.swish(a__ ) _lowerCAmelCase : Dict = self.conva(a__ ) _lowerCAmelCase : Any = self.time_emb_proj(nn.swish(a__ ) ) _lowerCAmelCase : int = jnp.expand_dims(jnp.expand_dims(a__ , 1 ) , 1 ) _lowerCAmelCase : Optional[Any] = hidden_states + temb _lowerCAmelCase : Optional[Any] = self.norma(a__ ) _lowerCAmelCase : int = nn.swish(a__ ) _lowerCAmelCase : Optional[int] = self.dropout(a__ , a__ ) _lowerCAmelCase : List[Any] = self.conva(a__ ) if self.conv_shortcut is not None: _lowerCAmelCase : Tuple = self.conv_shortcut(a__ ) return hidden_states + residual
44
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _a : Union[str, Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex _a : List[str] = 10 _a : List[Any] = 256 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[MinHash]: if len(_lowerCamelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase : Optional[Any] = MinHash(num_perm=_lowerCamelCase ) for token in set(_lowerCamelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowerCamelCase ) if len(t.strip() ) > 0} class __A : def __init__( self , *, a__ = 0.8_5 , ): _lowerCAmelCase : List[Any] = duplication_jaccard_threshold _lowerCAmelCase : Union[str, Any] = NUM_PERM _lowerCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase : Optional[int] = defaultdict(a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self._index.query(a__ ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def __A ( self ): _lowerCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase : List[str] = [base] + list(a__ ) # reformat the cluster to be a list of dict _lowerCAmelCase : List[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def __A ( self , a__ ): _lowerCAmelCase : Dict = self.get_duplicate_clusters() with open(a__ , """w""" ) as f: json.dump(a__ , a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(_lowerCamelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float ) -> List[str]: _lowerCAmelCase : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCamelCase ) ) ,max_queue_size=100 ) ): di.add(_lowerCamelCase ,_lowerCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: _lowerCAmelCase : Any = get_tokens(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_tokens(_lowerCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _a : str = None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : int = [] for elementa in cluster: _lowerCAmelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowerCamelCase ,_lowerCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase : Any = 1 extremes.append(_lowerCamelCase ) return extremes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> str: global _shared_dataset _lowerCAmelCase : Tuple = dataset _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = partial(_find_cluster_extremes_shared ,jaccard_threshold=_lowerCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCamelCase ,_lowerCamelCase ,) ,total=len(_lowerCamelCase ) ,): extremes_list.append(_lowerCamelCase ) return extremes_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase : Tuple = make_duplicate_clusters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = find_extremes(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : List[Any] = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase : List[Any] = dataset.filter(lambda _lowerCamelCase ,_lowerCamelCase : idx not in remove_indices ,with_indices=_lowerCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase : Tuple = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(_lowerCamelCase )}" ) print(f"Number of duplicate clusters: {len(_lowerCamelCase )}" ) print(f"Files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Filtered dataset size: {len(_lowerCamelCase )}" ) return ds_filter, duplicate_clusters
44
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = """timm_backbone""" def __init__( self, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> List[str]: """simple docstring""" super().__init__(**lowerCamelCase) _lowercase : Tuple = backbone _lowercase : int = num_channels _lowercase : int = features_only _lowercase : List[str] = use_pretrained_backbone _lowercase : Tuple = True _lowercase : int = out_indices if out_indices is not None else (-1,)
84
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE : Tuple = "docs/source/en/_toctree.yml" def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Tuple = defaultdict(lowerCamelCase_ ) _lowercase : int = [] _lowercase : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCamelCase_ ) _lowercase : Optional[int] = new_doc_list _lowercase : str = [key for key, value in counts.items() if value > 1] _lowercase : Union[str, Any] = [] for duplicate_key in duplicates: _lowercase : Optional[Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCamelCase_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowercase : Optional[int] = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCamelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCamelCase_ ) # Sort return overview_doc def UpperCamelCase_( lowerCamelCase_=False ) -> Any: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Tuple = content[api_idx]['sections'] # Then to the model doc _lowercase : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Optional[int] = api_doc[scheduler_idx]['sections'] _lowercase : List[Any] = clean_doc_toc(lowerCamelCase_ ) _lowercase : Optional[Any] = False if new_scheduler_doc != scheduler_doc: _lowercase : Optional[Any] = True if overwrite: _lowercase : str = new_scheduler_doc if diff: if overwrite: _lowercase : Any = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase_( lowerCamelCase_=False ) -> List[str]: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : int = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : str = content[api_idx]['sections'] # Then to the model doc _lowercase : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : Tuple = False _lowercase : Dict = api_doc[pipeline_idx]['sections'] _lowercase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : Union[str, Any] = pipeline_doc['section'] _lowercase : List[str] = clean_doc_toc(lowerCamelCase_ ) if overwrite: _lowercase : str = new_sub_pipeline_doc new_pipeline_docs.append(lowerCamelCase_ ) # sort overall pipeline doc _lowercase : int = clean_doc_toc(lowerCamelCase_ ) if new_pipeline_docs != pipeline_docs: _lowercase : Tuple = True if overwrite: _lowercase : str = new_pipeline_docs if diff: if overwrite: _lowercase : List[str] = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase ( a ): lowercase__ : Tuple = """umt5""" lowercase__ : Tuple = ["""past_key_values"""] def __init__( self : Optional[Any] , _UpperCamelCase : List[Any]=250_112 , _UpperCamelCase : Tuple=512 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Dict=1_024 , _UpperCamelCase : int=8 , _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=6 , _UpperCamelCase : int=32 , _UpperCamelCase : str=128 , _UpperCamelCase : str=0.1 , _UpperCamelCase : List[str]=1e-6 , _UpperCamelCase : Any=1.0 , _UpperCamelCase : Optional[Any]="gated-gelu" , _UpperCamelCase : Any=True , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[Any]="T5Tokenizer" , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=0 , _UpperCamelCase : List[Any]=1 , _UpperCamelCase : str=0 , **_UpperCamelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' super().__init__( is_encoder_decoder=_UpperCamelCase , tokenizer_class=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = d_kv SCREAMING_SNAKE_CASE = d_ff SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = relative_attention_num_buckets SCREAMING_SNAKE_CASE = relative_attention_max_distance SCREAMING_SNAKE_CASE = dropout_rate SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = feed_forward_proj SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE = act_info[-1] SCREAMING_SNAKE_CASE = act_info[0] == "gated" if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE = "gelu_new" @property def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' return self.d_model @property def __snake_case( self : List[str] ) -> Dict: '''simple docstring''' return self.num_heads @property def __snake_case( self : Any ) -> int: '''simple docstring''' return self.num_layers class lowercase ( a ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __snake_case( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: SCREAMING_SNAKE_CASE = "past_encoder_sequence + sequence" SCREAMING_SNAKE_CASE = {0: "batch"} SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __snake_case( self : Optional[Any] ) -> int: '''simple docstring''' return 13 @property def __snake_case( self : Optional[int] ) -> float: '''simple docstring''' return 5e-4
355
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( a ): def __snake_case( self : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , "depth_multiplier" ) ) class lowercase : def __init__( self : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any=13 , _UpperCamelCase : Any=3 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : Optional[Any]=0.2_5 , _UpperCamelCase : int=8 , _UpperCamelCase : str=True , _UpperCamelCase : Any=1_024 , _UpperCamelCase : Tuple=32 , _UpperCamelCase : List[str]="relu6" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : List[str]=0.0_2 , _UpperCamelCase : int=True , _UpperCamelCase : int=True , _UpperCamelCase : Optional[Any]=10 , _UpperCamelCase : List[str]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = depth_multiplier SCREAMING_SNAKE_CASE = min_depth SCREAMING_SNAKE_CASE = tf_padding SCREAMING_SNAKE_CASE = int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case( self : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileNetVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Dict = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase__ : Tuple = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase__ : Union[str, Any] = False lowercase__ : Union[str, Any] = False lowercase__ : Tuple = False lowercase__ : List[str] = False def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE = MobileNetVaConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __snake_case( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __snake_case( self : Any ) -> List[str]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 26 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def __snake_case( self : int ) -> str: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = MobileNetVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __snake_case( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
206
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } __SCREAMING_SNAKE_CASE : int = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } __SCREAMING_SNAKE_CASE : Tuple = """▁""" class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = VOCAB_FILES_NAMES __UpperCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , A : Optional[int] , A : Any=True , A : List[Any]=True , A : Optional[Any]=False , A : Any="[CLS]" , A : List[str]="[SEP]" , A : str="<unk>" , A : Any="[SEP]" , A : int="<pad>" , A : Union[str, Any]="[CLS]" , A : List[str]="[MASK]" , A : Optional[Dict[str, Any]] = None , **A : int , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase : Any = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : List[Any] = do_lower_case _UpperCAmelCase : str = remove_space _UpperCAmelCase : Optional[Any] = keep_accents _UpperCAmelCase : Optional[int] = vocab_file _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def _A ( self : str ): return len(self.sp_model ) def _A ( self : Any ): _UpperCAmelCase : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): _UpperCAmelCase : int = self.__dict__.copy() _UpperCAmelCase : List[str] = None return state def __setstate__( self : List[str] , A : int ): _UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : List[Any] , A : Optional[int] ): if self.remove_space: _UpperCAmelCase : int = " ".join(inputs.strip().split() ) else: _UpperCAmelCase : Tuple = inputs _UpperCAmelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _UpperCAmelCase : Union[str, Any] = unicodedata.normalize("NFKD" , A ) _UpperCAmelCase : List[Any] = "".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: _UpperCAmelCase : int = outputs.lower() return outputs def _A ( self : str , A : str ): _UpperCAmelCase : Union[str, Any] = self.preprocess_text(A ) _UpperCAmelCase : Optional[int] = self.sp_model.encode(A , out_type=A ) _UpperCAmelCase : int = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _UpperCAmelCase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase : Optional[Any] = cur_pieces[1:] else: _UpperCAmelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def _A ( self : Union[str, Any] , A : Optional[Any] ): return self.sp_model.PieceToId(A ) def _A ( self : int , A : Optional[Any] ): return self.sp_model.IdToPiece(A ) def _A ( self : int , A : Tuple ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = "" _UpperCAmelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(A ) _UpperCAmelCase : List[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def _A ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : List[str] = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self : Tuple , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def _A ( self : int , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : Union[str, Any] , A : str , A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , "wb" ) as fi: _UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
31
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Any , A : Optional[int]=None , A : Tuple=None , *A : Tuple , **A : List[str] ): super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _UpperCAmelCase : str = self.model.config else: _UpperCAmelCase : List[str] = config _UpperCAmelCase : List[Any] = data_args _UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: _UpperCAmelCase : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase : Dict = label_smoothed_nll_loss def _A ( self : Tuple , A : int ): if self.optimizer is None: _UpperCAmelCase : Tuple = ["bias", "LayerNorm.weight"] _UpperCAmelCase : str = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] _UpperCAmelCase : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase : List[str] = Adafactor _UpperCAmelCase : List[Any] = {"scale_parameter": False, "relative_step": False} else: _UpperCAmelCase : List[str] = AdamW _UpperCAmelCase : List[str] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _UpperCAmelCase : List[Any] = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase : List[Any] = OSS( params=A , optim=A , **A , ) else: _UpperCAmelCase : Union[str, Any] = optimizer_cls(A , **A ) if self.lr_scheduler is None: _UpperCAmelCase : List[str] = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _A ( self : List[str] , A : Optional[int] ): _UpperCAmelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def _A ( self : Tuple ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _A ( self : Any , A : Union[str, Any] , A : Union[str, Any] , A : List[Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase : List[str] = model(**A , use_cache=A )[0] _UpperCAmelCase : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase : Any = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss _UpperCAmelCase : Optional[int] = model(**A , use_cache=A )[0] _UpperCAmelCase : List[str] = torch.nn.functional.log_softmax(A , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _A ( self : List[str] , A : Optional[int] , A : Optional[int] ): _UpperCAmelCase : Union[str, Any] = inputs.pop("labels" ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._compute_loss(A , A , A ) return loss def _A ( self : List[str] , A : nn.Module , A : Dict[str, Union[torch.Tensor, Any]] , A : bool , A : Optional[List[str]] = None , ): _UpperCAmelCase : List[str] = self._prepare_inputs(A ) _UpperCAmelCase : Dict = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase : Dict = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : int = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) _UpperCAmelCase : Any = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase : str = self._compute_loss(A , A , A ) _UpperCAmelCase : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : Optional[Any] = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) return (loss, logits, labels) def _A ( self : Dict , A : int , A : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase : Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F""" padded to `max_length`={max_length}""" ) _UpperCAmelCase : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase : Tuple = tensor return padded_tensor
31
1
'''simple docstring''' import datasets from .evaluate import evaluate __A : Any = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' __A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' __A : str = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def a__ ( self :int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) ,codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] ,reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] ,) def a__ ( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ): snake_case_ : List[str] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case_ : Union[str, Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case_ : Optional[int] = evaluate(dataset=_UpperCamelCase ,predictions=_UpperCamelCase ) return score
8
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
8
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__:List[str] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase( a , a , a , a , a ): for attribute in key.split("." ): __a = getattr(a , a ) if weight_type is not None: __a = getattr(a , a ).shape else: __a = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase( a , a ): __a = [] __a = fairseq_model.state_dict() __a = hf_model.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a , a , a , a , hf_model.config.feat_extract_norm == "group" , ) __a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __a = True if "*" in mapped_key: __a = name.split(a )[0].split("." )[-2] __a = mapped_key.replace("*" , a ) if "weight_g" in name: __a = "weight_g" elif "weight_v" in name: __a = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: __a = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = "weight" else: __a = None set_recursively(a , a , a , a , a ) continue if not is_used: unused_weights.append(a ) logger.warning(F"Unused weights: {unused_weights}" ) def _lowerCamelCase( a , a , a , a , a ): __a = full_name.split("conv_layers." )[-1] __a = name.split("." ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a ) @torch.no_grad() def _lowerCamelCase( a , a , a=None ): # load the pre-trained checkpoints __a = torch.load(a ) __a = WavLMConfigOrig(checkpoint["cfg"] ) __a = WavLMOrig(a ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: __a = WavLMConfig.from_pretrained(a ) else: __a = WavLMConfig() __a = WavLMModel(a ) recursively_load_weights(a , a ) hf_wavlm.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") SCREAMING_SNAKE_CASE__:Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
261
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
261
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[str] = "timm_backbone" def __init__( self : List[Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : str=None , **UpperCAmelCase__ : Union[str, Any] , ) -> List[Any]: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = backbone __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = features_only __SCREAMING_SNAKE_CASE = use_pretrained_backbone __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = out_indices if out_indices is not None else (-1,)
195
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : WhisperForConditionalGeneration , UpperCAmelCase__ : WhisperProcessor , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=UpperCAmelCase__ , speech_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> str: if slice_size == "auto": __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def __call__( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=1_6_0_0_0 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Dict , ) -> Any: __SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( UpperCAmelCase__ , return_tensors="pt" , sampling_rate=UpperCAmelCase__ ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE = self.speech_model.generate(UpperCAmelCase__ , max_length=4_8_0_0_0_0 ) __SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , normalize=UpperCAmelCase__ )[ 0 ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCAmelCase__ )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text_embeddings.shape __SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""] * batch_size elif type(UpperCAmelCase__ ) is not type(UpperCAmelCase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase__ )} !=""" F""" {type(UpperCAmelCase__ )}.""" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(UpperCAmelCase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device="cpu" , dtype=UpperCAmelCase__ ).to( self.device ) else: __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents __SCREAMING_SNAKE_CASE = self.vae.decode(UpperCAmelCase__ ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase__ , nsfw_content_detected=UpperCAmelCase__ )
195
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DeiTFeatureExtractor'] __UpperCAmelCase = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "bert-generation" def __init__( self , __A=5_0358 , __A=1024 , __A=24 , __A=16 , __A=4096 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.0_2 , __A=1E-12 , __A=0 , __A=2 , __A=1 , __A="absolute" , __A=True , **__A , ) -> Tuple: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCAmelCase_ :Any = vocab_size lowerCAmelCase_ :List[Any] = hidden_size lowerCAmelCase_ :Optional[int] = num_hidden_layers lowerCAmelCase_ :int = num_attention_heads lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Optional[Any] = intermediate_size lowerCAmelCase_ :List[Any] = hidden_dropout_prob lowerCAmelCase_ :int = attention_probs_dropout_prob lowerCAmelCase_ :Tuple = max_position_embeddings lowerCAmelCase_ :List[str] = initializer_range lowerCAmelCase_ :Union[str, Any] = layer_norm_eps lowerCAmelCase_ :List[str] = position_embedding_type lowerCAmelCase_ :Optional[int] = use_cache
84
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def wrapper(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): UpperCamelCase = timeit.default_timer() UpperCamelCase = func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = timeit.default_timer() - starttime return delta UpperCamelCase = func.__name__ return wrapper def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = seq_shapes or {} for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_SCREAMING_SNAKE_CASE , _ArrayXD ): UpperCamelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_SCREAMING_SNAKE_CASE , datasets.Value ): if v.dtype == "string": UpperCamelCase = "The small grey turtle was surprisingly fast when challenged." else: UpperCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_SCREAMING_SNAKE_CASE , datasets.Sequence ): while isinstance(_SCREAMING_SNAKE_CASE , datasets.Sequence ): UpperCamelCase = v.feature UpperCamelCase = seq_shapes[k] UpperCamelCase = np.random.rand(*_SCREAMING_SNAKE_CASE ).astype(v.dtype ) UpperCamelCase = data dummy_data.append((i, example) ) return dummy_data def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = generate_examples(_SCREAMING_SNAKE_CASE , num_examples=_SCREAMING_SNAKE_CASE , seq_shapes=_SCREAMING_SNAKE_CASE ) with ArrowWriter(features=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE ) as writer: for key, record in dummy_data: UpperCamelCase = features.encode_example(_SCREAMING_SNAKE_CASE ) writer.write(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCamelCase = datasets.Dataset.from_file(filename=_SCREAMING_SNAKE_CASE , info=datasets.DatasetInfo(features=_SCREAMING_SNAKE_CASE ) ) return dataset
368
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType('''DataClass''', Any) lowerCAmelCase__ = NewType('''DataClassType''', Any) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {str(_SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda _SCREAMING_SNAKE_CASE : str_to_choice.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( *, _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCamelCase = {} if aliases is not None: UpperCamelCase = aliases if help is not None: UpperCamelCase = help return dataclasses.field(metadata=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , default_factory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = 42 def __init__(self , __a , **__a ) -> Any: # To make the default appear when using --help if "formatter_class" not in kwargs: UpperCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): UpperCamelCase = [dataclass_types] UpperCamelCase = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def snake_case_ (__a , __a ) -> Optional[Any]: UpperCamelCase = F"--{field.name}" UpperCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) UpperCamelCase = kwargs.pop("aliases" , [] ) if isinstance(__a , __a ): UpperCamelCase = [aliases] UpperCamelCase = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__a , "UnionType" ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F" Problem encountered in field '{field.name}'." ) if type(__a ) not in field.type.__args__: # filter `str` in Union UpperCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCamelCase = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCamelCase = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCamelCase = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCamelCase = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: UpperCamelCase = field.type.__args__ else: UpperCamelCase = [x.value for x in field.type] UpperCamelCase = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: UpperCamelCase = field.default else: UpperCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCamelCase = copy(__a ) # Hack because type=bool in argparse does not behave as we want. UpperCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name UpperCamelCase = "?" # This is the value that will get picked if we do --field_name (without value) UpperCamelCase = True elif isclass(__a ) and issubclass(__a , __a ): UpperCamelCase = field.type.__args__[0] UpperCamelCase = "+" if field.default_factory is not dataclasses.MISSING: UpperCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: UpperCamelCase = True else: UpperCamelCase = field.type if field.default is not dataclasses.MISSING: UpperCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: UpperCamelCase = field.default_factory() else: UpperCamelCase = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCamelCase = False parser.add_argument(F"--no_{field.name}" , action="store_false" , dest=field.name , **__a ) def snake_case_ (self , __a ) -> List[Any]: if hasattr(__a , "_argument_group_name" ): UpperCamelCase = self.add_argument_group(dtype._argument_group_name ) else: UpperCamelCase = self try: UpperCamelCase = get_type_hints(__a ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__a ): UpperCamelCase = ".".join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue UpperCamelCase = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def snake_case_ (self , __a=None , __a=False , __a=True , __a=None , __a=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCamelCase = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCamelCase = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCamelCase , UpperCamelCase = args_file_parser.parse_known_args(args=__a ) UpperCamelCase = vars(__a ).get(args_file_flag.lstrip("-" ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) UpperCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] UpperCamelCase , UpperCamelCase = self.parse_known_args(args=__a ) UpperCamelCase = [] for dtype in self.dataclass_types: UpperCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} UpperCamelCase = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) UpperCamelCase = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: UpperCamelCase = set(args.keys() ) UpperCamelCase = [] for dtype in self.dataclass_types: UpperCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} UpperCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCamelCase = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(__a )}" ) return tuple(__a ) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: with open(Path(__a ) , encoding="utf-8" ) as open_json_file: UpperCamelCase = json.loads(open_json_file.read() ) UpperCamelCase = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: UpperCamelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
244
0
def a( A : Dict ) -> Optional[int]: """simple docstring""" for i in range(len(lowerCamelCase__ ) - 1 , 0 , -1 ): a = False for j in range(lowerCamelCase__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: a = unsorted[j - 1], unsorted[j] a = True for j in range(lowerCamelCase__ ): if unsorted[j] > unsorted[j + 1]: a = unsorted[j + 1], unsorted[j] a = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _lowercase: Optional[Any] = input("Enter numbers separated by a comma:\n").strip() _lowercase: Optional[int] = [int(item) for item in user_input.split(",")] print(F"""{cocktail_shaker_sort(unsorted) = }""")
227
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ): A_ : List[Any] = parent A_ : str = batch_size A_ : List[Any] = seq_length A_ : Dict = is_training A_ : List[Any] = use_attention_mask A_ : Any = use_token_type_ids A_ : Optional[int] = use_labels A_ : Tuple = vocab_size A_ : List[str] = hidden_size A_ : List[str] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = intermediate_size A_ : Optional[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : Any = initializer_range A_ : List[str] = num_choices def _a (self ): A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_attention_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase , ) return config, input_ids, attention_mask def _a (self ): A_ : List[str] = self.prepare_config_and_inputs() A_, A_, A_ : str = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): A_ : Tuple = FlaxDistilBertModelTester(self ) @slow def _a (self ): for model_class_name in self.all_model_classes: A_ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) A_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0] A_ : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape , lowercase ) A_ : Union[str, Any] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
206
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
212
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _A = open # noqa: we just need to have a builtin inside this module to test it properly
212
1
import datasets from .evaluate import evaluate lowerCAmelCase_ = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' lowerCAmelCase_ = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' lowerCAmelCase_ = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : str ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : Any ) ->List[str]: snake_case_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} snake_case_ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] snake_case_ = evaluate(dataset=_UpperCamelCase , predictions=_UpperCamelCase ) return score
8
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
1
UpperCamelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __lowerCamelCase ( snake_case__ ) -> bytes: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(snake_case__ ) _SCREAMING_SNAKE_CASE = """""".join(bin(snake_case__ )[2:].zfill(8 ) for byte in data ) _SCREAMING_SNAKE_CASE = len(snake_case__ ) % 6 != 0 if padding_needed: # The padding that will be added later _SCREAMING_SNAKE_CASE = b"""=""" * ((6 - len(snake_case__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case__ ) % 6) else: _SCREAMING_SNAKE_CASE = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] ,2 )] for index in range(0 ,len(snake_case__ ) ,6 ) ).encode() + padding ) def __lowerCamelCase ( snake_case__ ) -> bytes: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) and not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( """argument should be a bytes-like object or ASCII string, """ F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(snake_case__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case__ ,snake_case__ ): try: _SCREAMING_SNAKE_CASE = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _SCREAMING_SNAKE_CASE = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _SCREAMING_SNAKE_CASE = encoded_data[:-padding] _SCREAMING_SNAKE_CASE = """""".join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _SCREAMING_SNAKE_CASE = """""".join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data ) _SCREAMING_SNAKE_CASE = [ int(binary_stream[index : index + 8] ,2 ) for index in range(0 ,len(snake_case__ ) ,8 ) ] return bytes(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
351
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __UpperCAmelCase : def __init__( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: str=True , UpperCAmelCase_: List[str]=99 , UpperCAmelCase_: int=32 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Dict=37 , UpperCAmelCase_: Tuple="gelu" , UpperCAmelCase_: Any=0.1 , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Optional[int]=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[int]=0.02 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: Optional[int]=4 , UpperCAmelCase_: Tuple=None , UpperCAmelCase_: Any=0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = projection_dim def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) _SCREAMING_SNAKE_CASE = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRContextEncoder(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRReader(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __snake_case : Optional[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __snake_case : str = False __snake_case : List[Any] = False __snake_case : Any = False __snake_case : List[Any] = False __snake_case : Tuple = False def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) _SCREAMING_SNAKE_CASE = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """encodec""" def __init__( self , snake_case=[1.5, 3.0, 6.0, 12.0, 24.0] , snake_case=2_4000 , snake_case=1 , snake_case=False , snake_case=None , snake_case=None , snake_case=128 , snake_case=32 , snake_case=1 , snake_case=[8, 5, 4, 2] , snake_case="weight_norm" , snake_case=7 , snake_case=7 , snake_case=3 , snake_case=2 , snake_case=True , snake_case="reflect" , snake_case=2 , snake_case=2 , snake_case=1.0 , snake_case=1024 , snake_case=None , snake_case=True , **snake_case , ): lowercase = target_bandwidths lowercase = sampling_rate lowercase = audio_channels lowercase = normalize lowercase = chunk_length_s lowercase = overlap lowercase = hidden_size lowercase = num_filters lowercase = num_residual_layers lowercase = upsampling_ratios lowercase = norm_type lowercase = kernel_size lowercase = last_kernel_size lowercase = residual_kernel_size lowercase = dilation_growth_rate lowercase = use_causal_conv lowercase = pad_mode lowercase = compress lowercase = num_lstm_layers lowercase = trim_right_ratio lowercase = codebook_size lowercase = codebook_dim if codebook_dim is not None else hidden_size lowercase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE__ ( self ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
195
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase = mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowercase = max( mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , j - wt[i - 1] ) + val[i - 1] , ) lowercase = val return f[i][j] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if not (isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowercase = len(__SCREAMING_SNAKE_CASE ) if num_items != len(__SCREAMING_SNAKE_CASE ): lowercase = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(__SCREAMING_SNAKE_CASE )} values''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): if not isinstance(wt[i] , __SCREAMING_SNAKE_CASE ): lowercase = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = set() _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: optimal_set.add(__SCREAMING_SNAKE_CASE ) _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i - 1 , j - wt[i - 1] , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = [3, 2, 4, 4] UpperCAmelCase = [4, 3, 2, 3] UpperCAmelCase = 4 UpperCAmelCase = 6 UpperCAmelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase , UpperCAmelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase , UpperCAmelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
195
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''ZinengTang/tvlt-base''' lowerCAmelCase_ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor, UpperCamelCase__ ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([1_2000] ) lowerCAmelCase_ = feature_extractor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(audio=UpperCamelCase__, return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([3, 224, 224] ) lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([1_2000] ) lowerCAmelCase_ = np.ones([3, 224, 224] ) lowerCAmelCase_ = processor(audio=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names, image_processor.model_input_names + feature_extractor.model_input_names, msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''', )
167
from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( __UpperCAmelCase ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError()
167
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : List[Any]=1_6 , SCREAMING_SNAKE_CASE_ : List[Any]=[1, 2, 1] , SCREAMING_SNAKE_CASE_ : Dict=[2, 2, 4] , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : str=2.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : Dict=1e-5 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=8 , ) -> Optional[int]: lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride def _lowercase ( self : str ) -> Optional[Any]: lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Union[str, Any] ) -> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: lowercase_ = SwinvaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: lowercase_ = SwinvaForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = SwinvaForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: lowercase_ = self.type_sequence_label_size lowercase_ = SwinvaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Any ) -> Dict: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" a :Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a :Optional[int] = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) a :str = False a :str = False a :Any = False a :str = False def _lowercase ( self : str ) -> Union[str, Any]: lowercase_ = SwinvaModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=3_7 ) def _lowercase ( self : List[str] ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def _lowercase ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def _lowercase ( self : Union[str, Any] ) -> Any: pass def _lowercase ( self : Tuple ) -> Any: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def _lowercase ( self : Union[str, Any] ) -> str: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> Union[str, Any]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: lowercase_ = True lowercase_ = False lowercase_ = True lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowercase_ = outputs.attentions lowercase_ = len(self.model_tester.depths ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ = True lowercase_ = config.window_size**2 lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowercase_ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowercase_ = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine lowercase_ = True lowercase_ = True lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowercase_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase_ = 2 self.assertEqual(out_len + added_hidden_states , len(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swinv2 has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase ( self : Any ) -> Optional[Any]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Tuple: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Optional[Any] ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = SwinvaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: lowercase_ = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : int ) -> Union[str, Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def _lowercase ( self : str ) -> Any: lowercase_ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( SCREAMING_SNAKE_CASE_ ) lowercase_ = self.default_image_processor lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
30
from collections.abc import Generator def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = 0, 1 while True: UpperCamelCase__ , UpperCamelCase__ = b, a + b yield b def __magic_name__ ( __a : int = 1_000 ): '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = fibonacci_generator() while len(str(next(__a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
244
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : int = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class a__ ( __snake_case ): A__ : Optional[int] = 'roc_bert' def __init__( self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=7_6_8 , UpperCAmelCase=9_1_0 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2_4_8_5_8 , UpperCAmelCase=True , **UpperCAmelCase , ) -> Tuple: __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_cache __a = enable_pronunciation __a = enable_shape __a = pronunciation_embed_dim __a = pronunciation_vocab_size __a = shape_embed_dim __a = shape_vocab_size __a = concat_input __a = position_embedding_type __a = classifier_dropout super().__init__(pad_token_id=__A , **__A )
359
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class a__ ( __snake_case ): A__ : Dict = 'fnet' def __init__( self , UpperCAmelCase=3_2_0_0_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=4 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=False , UpperCAmelCase=5_1_2 , UpperCAmelCase=3 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Dict: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_tpu_fourier_optimizations __a = tpu_short_seq_length
197
0
class A__ : def __init__( self : int , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = val lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = None def _lowerCamelCase ( self : List[str] , a : Optional[int] ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: lowerCAmelCase__ : Optional[int] = Node(a ) else: self.left.insert(a ) elif val > self.val: if self.right is None: lowerCAmelCase__ : Union[str, Any] = Node(a ) else: self.right.insert(a ) else: lowerCAmelCase__ : Union[str, Any] = val def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # Recursive traversal if root: inorder(root.left , SCREAMING_SNAKE_CASE_ ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: # Build BST if len(SCREAMING_SNAKE_CASE_ ) == 0: return arr lowerCAmelCase__ : List[str] = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase__ : Tuple = [] inorder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
212
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.get_dummy_input() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _lowerCamelCase ( self : Optional[int] , a : List[Any]=True , a : Any=False , a : Dict=False , a : Union[str, Any]=False , ): '''simple docstring''' lowerCAmelCase__ : Tuple = 4 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : Tuple = (32, 32) lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = torch.device(a ) lowerCAmelCase__ : str = (batch_size, num_channels) + sizes lowerCAmelCase__ : Tuple = randn_tensor(a , generator=a , device=a ) lowerCAmelCase__ : Optional[Any] = {'hidden_states': hidden_states} if include_temb: lowerCAmelCase__ : int = 128 lowerCAmelCase__ : List[str] = randn_tensor((batch_size, temb_channels) , generator=a , device=a ) if include_res_hidden_states_tuple: lowerCAmelCase__ : int = torch.manual_seed(1 ) lowerCAmelCase__ : str = (randn_tensor(a , generator=a , device=a ),) if include_encoder_hidden_states: lowerCAmelCase__ : Any = floats_tensor((batch_size, 32, 32) ).to(a ) if include_skip_sample: lowerCAmelCase__ : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) , generator=a , device=a ) return dummy_input def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": lowerCAmelCase__ : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCAmelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : str , a : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : int = self.block_class(**a ) unet_block.to(a ) unet_block.eval() with torch.no_grad(): lowerCAmelCase__ : int = unet_block(**a ) if isinstance(a , a ): lowerCAmelCase__ : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:] lowerCAmelCase__ : Any = torch.tensor(a ).to(a ) assert torch_all_close(output_slice.flatten() , a , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Any = self.block_class(**a ) model.to(a ) model.train() lowerCAmelCase__ : int = model(**a ) if isinstance(a , a ): lowerCAmelCase__ : Dict = output[0] lowerCAmelCase__ : Optional[int] = torch.device(a ) lowerCAmelCase__ : List[Any] = randn_tensor(output.shape , device=a ) lowerCAmelCase__ : List[Any] = torch.nn.functional.mse_loss(a , a ) loss.backward()
212
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCamelCase__ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCamelCase__ = """</w>""" UpperCamelCase__ = """@@ """ def _a ( SCREAMING_SNAKE_CASE_ : Dict ): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char return pairs # Speech2Text2 has no max input length UpperCamelCase__ = {"""facebook/s2t-wav2vec2-large-en-de""": 1024} class a__ ( snake_case__ ): _a : Optional[Any] = VOCAB_FILES_NAMES _a : int = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _A , _A="<s>" , _A="<pad>" , _A="</s>" , _A="<unk>" , _A=False , _A=None , **_A , ): """simple docstring""" super().__init__( unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , do_lower_case=_A , **_A , ) __lowerCAmelCase = do_lower_case with open(_A , encoding="utf-8" ) as vocab_handle: __lowerCAmelCase = json.load(_A ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) __lowerCAmelCase = None __lowerCAmelCase = None else: with open(_A , encoding="utf-8" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("\n" )[:-1] __lowerCAmelCase = [tuple(merge.split()[:2] ) for merge in merges] __lowerCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) __lowerCAmelCase = {} @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.decoder ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowerCAmelCase = get_pairs(_A ) if not pairs: return token while True: __lowerCAmelCase = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(_A ): try: __lowerCAmelCase = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(_A ) __lowerCAmelCase = new_word if len(_A ) == 1: break else: __lowerCAmelCase = get_pairs(_A ) __lowerCAmelCase = " ".join(_A ) if word == "\n " + BPE_TOKEN_MERGES: __lowerCAmelCase = "\n" + BPE_TOKEN_MERGES if word.endswith(_A ): __lowerCAmelCase = word.replace(_A , "" ) __lowerCAmelCase = word.replace(" " , _A ) __lowerCAmelCase = word return word def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: __lowerCAmelCase = text.lower() __lowerCAmelCase = text.split() __lowerCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(" " ) ) ) return split_tokens def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.decoder.get(_A , self.unk_token ) return result def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = " ".join(_A ) # make sure @@ tokens are concatenated __lowerCAmelCase = "".join(string.split(_A ) ) return string def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + "\n" ) __lowerCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowerCAmelCase = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return (vocab_file, merges_file)
102
import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__ = shutil.get_terminal_size() UpperCamelCase__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class a__ ( enum.Enum ): _a : Any = 0 _a : Dict = 1 def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict="" ): sys.stdout.write(str(SCREAMING_SNAKE_CASE_ ) + end ) sys.stdout.flush() def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): forceWrite("\r" ) def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def _a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
102
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _a = logging.get_logger(__name__) _a = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "dpt" def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=384 , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=[2, 5, 8, 11] , UpperCAmelCase="project" , UpperCAmelCase=[4, 2, 1, 0.5] , UpperCAmelCase=[96, 192, 384, 768] , UpperCAmelCase=256 , UpperCAmelCase=-1 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.4 , UpperCAmelCase=255 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 1024, 24, 24] , UpperCAmelCase=[0, 1] , UpperCAmelCase=None , **UpperCAmelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) _UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _UpperCAmelCase = BitConfig(**UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): logger.info('Initializing the config with a `BiT` backbone.' ) _UpperCAmelCase = BitConfig(**UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = [] _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) _UpperCAmelCase = readout_type _UpperCAmelCase = reassemble_factors _UpperCAmelCase = neck_hidden_sizes _UpperCAmelCase = fusion_hidden_size _UpperCAmelCase = head_in_index _UpperCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = semantic_loss_ignore_index _UpperCAmelCase = semantic_classifier_dropout def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
39
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Optional[int] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __a (lowerCamelCase ): __a : Union[str, Any] = "lilt" def __init__( self : Any , __magic_name__ : Tuple=3_05_22 , __magic_name__ : str=7_68 , __magic_name__ : Tuple=12 , __magic_name__ : int=12 , __magic_name__ : str=30_72 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : List[Any]=2 , __magic_name__ : Dict=0.0_2 , __magic_name__ : List[Any]=1E-12 , __magic_name__ : List[str]=0 , __magic_name__ : List[str]="absolute" , __magic_name__ : str=None , __magic_name__ : Dict=4 , __magic_name__ : str=10_24 , **__magic_name__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : int = position_embedding_type UpperCAmelCase_ : Tuple = classifier_dropout UpperCAmelCase_ : Dict = channel_shrink_ratio UpperCAmelCase_ : int = max_ad_position_embeddings
125
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A : Any = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class A ( lowercase__ ): '''simple docstring''' def __init__(self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=1 ) -> Union[str, Any]: """simple docstring""" lowercase__ = tokenizer lowercase__ = dataset lowercase__ = len(lowercase_ ) if n_tasks is None else n_tasks lowercase__ = n_copies def __iter__(self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) lowercase__ = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A ( lowercase__ ): '''simple docstring''' def __init__(self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" lowercase__ = start_length lowercase__ = eof_strings lowercase__ = tokenizer def __call__(self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , **_UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase_ ) def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = re.split("""(%s)""" % """|""".join(__lowerCamelCase ) , __lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Dict=20 , **__magic_name__ : int ) -> int: """simple docstring""" lowercase__ = defaultdict(__lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCamelCase ) ): with torch.no_grad(): lowercase__ = batch["ids"].shape[-1] lowercase__ = accelerator.unwrap_model(__lowerCamelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=__lowerCamelCase , **__lowerCamelCase ) # each task is generated batch_size times lowercase__ = batch["task_id"].repeat(__lowerCamelCase ) lowercase__ = accelerator.pad_across_processes( __lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowercase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowercase__ = generated_tokens.cpu().numpy() lowercase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCamelCase , __lowerCamelCase ): gen_token_dict[task].append(__lowerCamelCase ) lowercase__ = [[] for _ in range(__lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase__ = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) code_gens[task].append(remove_last_block(__lowerCamelCase ) ) return code_gens def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase__ = HfArgumentParser(__lowerCamelCase ) lowercase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase__ = "false" if args.num_workers is None: lowercase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase__ = Accelerator() set_seed(args.seed , device_specific=__lowerCamelCase ) # Load model and tokenizer lowercase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase__ = tokenizer.eos_token lowercase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase__ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowerCamelCase , __lowerCamelCase )] ), } # Load evaluation dataset and metric lowercase__ = load_dataset("""openai_humaneval""" ) lowercase__ = load_metric("""code_eval""" ) lowercase__ = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) lowercase__ = args.n_samples // args.batch_size lowercase__ = TokenizedDataset(__lowerCamelCase , human_eval["""test"""] , n_copies=__lowerCamelCase , n_tasks=__lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase__ = DataLoader(__lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase__ = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception lowercase__ = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) lowercase__ = complete_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , n_tasks=__lowerCamelCase , batch_size=args.batch_size , **__lowerCamelCase , ) if accelerator.is_main_process: lowercase__ = [] for task in tqdm(range(__lowerCamelCase ) ): lowercase__ = human_eval["test"][task]["test"] lowercase__ = f'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric lowercase__ = code_eval_metric.compute( references=__lowerCamelCase , predictions=__lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
351
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A : List[Any] = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
146
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( __UpperCAmelCase): @staticmethod @abstractmethod def a_ ( _lowerCamelCase : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def a_ ( self : str ): """simple docstring""" raise NotImplementedError()
167
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : List[Any] = 1 @register_to_config def __init__( self : Union[str, Any] , _lowerCamelCase : int = 10_00 , _lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(_lowerCamelCase ) # standard deviation of the initial noise distribution A_ : Optional[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. A_ : List[str] = 4 # running values A_ : Optional[int] = [] def a_ ( self : str , _lowerCamelCase : int , _lowerCamelCase : Union[str, torch.device] = None ): """simple docstring""" A_ : Tuple = num_inference_steps A_ : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] A_ : Optional[Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: A_ : str = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: A_ : int = torch.sin(steps * math.pi / 2 ) ** 2 A_ : Dict = (1.0 - self.betas**2) ** 0.5 A_ : Tuple = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] A_ : int = timesteps.to(_lowerCamelCase ) A_ : int = [] def a_ ( self : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) A_ : Union[str, Any] = (self.timesteps == timestep).nonzero().item() A_ : Dict = timestep_index + 1 A_ : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowerCamelCase ) if len(self.ets ) == 1: A_ : Dict = self.ets[-1] elif len(self.ets ) == 2: A_ : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: A_ : Optional[Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: A_ : str = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) A_ : Union[str, Any] = self._get_prev_sample(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : torch.FloatTensor , *_lowerCamelCase : List[str] , **_lowerCamelCase : List[Any] ): """simple docstring""" return sample def a_ ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Optional[Any] = self.alphas[timestep_index] A_ : Union[str, Any] = self.betas[timestep_index] A_ : int = self.alphas[prev_timestep_index] A_ : Tuple = self.betas[prev_timestep_index] A_ : str = (sample - sigma * ets) / max(_lowerCamelCase , 1E-8 ) A_ : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
167
1
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets snake_case_ : int = datasets.logging.get_logger(__name__) snake_case_ : Optional[int] = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' snake_case_ : str = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' snake_case_ : Tuple = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : str ): '''simple docstring''' if self.config_name == "default": _UpperCamelCase : Optional[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _UpperCamelCase : Dict = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : int=False ): '''simple docstring''' if gpus is None: _UpperCamelCase : int = 1 if torch.cuda.is_available() else 0 _UpperCamelCase : int = {'src': sources, 'mt': predictions, 'ref': references} _UpperCamelCase : List[str] = [dict(zip(lowerCamelCase__ ,lowerCamelCase__ ) ) for t in zip(*data.values() )] _UpperCamelCase : int = self.scorer.predict(lowerCamelCase__ ,gpus=lowerCamelCase__ ,progress_bar=lowerCamelCase__ ) return {"mean_score": mean_score, "scores": scores}
355
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness snake_case_ : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' snake_case_ : Tuple = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' snake_case_ : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' snake_case_ : str = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' snake_case_ : List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=[1, 10, 100] ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : List[Any]=3.0 ): '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[int] = Counter() _UpperCamelCase : int = 0 _UpperCamelCase : Dict = defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ ,lowerCamelCase__ ) ): for candidate in candidates: _UpperCamelCase : int = candidate + '\n' + test_case _UpperCamelCase : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase : Dict = executor.submit(lowerCamelCase__ ,*lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): _UpperCamelCase : Dict = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _UpperCamelCase , _UpperCamelCase : List[str] = [], [] for result in results.values(): result.sort() _UpperCamelCase : Optional[Any] = [r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = np.array(lowerCamelCase__ ) _UpperCamelCase : List[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = k _UpperCamelCase : Tuple = {F'pass@{k}': estimate_pass_at_k(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) else: assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = iter(UpperCAmelCase_ ) return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
236
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A_ :Optional[int] = None A_ :Any = logging.get_logger(__name__) A_ :List[str] = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ :Any = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } A_ :int = { '''google/rembert''': 256, } A_ :Tuple = '''▁''' class __A ( a ): """simple docstring""" UpperCamelCase__ : str =VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[str] =RemBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="[CLS]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : str =do_lower_case __UpperCamelCase : List[str] =remove_space __UpperCamelCase : Dict =keep_accents __UpperCamelCase : Tuple =vocab_file __UpperCamelCase : Optional[int] =False if not self.vocab_file else True def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =[self.sep_token_id] __UpperCamelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =[self.sep_token_id] __UpperCamelCase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase__ ) ) return __UpperCamelCase : List[str] =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
71
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowercase = nums[0] lowercase = 0 for num in nums[1:]: lowercase , lowercase = ( max_excluding + num, max(lowerCAmelCase__ , lowerCAmelCase__ ), ) return max(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
197
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __lt__( self , _UpperCAmelCase ): return self[-1] < other[-1] def __eq__( self , _UpperCAmelCase ): return self[-1] == other[-1] def __A ( a_ :list) -> list: __a : list[Stack] = [] # sort into stacks for element in collection: __a : Any = Stack([element]) __a : Dict = bisect_left(a_ , a_) if i != len(a_): stacks[i].append(a_) else: stacks.append(a_) # use a heap-based merge to merge stack efficiently __a : Optional[Any] = merge(*(reversed(a_) for stack in stacks)) return collection if __name__ == "__main__": A = input('''Enter numbers separated by a comma:\n''').strip() A = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
188
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = size if size is not None else {'''height''': 18, '''width''': 18} __a : List[Any] = parent __a : Dict = batch_size __a : Dict = num_channels __a : int = image_size __a : Optional[Any] = min_resolution __a : Optional[int] = max_resolution __a : Dict = do_resize __a : List[Any] = size __a : int = do_normalize __a : Optional[Any] = image_mean __a : int = image_std def _lowerCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ViTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : int = EfficientFormerImageProcessorTester(self ) @property def _lowerCamelCase ( self ): return self.image_proc_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processor __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Dict = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a : Any = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processor __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[int] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a : str = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processor __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a : Tuple = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
188
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='layoutlmv3' def __init__(self , a_=5_02_65 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-5 , a_=1 , a_=0 , a_=2 , a_=10_24 , a_=1_28 , a_=1_28 , a_=True , a_=32 , a_=1_28 , a_=64 , a_=2_56 , a_=True , a_=True , a_=True , a_=2_24 , a_=3 , a_=16 , a_=None , **a_ , ): '''simple docstring''' super().__init__( vocab_size=a_ , hidden_size=a_ , num_hidden_layers=a_ , num_attention_heads=a_ , intermediate_size=a_ , hidden_act=a_ , hidden_dropout_prob=a_ , attention_probs_dropout_prob=a_ , max_position_embeddings=a_ , type_vocab_size=a_ , initializer_range=a_ , layer_norm_eps=a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , ) __snake_case : str = max_ad_position_embeddings __snake_case : Optional[Any] = coordinate_size __snake_case : str = shape_size __snake_case : Union[str, Any] = has_relative_attention_bias __snake_case : Dict = rel_pos_bins __snake_case : Union[str, Any] = max_rel_pos __snake_case : Union[str, Any] = has_spatial_attention_bias __snake_case : List[Any] = rel_ad_pos_bins __snake_case : List[Any] = max_rel_ad_pos __snake_case : Dict = text_embed __snake_case : Optional[Any] = visual_embed __snake_case : Dict = input_size __snake_case : Union[str, Any] = num_channels __snake_case : Any = patch_size __snake_case : Union[str, Any] = classifier_dropout class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.12' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 12 def SCREAMING_SNAKE_CASE (self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , a_ = 3 , a_ = 40 , a_ = 40 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , a_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __snake_case : List[str] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case : Any = processor.tokenizer.num_special_tokens_to_add(a_ ) __snake_case : Tuple = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence __snake_case : Optional[int] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __snake_case : Any = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __snake_case : int = self._generate_dummy_images(a_ , a_ , a_ , a_ ) __snake_case : Tuple = dict( processor( a_ , text=a_ , boxes=a_ , return_tensors=a_ , ) ) return inputs
102
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='yolos' def __init__(self , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.0 , a_=0.0 , a_=0.02 , a_=1E-12 , a_=[5_12, 8_64] , a_=16 , a_=3 , a_=True , a_=1_00 , a_=True , a_=False , a_=1 , a_=5 , a_=2 , a_=5 , a_=2 , a_=0.1 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = image_size __snake_case : Tuple = patch_size __snake_case : str = num_channels __snake_case : Tuple = qkv_bias __snake_case : Union[str, Any] = num_detection_tokens __snake_case : List[str] = use_mid_position_embeddings __snake_case : Tuple = auxiliary_loss # Hungarian matcher __snake_case : List[str] = class_cost __snake_case : int = bbox_cost __snake_case : int = giou_cost # Loss coefficients __snake_case : Optional[int] = bbox_loss_coefficient __snake_case : List[str] = giou_loss_coefficient __snake_case : List[Any] = eos_coefficient class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 12
102
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Any = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCamelCase_ : Any = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCamelCase_ : List[Any] = {"""facebook/blenderbot-3B""": 128} class a__ ( __snake_case ): A__ : int = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : str = ['input_ids', 'attention_mask'] A__ : List[str] = BlenderbotTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> str: super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase ) != add_prefix_space: __a = getattr(UpperCAmelCase , pre_tok_state.pop('type' ) ) __a = add_prefix_space __a = pre_tok_class(**UpperCAmelCase ) __a = add_prefix_space __a = 'post_processor' __a = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: __a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a = tuple(state['sep'] ) if "cls" in state: __a = tuple(state['cls'] ) __a = False if state.get('add_prefix_space' , UpperCAmelCase ) != add_prefix_space: __a = add_prefix_space __a = True if state.get('trim_offsets' , UpperCAmelCase ) != trim_offsets: __a = trim_offsets __a = True if changes_to_apply: __a = getattr(UpperCAmelCase , state.pop('type' ) ) __a = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __SCREAMING_SNAKE_CASE ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]: __a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value __a = value def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: __a = kwargs.get('is_split_into_words' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: __a = kwargs.get('is_split_into_words' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: __a = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: return token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[int]: __a = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase ) __a = ' '.join(UpperCAmelCase ) __a = self.encode(UpperCAmelCase ) if len(UpperCAmelCase ) > self.model_max_length: __a = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
371
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCAmelCase( __lowerCamelCase ): return (data["data"], data["target"]) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCamelCase , __lowerCamelCase ) # Predict target for test data __a = xgb.predict(__lowerCamelCase ) __a = predictions.reshape(len(__lowerCamelCase ) , 1 ) return predictions def lowerCAmelCase( ): __a = fetch_california_housing() __a , __a = data_handling(__lowerCamelCase ) __a , __a , __a , __a = train_test_split( __lowerCamelCase , __lowerCamelCase , test_size=0.25 , random_state=1 ) __a = xgboost(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(__lowerCamelCase , __lowerCamelCase )}''' ) print(f'''Mean Square Error : {mean_squared_error(__lowerCamelCase , __lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
197
0
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # Checks if the entire collection has been sorted if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: # Checks order between adjacent elements if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowercase , lowercase : str = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": lowercase : Tuple = input("""Enter integers separated by spaces: """) lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
20
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''ZinengTang/tvlt-base''' UpperCamelCase__ : int = tempfile.mkdtemp() def UpperCAmelCase__ ( self : int , **lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ : int = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase__ : List[str] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Optional[int] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase__ ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : List[Any] = self.get_feature_extractor() UpperCamelCase__ : Dict = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : Any = np.ones([12000] ) UpperCamelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : Any = processor(audio=lowerCamelCase__ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.get_image_processor() UpperCamelCase__ : Any = self.get_feature_extractor() UpperCamelCase__ : int = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : int = np.ones([3, 224, 224] ) UpperCamelCase__ : List[str] = image_processor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : str = processor(images=lowerCamelCase__ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) UpperCamelCase__ : List[str] = np.ones([12000] ) UpperCamelCase__ : Tuple = np.ones([3, 224, 224] ) UpperCamelCase__ : Optional[Any] = processor(audio=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : str = self.get_feature_extractor() UpperCamelCase__ : Tuple = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
146
0
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Tuple ='examples/' __lowerCAmelCase : Dict ={ 'examples': (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), 'release = "VERSION"\n'), } __lowerCAmelCase : Any ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } __lowerCAmelCase : Optional[int] ='README.md' def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ): with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.read() A__, A__ = REPLACE_PATTERNS[pattern] A__ = replace.replace("VERSION" , lowercase__ ) A__ = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase__ ) def UpperCamelCase ( _lowerCamelCase : str ): for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="examples" ) def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def UpperCamelCase ( ): A__ = "🤗 Transformers currently provides the following architectures" A__ = "1. Want to contribute a new model?" with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.readlines() # Find the start of the list. A__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): A__ = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase__ ) def UpperCamelCase ( ): with open(REPLACE_FILES["init"] , "r" ) as f: A__ = f.read() A__ = REPLACE_PATTERNS["init"][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def UpperCamelCase ( _lowerCamelCase : List[Any]=False ): A__ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: A__ = default_version.base_version elif patch: A__ = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: A__ = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. A__ = input(F"Which version are you releasing? [{default_version}]" ) if len(lowercase__ ) == 0: A__ = default_version print(F"Updating version to {version}." ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def UpperCamelCase ( ): A__ = get_version() A__ = F"{current_version.major}.{current_version.minor + 1}.0.dev0" A__ = current_version.base_version # Check with the user we got that right. A__ = input(F"Which version are we developing now? [{dev_version}]" ) if len(lowercase__ ) == 0: A__ = dev_version print(F"Updating version to {version}." ) global_version_update(lowercase__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Any =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
363
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int = 1_00_00_00 ): A__ = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) A__ = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
123
0
def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] a :Tuple = [] def generate(UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , UpperCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even a :Tuple = arr[k - 1], arr[i] else: # k is odd a :Dict = arr[k - 1], arr[0] generate(k - 1 , UpperCAmelCase_ ) generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": snake_case : Dict = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Optional[int] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
94
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _UpperCAmelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _UpperCAmelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __lowerCAmelCase ( lowerCAmelCase): _a = '''whisper''' _a = ['''past_key_values'''] _a = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _lowerCAmelCase: str=5_18_65 , _lowerCAmelCase: str=80 , _lowerCAmelCase: int=6 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=6 , _lowerCAmelCase: List[Any]=4 , _lowerCAmelCase: Any=15_36 , _lowerCAmelCase: Union[str, Any]=15_36 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: List[Any]=5_02_57 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Dict=2_56 , _lowerCAmelCase: Union[str, Any]=0.0 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=False , _lowerCAmelCase: List[str]=15_00 , _lowerCAmelCase: Tuple=4_48 , _lowerCAmelCase: Optional[Any]=5_02_56 , _lowerCAmelCase: Dict=5_02_56 , _lowerCAmelCase: List[Any]=5_02_56 , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: str=[2_20, 5_02_56] , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Optional[int]=2_56 , _lowerCAmelCase: int=False , _lowerCAmelCase: Dict=0.05 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: Tuple=0.0 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: List[Any]=7 , **_lowerCAmelCase: Union[str, Any] , ): lowercase :Optional[Any] = vocab_size lowercase :Optional[int] = num_mel_bins lowercase :Union[str, Any] = d_model lowercase :List[Any] = encoder_layers lowercase :Optional[Any] = encoder_attention_heads lowercase :Union[str, Any] = decoder_layers lowercase :List[str] = decoder_attention_heads lowercase :Optional[int] = decoder_ffn_dim lowercase :List[Any] = encoder_ffn_dim lowercase :Optional[Any] = dropout lowercase :Tuple = attention_dropout lowercase :Tuple = activation_dropout lowercase :Optional[Any] = activation_function lowercase :Any = init_std lowercase :Optional[int] = encoder_layerdrop lowercase :Optional[int] = decoder_layerdrop lowercase :str = use_cache lowercase :Optional[Any] = encoder_layers lowercase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase :Any = max_source_positions lowercase :Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase :int = classifier_proj_size lowercase :List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase :Tuple = apply_spec_augment lowercase :int = mask_time_prob lowercase :Union[str, Any] = mask_time_length lowercase :Dict = mask_time_min_masks lowercase :Tuple = mask_feature_prob lowercase :List[Any] = mask_feature_length lowercase :List[Any] = mask_feature_min_masks lowercase :Any = median_filter_width super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , suppress_tokens=_lowerCAmelCase , begin_suppress_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) class __lowerCAmelCase ( lowerCAmelCase): @property def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase :List[Any] = {0: "batch"} else: lowercase :str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) return common_inputs def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional["TensorType"] = None , _lowerCAmelCase: int = 2_20_50 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 2_20 , ): lowercase :List[str] = OrderedDict() lowercase :str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_lowerCAmelCase , framework=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , time_duration=_lowerCAmelCase , frequency=_lowerCAmelCase , ) lowercase :Optional[Any] = encoder_inputs["input_features"].shape[2] lowercase :List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowercase :Dict = super().generate_dummy_inputs( preprocessor.tokenizer , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :str = encoder_inputs.pop("input_features" ) lowercase :Optional[int] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase :List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def SCREAMING_SNAKE_CASE ( self: str ): return 1e-3
236
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , ): if config_name_or_path is None: __UpperCamelCase ='facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __UpperCamelCase =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __UpperCamelCase =question_encoder_name_or_path __UpperCamelCase =RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __UpperCamelCase =RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =gen_config __UpperCamelCase =question_encoder_config __UpperCamelCase =model_class.from_pretrained_question_encoder_generator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) rag_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Sanity check. model_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Save tokenizers. __UpperCamelCase =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __UpperCamelCase =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _A = parser.parse_args() _A = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
117
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
117
1
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case = 256047 __snake_case = 256145 @require_sentencepiece @require_tokenizers class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = NllbTokenizer _a = NllbTokenizerFast _a = True _a = True _a = {} def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ :str = NllbTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = NllbTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase__ :List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCamelCase__ :Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCamelCase__ :Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Dict = tempfile.mkdtemp() UpperCamelCase__ :str = tokenizer_r.save_pretrained(UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCamelCase__ :Optional[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase__ :List[Any] = tokenizer_r.from_pretrained(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase__ :Dict = tempfile.mkdtemp() UpperCamelCase__ :Union[str, Any] = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase__ :Tuple = tokenizer_r.from_pretrained(UpperCamelCase_ ) UpperCamelCase__ :str = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase__ :List[Any] = tempfile.mkdtemp() UpperCamelCase__ :Dict = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) UpperCamelCase__ :List[str] = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase__ :int = tokenizer_r.from_pretrained(UpperCamelCase_ ) UpperCamelCase__ :Dict = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) @require_torch def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.test_seqaseq: return UpperCamelCase__ :int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. UpperCamelCase__ :List[Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] UpperCamelCase__ :str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: UpperCamelCase__ :Dict = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase_ , tgt_texts=UpperCamelCase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified UpperCamelCase__ :List[str] = tokenizer.prepare_seqaseq_batch( UpperCamelCase_ , tgt_texts=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) UpperCamelCase__ :List[str] = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , UpperCamelCase_ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :Optional[Any] = [AddedToken('''<special>''' , lstrip=UpperCamelCase_ )] UpperCamelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :str = tokenizer_r.encode('''Hey this is a <special> token''' ) UpperCamelCase__ :int = tokenizer_r.encode('''<special>''' , add_special_tokens=UpperCamelCase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCamelCase__ :int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Tuple = self.tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer_p.encode('''Hey this is a <special> token''' ) UpperCamelCase__ :Any = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" _a = 'facebook/nllb-200-distilled-600M' _a = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _a = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _a = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def lowerCAmelCase__ ( cls ): '''simple docstring''' UpperCamelCase__ :NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) UpperCamelCase__ :str = 1 return cls def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 256057 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) # fmt: off UpperCamelCase__ :Optional[Any] = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on UpperCamelCase__ :Dict = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , UpperCamelCase_ ) UpperCamelCase__ :Tuple = 10 UpperCamelCase__ :List[Any] = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [256203, 3] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = tempfile.mkdtemp() UpperCamelCase__ :Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = NllbTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) UpperCamelCase__ :List[str] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) UpperCamelCase__ :Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) UpperCamelCase__ :Dict = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors='''pt''' ) UpperCamelCase__ :List[str] = targets['''input_ids'''] UpperCamelCase__ :str = shift_tokens_right( UpperCamelCase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[256047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 256057, } , ) @require_torch def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = True UpperCamelCase__ :str = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) UpperCamelCase__ :Union[str, Any] = False UpperCamelCase__ :Union[str, Any] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
219
'''simple docstring''' from __future__ import annotations from typing import Any def a ( __a ) -> None: '''simple docstring''' create_state_space_tree(__a , [] , 0 ) def a ( __a , __a , __a ) -> None: '''simple docstring''' if index == len(__a ): print(__a ) return create_state_space_tree(__a , __a , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__a , __a , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __snake_case = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
219
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : List[Any] = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ["""ConvNextFeatureExtractor"""] a__ : Any = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
80
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = 'efficientnet' def __init__( self , __lowerCAmelCase = 3 , __lowerCAmelCase = 600 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 3.1 , __lowerCAmelCase = 8 , __lowerCAmelCase = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase = [] , __lowerCAmelCase = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase = 0.2_5 , __lowerCAmelCase = "swish" , __lowerCAmelCase = 2560 , __lowerCAmelCase = "mean" , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 0.0_0_1 , __lowerCAmelCase = 0.9_9 , __lowerCAmelCase = 0.5 , __lowerCAmelCase = 0.2 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = num_channels lowercase = image_size lowercase = width_coefficient lowercase = depth_coefficient lowercase = depth_divisor lowercase = kernel_sizes lowercase = in_channels lowercase = out_channels lowercase = depthwise_padding lowercase = strides lowercase = num_block_repeats lowercase = expand_ratios lowercase = squeeze_expansion_ratio lowercase = hidden_act lowercase = hidden_dim lowercase = pooling_type lowercase = initializer_range lowercase = batch_norm_eps lowercase = batch_norm_momentum lowercase = dropout_rate lowercase = drop_connect_rate lowercase = sum(__lowerCAmelCase ) * 4 class _A ( lowerCAmelCase ): snake_case__ : Dict = version.parse('1.11' ) @property def A__ ( self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self ): """simple docstring""" return 1E-5
197
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase_ : int | str ): '''simple docstring''' _lowerCAmelCase : Optional[int] = str(UpperCamelCase_ ) return n == n[::-1] def _UpperCAmelCase (UpperCamelCase_ : int = 1000000 ): '''simple docstring''' _lowerCAmelCase : Dict = 0 for i in range(1 , UpperCamelCase_ ): if is_palindrome(UpperCamelCase_ ) and is_palindrome(bin(UpperCamelCase_ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
367
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __snake_case (_a ): lowerCAmelCase__ = "mvp" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , _UpperCAmelCase : Optional[Any]=5_0267 , _UpperCAmelCase : List[Any]=1024 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[int]=4096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Tuple=4096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=1024 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=2 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=100 , _UpperCAmelCase : int=800 , **_UpperCAmelCase : Optional[Any] , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : int = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Dict = encoder_layers _lowerCAmelCase : int = encoder_attention_heads _lowerCAmelCase : str = decoder_ffn_dim _lowerCAmelCase : Tuple = decoder_layers _lowerCAmelCase : str = decoder_attention_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Tuple = activation_function _lowerCAmelCase : Dict = init_std _lowerCAmelCase : Tuple = encoder_layerdrop _lowerCAmelCase : Any = decoder_layerdrop _lowerCAmelCase : Union[str, Any] = classifier_dropout _lowerCAmelCase : str = use_cache _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Any = use_prompt _lowerCAmelCase : Optional[int] = prompt_length _lowerCAmelCase : Optional[int] = prompt_mid_dim super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" )
159
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ = 1000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 2**power __SCREAMING_SNAKE_CASE = 0 while n: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
54
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _snake_case : Dict = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _snake_case : List[str] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _snake_case : List[str] = "zero2" _snake_case : Any = "zero3" _snake_case : Dict = [ZEROa, ZEROa] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __snake_case : Optional[Any] = parameterized.to_safe_name("_".join(str(__lowerCamelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test _snake_case : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a (_lowerCAmelCase ): """simple docstring""" @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ) -> int: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Dict: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Any ) -> str: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) def __snake_case ( self : str , lowerCamelCase : List[Any] ) -> Union[str, Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Any = models[model] __snake_case : Tuple = self.run_trainer( stage=lowerCamelCase , model_name=lowerCamelCase , eval_steps=lowerCamelCase , num_train_epochs=1 , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) self.do_checks(lowerCamelCase ) return output_dir def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : int = 1 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Optional[int] = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase ) __snake_case : Optional[int] = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __snake_case : Optional[int] = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __snake_case : Dict = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __snake_case : Any = self.get_launcher(lowerCamelCase ) __snake_case : Optional[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase , env=self.get_env() ) return output_dir def __snake_case ( self : str , lowerCamelCase : str=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __snake_case : Dict = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
123
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class lowerCAmelCase_ ( a__ ): '''simple docstring''' __snake_case = "deta" __snake_case = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=9_00 , _UpperCAmelCase=20_48 , _UpperCAmelCase=6 , _UpperCAmelCase=20_48 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=10_24 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=2_56 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=True , _UpperCAmelCase=3_00 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.25 , **_UpperCAmelCase , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case_ = CONFIG_MAPPING["resnet"](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ = backbone_config.pop('''model_type''' ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(_UpperCAmelCase ) snake_case_ = backbone_config snake_case_ = num_queries snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = encoder_layerdrop snake_case_ = auxiliary_loss snake_case_ = position_embedding_type # deformable attributes snake_case_ = num_feature_levels snake_case_ = encoder_n_points snake_case_ = decoder_n_points snake_case_ = two_stage snake_case_ = two_stage_num_proposals snake_case_ = with_box_refine snake_case_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = mask_loss_coefficient snake_case_ = dice_loss_coefficient snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = eos_coefficient snake_case_ = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def UpperCamelCase__ ( self ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): return self.d_model def UpperCamelCase__ ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
370
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase = False class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): return 12 @property def UpperCamelCase__ ( self ): return 12 @property def UpperCamelCase__ ( self ): return 32 @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ): snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_UpperCAmelCase ) @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = 12 snake_case_ = 12 snake_case_ = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } snake_case_ = TransformeraDModel(**_UpperCAmelCase ) return model def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings(learnable=_UpperCAmelCase ) snake_case_ = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''teddy bear playing in the pool''' snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=_UpperCAmelCase , output_type='''np''' , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings( learnable=_UpperCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''teddy bear playing in the pool''' snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=_UpperCAmelCase , output_type='''np''' , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) snake_case_ = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) snake_case_ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
267
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _a ( lowerCamelCase: Tuple ) -> List[str]: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _a ( ) -> List[Any]: '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __A = [1, 2, 3] with pytest.raises(lowerCamelCase ): with parallel_backend('''unsupported backend''' ): map_nested(lowerCamelCase , lowerCamelCase , num_proc=2 ) with pytest.raises(lowerCamelCase ): with parallel_backend('''unsupported backend''' ): map_nested(lowerCamelCase , lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _a ( lowerCamelCase: Dict ) -> List[Any]: '''simple docstring''' __A = [1, 2] __A = {'''a''': 1, '''b''': 2} __A = {'''a''': [1, 2], '''b''': [3, 4]} __A = {'''a''': {'''1''': 1}, '''b''': 2} __A = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __A = [2, 3] __A = {'''a''': 2, '''b''': 3} __A = {'''a''': [2, 3], '''b''': [4, 5]} __A = {'''a''': {'''1''': 2}, '''b''': 3} __A = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) == expected_map_nested_sa assert map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) == expected_map_nested_sa assert map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) == expected_map_nested_sa assert map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) == expected_map_nested_sa assert map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) == expected_map_nested_sa
117
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') snake_case__ : Optional[int] = parser.parse_args() if args.model_type == "bert": snake_case__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ : Union[str, Any] = 'bert' else: raise ValueError('args.model_type should be "bert".') snake_case__ : Optional[int] = model.state_dict() snake_case__ : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ : Tuple = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: snake_case__ : Optional[Any] = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] snake_case__ : int = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ : Union[str, Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] snake_case__ : Dict = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] snake_case__ : Optional[int] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] snake_case__ : Optional[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] snake_case__ : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 snake_case__ : Optional[int] = state_dict['cls.predictions.decoder.weight'] snake_case__ : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ : int = state_dict[f'cls.predictions.transform.dense.{w}'] snake_case__ : Optional[int] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
117
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = '''▁''' lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase : int = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCamelCase : Optional[Any] = { '''facebook/mbart-large-50-one-to-many-mmt''': 10_24, } # fmt: off lowerCamelCase : List[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : Tuple = ['''input_ids''', '''attention_mask'''] _A : List[int] = [] _A : List[int] = [] def __init__( self : List[Any] , __a : Dict , __a : List[str]=None , __a : Union[str, Any]=None , __a : List[str]="</s>" , __a : List[Any]="</s>" , __a : str="<s>" , __a : str="<unk>" , __a : Tuple="<pad>" , __a : Optional[int]="<mask>" , __a : Optional[Dict[str, Any]] = None , **__a : Union[str, Any] , ) -> None: """simple docstring""" __lowercase : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __lowercase : Any = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__a , tgt_lang=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __lowercase : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase : Union[str, Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase : Optional[Any] = 1 __lowercase : str = len(self.sp_model ) __lowercase : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a ) } __lowercase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} __lowercase : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase : List[Any] = src_lang if src_lang is not None else """en_XX""" __lowercase : str = self.lang_code_to_id[self._src_lang] __lowercase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase ( self : str , __a : str ) -> None: """simple docstring""" __lowercase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = self.__dict__.copy() __lowercase : Dict = None return state def __setstate__( self : List[str] , __a : Dict ) -> None: """simple docstring""" __lowercase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : Any = {} __lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : int = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Optional[Any] , __a : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__a , out_type=__a ) def lowerCAmelCase ( self : Any , __a : str ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase : Dict = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase ( self : Dict , __a : int ) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : str , __a : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = [] __lowercase : Tuple = """""" __lowercase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __lowercase : Optional[int] = True __lowercase : Union[str, Any] = [] else: current_sub_tokens.append(__a ) __lowercase : int = False out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : str , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : List[str] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Any = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def lowerCAmelCase ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __lowercase : Any = [1] * len(self.prefix_tokens ) __lowercase : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def lowerCAmelCase ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : List[Any] , __a : Union[str, Any] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : Dict ) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowercase : List[str] = src_lang __lowercase : Optional[Any] = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) __lowercase : Any = self.convert_tokens_to_ids(__a ) __lowercase : Dict = tgt_lang_id return inputs def lowerCAmelCase ( self : Optional[Any] , __a : List[str] , __a : str = "en_XX" , __a : Optional[List[str]] = None , __a : str = "ro_RO" , **__a : Optional[Any] , ) -> BatchEncoding: """simple docstring""" __lowercase : Dict = src_lang __lowercase : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : Tuple , __a : str ) -> None: """simple docstring""" __lowercase : int = self.lang_code_to_id[src_lang] __lowercase : int = [self.cur_lang_code_id] __lowercase : int = [self.eos_token_id] def lowerCAmelCase ( self : Optional[int] , __a : str ) -> None: """simple docstring""" __lowercase : Union[str, Any] = self.lang_code_to_id[tgt_lang] __lowercase : Tuple = [self.cur_lang_code_id] __lowercase : str = [self.eos_token_id]
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
__lowerCamelCase : Any = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 while place < len(__UpperCamelCase ): if (place + 1 < len(__UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = divmod(__UpperCamelCase , __UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
219
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCamelCase ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE__ = script_fpath.stem SCREAMING_SNAKE_CASE__ = importlib.import_module(__UpperCamelCase ) # Patch sys.argv SCREAMING_SNAKE_CASE__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
219
1
'''simple docstring''' import argparse import os from accelerate.test_utils import execute_subprocess_async def __magic_name__ ( __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' if subparsers is not None: snake_case_ = subparsers.add_parser('''test''' ) else: snake_case_ = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''', default=__UpperCAmelCase, help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ), ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: snake_case_ = script_name else: snake_case_ = F"--config_file={args.config_file} {script_name}" snake_case_ = ['''accelerate-launch'''] + test_args.split() snake_case_ = execute_subprocess_async(__UpperCAmelCase, env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' snake_case_ = test_command_parser() snake_case_ = parser.parse_args() test_command(__UpperCAmelCase ) if __name__ == "__main__": main()
353
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. a : Any = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a : int = spec.loader.load_module() a : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a : str = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') a : str = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case_ = False # source code of `config_class` snake_case_ = inspect.getsource(__UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(__UpperCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case_ ,snake_case_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case_ = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: snake_case_ = True break snake_case_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: snake_case_ = '''\n'''.join(sorted(__UpperCAmelCase ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
72
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :str = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } SCREAMING_SNAKE_CASE :Optional[int] = {'''mobilebert-uncased''': 5_12} SCREAMING_SNAKE_CASE :Dict = {} class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = MobileBertTokenizer def __init__( self : Dict , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="[UNK]" , _lowerCAmelCase : Union[str, Any]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Tuple="[CLS]" , _lowerCAmelCase : Union[str, Any]="[MASK]" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_lowerCAmelCase ) snake_case_ = do_lower_case def lowerCAmelCase__ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any]=None ) -> Optional[int]: """simple docstring""" snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
159
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) snake_case : List[str] = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 10_00, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } snake_case : Optional[int] = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 10_00, '''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } snake_case : Any = { '''sample_size''': 2_56, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } snake_case : List[Any] = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } snake_case : Optional[Any] = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } snake_case : Dict = { '''num_train_timesteps''': 1_51, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowercase ( __lowerCAmelCase : List[Any] ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str]=False ): a__ = checkpoint[F'{old_prefix}.in_layers.0.weight'] a__ = checkpoint[F'{old_prefix}.in_layers.0.bias'] a__ = checkpoint[F'{old_prefix}.in_layers.2.weight'] a__ = checkpoint[F'{old_prefix}.in_layers.2.bias'] a__ = checkpoint[F'{old_prefix}.emb_layers.1.weight'] a__ = checkpoint[F'{old_prefix}.emb_layers.1.bias'] a__ = checkpoint[F'{old_prefix}.out_layers.0.weight'] a__ = checkpoint[F'{old_prefix}.out_layers.0.bias'] a__ = checkpoint[F'{old_prefix}.out_layers.3.weight'] a__ = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: a__ = checkpoint[F'{old_prefix}.skip_connection.weight'] a__ = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int]=None ): a__ , a__ , a__ = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) a__ , a__ , a__ = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) a__ = checkpoint[F'{old_prefix}.norm.weight'] a__ = checkpoint[F'{old_prefix}.norm.bias'] a__ = weight_q.squeeze(-1 ).squeeze(-1 ) a__ = bias_q.squeeze(-1 ).squeeze(-1 ) a__ = weight_k.squeeze(-1 ).squeeze(-1 ) a__ = bias_k.squeeze(-1 ).squeeze(-1 ) a__ = weight_v.squeeze(-1 ).squeeze(-1 ) a__ = bias_v.squeeze(-1 ).squeeze(-1 ) a__ = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) a__ = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : int ): a__ = torch.load(__lowerCAmelCase , map_location='cpu' ) a__ = {} a__ = checkpoint['time_embed.0.weight'] a__ = checkpoint['time_embed.0.bias'] a__ = checkpoint['time_embed.2.weight'] a__ = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: a__ = checkpoint['label_emb.weight'] a__ = checkpoint['input_blocks.0.0.weight'] a__ = checkpoint['input_blocks.0.0.bias'] a__ = unet_config['down_block_types'] a__ = unet_config['layers_per_block'] a__ = unet_config['attention_head_dim'] a__ = unet_config['block_out_channels'] a__ = 1 a__ = channels_list[0] for i, layer_type in enumerate(__lowerCAmelCase ): a__ = channels_list[i] a__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCAmelCase ): a__ = F'down_blocks.{i}.resnets.{j}' a__ = F'input_blocks.{current_layer}.0' a__ = True if j == 0 and downsample_block_has_skip else False a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCAmelCase ): a__ = F'down_blocks.{i}.resnets.{j}' a__ = F'input_blocks.{current_layer}.0' a__ = True if j == 0 and downsample_block_has_skip else False a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) a__ = F'down_blocks.{i}.attentions.{j}' a__ = F'input_blocks.{current_layer}.1' a__ = convert_attention( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: a__ = F'down_blocks.{i}.downsamplers.0' a__ = F'input_blocks.{current_layer}.0' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) current_layer += 1 a__ = current_channels # hardcoded the mid-block for now a__ = 'mid_block.resnets.0' a__ = 'middle_block.0' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = 'mid_block.attentions.0' a__ = 'middle_block.1' a__ = convert_attention(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = 'mid_block.resnets.1' a__ = 'middle_block.2' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = 0 a__ = unet_config['up_block_types'] for i, layer_type in enumerate(__lowerCAmelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): a__ = F'up_blocks.{i}.resnets.{j}' a__ = F'output_blocks.{current_layer}.0' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: a__ = F'up_blocks.{i}.upsamplers.0' a__ = F'output_blocks.{current_layer-1}.1' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): a__ = F'up_blocks.{i}.resnets.{j}' a__ = F'output_blocks.{current_layer}.0' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase ) a__ = F'up_blocks.{i}.attentions.{j}' a__ = F'output_blocks.{current_layer}.1' a__ = convert_attention( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: a__ = F'up_blocks.{i}.upsamplers.0' a__ = F'output_blocks.{current_layer-1}.2' a__ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = checkpoint['out.0.weight'] a__ = checkpoint['out.0.bias'] a__ = checkpoint['out.2.weight'] a__ = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') snake_case : Union[str, Any] = parser.parse_args() snake_case : Dict = strabool(args.class_cond) snake_case : Dict = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: snake_case : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): snake_case : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: snake_case : Optional[int] = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: snake_case : List[Any] = None snake_case : Union[str, Any] = con_pt_to_diffuser(args.unet_path, unet_config) snake_case : Dict = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: snake_case : Dict = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: snake_case : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): snake_case : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") snake_case : Dict = CMStochasticIterativeScheduler(**scheduler_config) snake_case : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
109
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[int] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
109
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json A : Optional[int] = "sshleifer/mar_enro_6_3_student" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self ): super().setUp() __lowerCAmelCase = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=__a , ) __lowerCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def snake_case ( self ): MarianMTModel.from_pretrained(__a ) @slow @require_torch_gpu def snake_case ( self ): __lowerCAmelCase = { "$MAX_LEN": 64, "$BS": 64, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script __lowerCAmelCase = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() __lowerCAmelCase = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__a , str(__a ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __lowerCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future __lowerCAmelCase = ["finetune.py"] + bash_script.split() + args with patch.object(__a , "argv" , __a ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__a ) __lowerCAmelCase = SummarizationModule.add_model_specific_args(__a , os.getcwd() ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = main(__a ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics["val"][0] __lowerCAmelCase = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , __a ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__a ) __lowerCAmelCase = [x for x in contents if x.endswith(".ckpt" )][0] __lowerCAmelCase = os.path.join(args.output_dir , __a ) __lowerCAmelCase = torch.load(__a , map_location="cpu" ) __lowerCAmelCase = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def snake_case ( self ): __lowerCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" __lowerCAmelCase = { "--fp16_opt_level=O1": "", "$MAX_LEN": 1_28, "$BS": 16, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script __lowerCAmelCase = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) __lowerCAmelCase = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) __lowerCAmelCase = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__a , str(__a ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = bash_script.replace("--fp16" , "" ) __lowerCAmelCase = 6 __lowerCAmelCase = ( ["distillation.py"] + bash_script.split() + [ f"--output_dir={output_dir}", "--gpus=1", "--learning_rate=1e-3", f"--num_train_epochs={epochs}", "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(__a , "argv" , __a ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__a ) __lowerCAmelCase = SummarizationDistiller.add_model_specific_args(__a , os.getcwd() ) __lowerCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __lowerCAmelCase = distill_main(__a ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics["val"][0] __lowerCAmelCase = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , __a ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__a ) __lowerCAmelCase = [x for x in contents if x.endswith(".ckpt" )][0] __lowerCAmelCase = os.path.join(args.output_dir , __a ) __lowerCAmelCase = torch.load(__a , map_location="cpu" ) __lowerCAmelCase = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
57
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase : int = random.Random() def a__ ( a__ , a__=1.0 , a__=None , a__=None ): """simple docstring""" if rng is None: __SCREAMING_SNAKE_CASE = global_rng __SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : List[str]=400 , __SCREAMING_SNAKE_CASE : Any=2_000 , __SCREAMING_SNAKE_CASE : List[str]=10 , __SCREAMING_SNAKE_CASE : Optional[int]=160 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Dict=4_000 , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = min_seq_length __SCREAMING_SNAKE_CASE = max_seq_length __SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = return_attention_mask __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = chunk_length __SCREAMING_SNAKE_CASE = hop_length def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" def _flatten(__SCREAMING_SNAKE_CASE : Dict ): return list(itertools.chain(*__SCREAMING_SNAKE_CASE ) ) if equal_length: __SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(__SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_first.mel_filters __SCREAMING_SNAKE_CASE = feat_extract_second.mel_filters self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , """feat_extract.json""" ) feat_extract_first.to_json_file(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_first.mel_filters __SCREAMING_SNAKE_CASE = feat_extract_second.mel_filters self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __SCREAMING_SNAKE_CASE = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test truncation required __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] __SCREAMING_SNAKE_CASE = [x[: feature_extractor.n_samples] for x in speech_inputs] __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs_truncated] __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" import torch __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = np.random.rand(100 , 32 ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __SCREAMING_SNAKE_CASE = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __SCREAMING_SNAKE_CASE = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(__SCREAMING_SNAKE_CASE ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE = WhisperFeatureExtractor() __SCREAMING_SNAKE_CASE = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = self._load_datasamples(1 )[0] __SCREAMING_SNAKE_CASE = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue __SCREAMING_SNAKE_CASE = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__SCREAMING_SNAKE_CASE )[0] self.assertTrue(np.all(np.mean(__SCREAMING_SNAKE_CASE ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__SCREAMING_SNAKE_CASE ) - 1 ) < 1E-3 ) )
267
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Dict = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ['PerceiverFeatureExtractor'] _lowercase : Optional[Any] = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowercase : Any = True except ImportError: _lowercase : str = False try: from torch.hub import _get_torch_home _lowercase : Any = _get_torch_home() except ImportError: _lowercase : Dict = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _lowercase : Tuple = os.path.join(torch_cache_home, 'transformers') _lowercase : int = 'https://cdn.huggingface.co' _lowercase : Union[str, Any] = 'https://s3.amazonaws.com/models.huggingface.co/bert' _lowercase : str = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _lowercase : str = os.path.join(PATH, 'config.yaml') _lowercase : int = os.path.join(PATH, 'attributes.txt') _lowercase : List[str] = os.path.join(PATH, 'objects.txt') _lowercase : Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _lowercase : int = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _lowercase : Dict = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _lowercase : Union[str, Any] = 'pytorch_model.bin' _lowercase : List[str] = 'config.yaml' def lowercase__ ( snake_case_ :int=OBJECTS , snake_case_ :Optional[int]=ATTRIBUTES ): __UpperCAmelCase = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __UpperCAmelCase = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __UpperCAmelCase = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __UpperCAmelCase = v return r class _UpperCAmelCase : a__ : Tuple = {} def __init__( self : List[str] , _lowercase : dict , _lowercase : str = "root" , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = name __UpperCAmelCase = level __UpperCAmelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase = copy.deepcopy(_lowercase ) __UpperCAmelCase = copy.deepcopy(_lowercase ) if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = Config(_lowercase , name=_lowercase , level=level + 1 ) __UpperCAmelCase = v setattr(self , _lowercase , _lowercase ) __UpperCAmelCase = d def __repr__( self : Any ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Dict ): __UpperCAmelCase = val __UpperCAmelCase = val __UpperCAmelCase = key.split('''.''' ) __UpperCAmelCase = len(_lowercase ) - 1 __UpperCAmelCase = self._pointer if len(_lowercase ) > 1: for i, l in enumerate(_lowercase ): if hasattr(self , _lowercase ) and isinstance(getattr(self , _lowercase ) , _lowercase ): setattr(getattr(self , _lowercase ) , '''.'''.join(levels[i:] ) , _lowercase ) if l == last_level: __UpperCAmelCase = val else: __UpperCAmelCase = pointer[l] def a ( self : int ): return self._pointer def a ( self : List[str] , _lowercase : Dict , _lowercase : str ): with open(F'''{file_name}''' , '''w''' ) as stream: dump(_lowercase , _lowercase ) def a ( self : int , _lowercase : Dict , _lowercase : Tuple ): with open(F'''{file_name}''' , '''w''' ) as stream: json.dump(_lowercase , _lowercase ) @staticmethod def a ( _lowercase : str ): with open(_lowercase ) as stream: __UpperCAmelCase = load(_lowercase , Loader=_lowercase ) return data def __str__( self : Dict ): __UpperCAmelCase = ''' ''' if self._name != "root": __UpperCAmelCase = F'''{t * (self._level-1)}{self._name}:\n''' else: __UpperCAmelCase = '''''' __UpperCAmelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_lowercase , _lowercase ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_lowercase ).__name__})\n''' __UpperCAmelCase = level return r[:-1] @classmethod def a ( cls : str , _lowercase : str , **_lowercase : Any ): __UpperCAmelCase , __UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) return cls(_lowercase ) @classmethod def a ( cls : Any , _lowercase : str , **_lowercase : str ): __UpperCAmelCase = kwargs.pop('''cache_dir''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''force_download''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''resume_download''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''proxies''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''local_files_only''' , _lowercase ) if os.path.isdir(_lowercase ): __UpperCAmelCase = os.path.join(_lowercase , _lowercase ) elif os.path.isfile(_lowercase ) or is_remote_url(_lowercase ): __UpperCAmelCase = pretrained_model_name_or_path else: __UpperCAmelCase = hf_bucket_url(_lowercase , filename=_lowercase , use_cdn=_lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase = cached_path( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase = Config.load_yaml(_lowercase ) except EnvironmentError: __UpperCAmelCase = '''Can\'t load config for''' raise EnvironmentError(_lowercase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_lowercase ), kwargs def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = torch.load('''dump.pt''' , map_location=in_tensor.device ) __UpperCAmelCase = in_tensor.numpy() __UpperCAmelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :List[str]=True ): __UpperCAmelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase = '''/''' not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( snake_case_ :str , snake_case_ :Tuple , snake_case_ :List[str]=None , snake_case_ :List[str]=0 , snake_case_ :List[Any]=None , ): __UpperCAmelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __UpperCAmelCase = {'''user-agent''': ua} if resume_size > 0: __UpperCAmelCase = '''bytes=%d-''' % (resume_size,) __UpperCAmelCase = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase = response.headers.get('''Content-Length''' ) __UpperCAmelCase = resume_size + int(snake_case_ ) if content_length is not None else None __UpperCAmelCase = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :str=None , snake_case_ :Optional[int]=False , snake_case_ :List[Any]=None , snake_case_ :List[Any]=10 , snake_case_ :Optional[int]=False , snake_case_ :List[str]=None , snake_case_ :Union[str, Any]=False , ): if cache_dir is None: __UpperCAmelCase = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __UpperCAmelCase = None if not local_files_only: try: __UpperCAmelCase = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __UpperCAmelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __UpperCAmelCase = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __UpperCAmelCase = _resumable_file_manager if os.path.exists(snake_case_ ): __UpperCAmelCase = os.stat(snake_case_ ).st_size else: __UpperCAmelCase = 0 else: __UpperCAmelCase = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __UpperCAmelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __UpperCAmelCase = {'''url''': url, '''etag''': etag} __UpperCAmelCase = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def lowercase__ ( snake_case_ :int , snake_case_ :str=None ): __UpperCAmelCase = url.encode('''utf-8''' ) __UpperCAmelCase = shaaaa(snake_case_ ) __UpperCAmelCase = url_hash.hexdigest() if etag: __UpperCAmelCase = etag.encode('''utf-8''' ) __UpperCAmelCase = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase__ ( snake_case_ :Dict , snake_case_ :List[Any]=None , snake_case_ :List[Any]=False , snake_case_ :Optional[int]=None , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=None , snake_case_ :Any=False , snake_case_ :int=False , snake_case_ :Optional[int]=False , ): if cache_dir is None: __UpperCAmelCase = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __UpperCAmelCase = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase = os.path.split(snake_case_ ) __UpperCAmelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __UpperCAmelCase = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any]="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __UpperCAmelCase = eval(f.read() ) else: __UpperCAmelCase = requests.get(snake_case_ ) try: __UpperCAmelCase = requests.json() except Exception: __UpperCAmelCase = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase = eval(snake_case_ ) except Exception: __UpperCAmelCase = data.split('''\n''' ) req.close() return data def lowercase__ ( snake_case_ :Union[str, Any] ): __UpperCAmelCase = requests.get(snake_case_ ) __UpperCAmelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __UpperCAmelCase = pkl.load(snake_case_ ) __UpperCAmelCase = weights.pop('''model''' ) __UpperCAmelCase = {} for k, v in model.items(): __UpperCAmelCase = torch.from_numpy(snake_case_ ) if "running_var" in k: __UpperCAmelCase = torch.tensor([0] ) __UpperCAmelCase = k.replace('''running_var''' , '''num_batches_tracked''' ) __UpperCAmelCase = zero return new def lowercase__ ( ): print(F'''{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __UpperCAmelCase = cva.imread(snake_case_ ) else: __UpperCAmelCase = get_image_from_url(snake_case_ ) assert img is not None, F'''could not connect to: {im}''' __UpperCAmelCase = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase = img[:, :, ::-1] return img def lowercase__ ( snake_case_ :Any , snake_case_ :int=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
86
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } SCREAMING_SNAKE_CASE_ = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , x.transpose() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , np.asarray(transpose(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.reshape(UpperCAmelCase_ , (4, 3) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.reshape(UpperCAmelCase_ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.asarray(reshape(UpperCAmelCase_ , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.asarray(reshape(UpperCAmelCase_ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.squeeze(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.squeeze(UpperCAmelCase_ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.asarray(squeeze(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.asarray(squeeze(UpperCAmelCase_ , axis=2 ) ) ) ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.expand_dims(UpperCAmelCase_ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCAmelCase_ , axis=1 ) ) ) )
299
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : int = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase ( a_ , a_ ): """simple docstring""" A : int = "nat" A : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Union[str, Any]=6_4 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 1_6] , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Optional[Any]=3.0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=1e-5 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Any , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : Optional[Any] = patch_size a : List[Any] = num_channels a : str = embed_dim a : Dict = depths a : Optional[int] = len(UpperCAmelCase_) a : List[str] = num_heads a : Optional[Any] = kernel_size a : Optional[Any] = mlp_ratio a : List[str] = qkv_bias a : str = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : List[str] = drop_path_rate a : Dict = hidden_act a : List[Any] = layer_norm_eps a : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a : Dict = int(embed_dim * 2 ** (len(UpperCAmelCase_) - 1)) a : Optional[Any] = layer_scale_init_value a : Optional[int] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase_) + 1)] a : Optional[Any] = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names)
357
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
0
'''simple docstring''' import unittest import numpy as np def __UpperCamelCase ( lowercase__ : np.ndarray, lowercase__ : np.ndarray, lowercase__ : np.ndarray, lowercase__ : np.ndarray | None = None, ): '''simple docstring''' __lowercase =np.shape(A_ ) __lowercase =np.shape(A_ ) __lowercase =np.shape(A_ ) if shape_a[0] != shape_b[0]: __lowercase =( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(A_ ) if shape_b[1] != shape_c[1]: __lowercase =( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(A_ ) __lowercase =pseudo_inv if a_inv is None: try: __lowercase =np.linalg.inv(A_ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any ): """simple docstring""" __lowercase =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase =np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase =np.array([[2, 1], [6, 3]] ) __lowercase =schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase =np.block([[a, b], [b.T, c]] ) __lowercase =np.linalg.det(__lowerCAmelCase ) __lowercase =np.linalg.det(__lowerCAmelCase ) __lowercase =np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def snake_case ( self : Optional[Any] ): """simple docstring""" __lowercase =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase =np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase =np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case ( self : List[str] ): """simple docstring""" __lowercase =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase =np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase =np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
141
"""simple docstring""" lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( A_ : dict, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : List[str] = set() # keep track of all the paths to be checked _lowerCamelCase : str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : str = queue.pop(0 ) # get the last node from the path _lowerCamelCase : List[Any] = path[-1] if node not in explored: _lowerCamelCase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Union[str, Any] = list(A_ ) new_path.append(A_ ) queue.append(A_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A_ ) # in case there's no path between the 2 nodes return [] def snake_case_ ( A_ : dict, A_ : int, A_ : Dict ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : Optional[int] = [start] _lowerCamelCase : int = set(A_ ) # Keep tab on distances from `start` node. _lowerCamelCase : int = {start: 0, target: -1} while queue: _lowerCamelCase : Optional[Any] = queue.pop(0 ) if node == target: _lowerCamelCase : Any = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A_ ) queue.append(A_ ) _lowerCamelCase : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
72
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase : int = datasets.utils.logging.get_logger(__name__) @dataclass class __magic_name__ ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = "utf-8" __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True # deprecated __UpperCamelCase = None # deprecated __UpperCamelCase = 10 << 20 # 10MB __UpperCamelCase = None class __magic_name__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase = JsonConfig def _lowerCAmelCase ( self ): """simple docstring""" if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) lowerCamelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self , _a ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): lowerCamelCase = data_files if isinstance(_a , _a ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def _lowerCAmelCase ( self , _a ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowerCamelCase = self.config.features.arrow_schema.field(_a ).type lowerCamelCase = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase = table_cast(_a , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase ( self , _a ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCamelCase = json.load(_a ) # We keep only the field we are interested in lowerCamelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): lowerCamelCase = set().union(*[row.keys() for row in dataset] ) lowerCamelCase = {col: [row.get(_a ) for row in dataset] for col in keys} else: lowerCamelCase = dataset lowerCamelCase = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , """rb""" ) as f: lowerCamelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowerCamelCase = max(self.config.chunksize // 32 , 16 << 10 ) lowerCamelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: lowerCamelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowerCamelCase = batch.decode(self.config.encoding , errors=_a ).encode("""utf-8""" ) try: while True: try: lowerCamelCase = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCamelCase = json.load(_a ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_a )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: lowerCamelCase = set().union(*[row.keys() for row in dataset] ) lowerCamelCase = {col: [row.get(_a ) for row in dataset] for col in keys} lowerCamelCase = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_a )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_a )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
353
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *_a , _a=None , _a=None , **_a ): """simple docstring""" super().__init__(*_a , **_a ) lowerCamelCase = eval_examples lowerCamelCase = post_process_function def _lowerCAmelCase ( self , _a=None , _a=None , _a=None , _a = "eval" ): """simple docstring""" lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase = self.get_eval_dataloader(_a ) lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase = self.post_process_function(_a , _a , output.predictions ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) else: lowerCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a ) return metrics def _lowerCAmelCase ( self , _a , _a , _a=None , _a = "test" ): """simple docstring""" lowerCamelCase = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase = self.post_process_function(_a , _a , output.predictions , """predict""" ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
168
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A: Union[str, Any] = random.Random() if is_torch_available(): import torch def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : int=1.0 , UpperCamelCase : Tuple=None , UpperCamelCase : Tuple=None ): if rng is None: UpperCAmelCase : List[str] = global_rng UpperCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=2000 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Any = min_seq_length UpperCAmelCase : Dict = max_seq_length UpperCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : Optional[Any] = feature_size UpperCAmelCase : Union[str, Any] = padding_value UpperCAmelCase : List[Any] = sampling_rate UpperCAmelCase : Optional[Any] = return_attention_mask UpperCAmelCase : List[str] = do_normalize def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' def _flatten(_SCREAMING_SNAKE_CASE ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: UpperCAmelCase : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : int = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Dict = ASTFeatureExtractor def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple = ASTFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Dict = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Any = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase : Any = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched UpperCAmelCase : Any = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_values UpperCAmelCase : Union[str, Any] = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Tuple = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_values UpperCAmelCase : str = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : List[Any] = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : Dict = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' from datasets import load_dataset UpperCAmelCase : Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCAmelCase : List[str] = ds.sort("""id""" ).select(range(_SCREAMING_SNAKE_CASE ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on UpperCAmelCase : int = self._load_datasamples(1 ) UpperCAmelCase : Any = ASTFeatureExtractor() UpperCAmelCase : Union[str, Any] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
109
"""simple docstring""" import datasets from .evaluate import evaluate A: Optional[Any] = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" A: Optional[int] = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" A: int = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : int = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} UpperCAmelCase : Tuple = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] UpperCAmelCase : Optional[Any] = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
109
1
from __future__ import annotations import math __A = '2020.9.26' __A = 'xcodz-dot, cclaus, dhruvmanila' def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): _A = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_lowercase ) _A = ((x * distance) / (z + distance)) * scale _A = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) _A = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): _A = ( '''Input values except axis must either be float or int: ''' f"""{list(input_variables.values() )}""" ) raise TypeError(_lowercase ) _A = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": _A = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) _A = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) _A = z elif axis == "x": _A = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) _A = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) _A = x elif axis == "y": _A = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) _A = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) _A = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
75
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Any ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__A , ) assert hasattr(self , '''env''' ) def __A ( self: Any , __A: Optional[int] ) -> Union[str, Any]: _A = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings _A = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__A , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__A , py_version='''py36''' , ) def __A ( self: Optional[int] , __A: Optional[int] ) -> List[Any]: TrainingJobAnalytics(__A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self: Dict , __A: Tuple ) -> Union[str, Any]: # create estimator _A = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __A )
75
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _lowerCamelCase): A_ : Optional[int] = (UnCLIPScheduler,) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = { 'num_train_timesteps': 10_00, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**_SCREAMING_SNAKE_CASE ) return config def __lowerCamelCase ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] __lowerCAmelCase : Union[str, Any] = self.get_scheduler_config(variance_type='fixed_small_log' ) __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config(variance_type='learned_range' ) __lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = 0.5 assert scheduler._get_variance(1 , predicted_variance=_SCREAMING_SNAKE_CASE ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=_SCREAMING_SNAKE_CASE ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=_SCREAMING_SNAKE_CASE ) - -0.001_0011 < 1E-5 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = scheduler.timesteps __lowerCAmelCase : Optional[int] = self.dummy_model() __lowerCAmelCase : int = self.dummy_sample_deter __lowerCAmelCase : str = torch.manual_seed(0 ) for i, t in enumerate(_SCREAMING_SNAKE_CASE ): # 1. predict noise residual __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : int = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : str = pred_prev_sample __lowerCAmelCase : List[str] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(25 ) __lowerCAmelCase : int = scheduler.timesteps __lowerCAmelCase : List[Any] = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter __lowerCAmelCase : Any = torch.manual_seed(0 ) for i, t in enumerate(_SCREAMING_SNAKE_CASE ): # 1. predict noise residual __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i + 1 == timesteps.shape[0]: __lowerCAmelCase : Any = None else: __lowerCAmelCase : Optional[Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : Union[str, Any] = scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : List[Any] = pred_prev_sample __lowerCAmelCase : str = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass
86
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = DiTPipeline A_ : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A_ : List[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } A_ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A_ : Tuple = False def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = AutoencoderKL() __lowerCAmelCase : Union[str, Any] = DDIMScheduler() __lowerCAmelCase : Dict = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'cpu' __lowerCAmelCase : Any = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCAmelCase : Optional[int] = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __lowerCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 ) def __lowerCamelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = torch.manual_seed(0 ) __lowerCAmelCase : int = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __lowerCAmelCase : Optional[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] __lowerCAmelCase : Optional[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCamelCase ( self ): __lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __lowerCAmelCase : Dict = ['vase', 'umbrella'] __lowerCAmelCase : List[str] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
86
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : str = StableDiffusionSAGPipeline A : Any = TEXT_TO_IMAGE_PARAMS A : str = TEXT_TO_IMAGE_BATCH_PARAMS A : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS A : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS A : int = False def __lowerCamelCase ( self ): torch.manual_seed(0 ) lowercase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowercase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase : Optional[int] = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): lowercase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowercase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase : Optional[Any] = sag_pipe.to(SCREAMING_SNAKE_CASE__ ) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = '''.''' lowercase : Tuple = torch.manual_seed(0 ) lowercase : Optional[int] = sag_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase : Optional[Any] = output.images lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCamelCase ( self ): lowercase : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase : int = sag_pipe.to(SCREAMING_SNAKE_CASE__ ) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : int = '''.''' lowercase : List[str] = torch.manual_seed(0 ) lowercase : List[str] = sag_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase : Any = output.images lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[Any] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCamelCase ( self ): lowercase : Tuple = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase : str = sag_pipe.to(SCREAMING_SNAKE_CASE__ ) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = '''.''' lowercase : List[str] = torch.manual_seed(0 ) lowercase : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowercase : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
173
import os import pytest from attr import dataclass __a = '''us-east-1''' # defaults region @dataclass class __SCREAMING_SNAKE_CASE : A : str A : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A : Union[str, Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } A : str = {**hyperparameters, 'max_steps': 1000} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def __lowerCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
173
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _SCREAMING_SNAKE_CASE = """\ """ _SCREAMING_SNAKE_CASE = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _SCREAMING_SNAKE_CASE = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int = 16 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Any=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase = """cuda""" else: UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCamelCase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model.to(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase = model.config.max_length - 1 else: UpperCamelCase = model.config.max_length UpperCamelCase = tokenizer( lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors="""pt""" , return_attention_mask=lowerCamelCase_ , ).to(lowerCamelCase_ ) UpperCamelCase = encodings["""input_ids"""] UpperCamelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase = [] UpperCamelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ) ): UpperCamelCase = min(start_index + batch_size , len(lowerCamelCase_ ) ) UpperCamelCase = encoded_texts[start_index:end_index] UpperCamelCase = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase_ ) UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCamelCase_ ), attn_mask] , dim=1 ) UpperCamelCase = encoded_batch with torch.no_grad(): UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).logits UpperCamelCase = out_logits[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = attn_mask[..., 1:].contiguous() UpperCamelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowerCamelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase_ )}
343
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCAmelCase_ = Lock() def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Any , __UpperCAmelCase: str , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Tuple , __UpperCAmelCase: List[Any] ) -> int: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__UpperCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase__ : Any = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase__ : Dict = min(__UpperCAmelCase , __UpperCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__UpperCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase__ : int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase__ : List[str] = max(__UpperCAmelCase , __UpperCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase__ : str = Pipe() UpperCamelCase__ : Optional[Any] = Pipe() process_array_.append( Process( target=__UpperCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCamelCase__ : Any = temp_rs UpperCamelCase__ : Union[str, Any] = temp_rr for i in range(1 , len(__UpperCAmelCase ) - 1 ): UpperCamelCase__ : Optional[int] = Pipe() UpperCamelCase__ : List[str] = Pipe() process_array_.append( Process( target=__UpperCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCamelCase__ : List[Any] = temp_rs UpperCamelCase__ : Optional[int] = temp_rr process_array_.append( Process( target=__UpperCAmelCase , args=( len(__UpperCAmelCase ) - 1, arr[len(__UpperCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__UpperCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__UpperCAmelCase ) ): UpperCamelCase__ : Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase__ : List[str] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*__UpperCAmelCase ) UpperCamelCase__ : List[str] = odd_even_transposition(__UpperCAmelCase ) print('''Sorted List\n''' ) print(*__UpperCAmelCase ) if __name__ == "__main__": main()
247
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=13, __magic_name__=7, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=99, __magic_name__=32, __magic_name__=5, __magic_name__=4, __magic_name__=37, __magic_name__="gelu", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=512, __magic_name__=16, __magic_name__=2, __magic_name__=0.02, __magic_name__=4, ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Dict = seq_length UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Any = use_attention_mask UpperCamelCase__ : Tuple = use_token_type_ids UpperCamelCase__ : Union[str, Any] = use_labels UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : str = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : int = attention_probs_dropout_prob UpperCamelCase__ : List[str] = max_position_embeddings UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : int = type_sequence_label_size UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : List[str] = num_choices def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ : Tuple = None if self.use_attention_mask: UpperCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : int = None if self.use_token_type_ids: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ : List[Any] = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__magic_name__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : int = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = config_and_inputs UpperCamelCase__ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : str = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = config_and_inputs UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : int = True a : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = FlaxBertModelTester(self ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. UpperCamelCase__ : Dict = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
247
1
import itertools import os import re UpperCamelCase = re.compile(R'''([A-Z]+)([A-Z][a-z])''') UpperCamelCase = re.compile(R'''([a-z\d])([A-Z])''') UpperCamelCase = re.compile(R'''(?<!_)_(?!_)''') UpperCamelCase = re.compile(R'''(_{2,})''') UpperCamelCase = R"^\w+(\.\w+)*$" UpperCamelCase = R"<>:/\|?*" def lowercase_ ( _lowerCamelCase : str): lowercase__ : List[Any] = _uppercase_uppercase_re.sub(R"\1_\2" , lowerCAmelCase__) lowercase__ : str = _lowercase_uppercase_re.sub(R"\1_\2" , lowerCAmelCase__) return name.lower() def lowercase_ ( _lowerCamelCase : int): lowercase__ : Union[str, Any] = _single_underscore_re.split(lowerCAmelCase__) lowercase__ : Tuple = [_multiple_underscores_re.split(lowerCAmelCase__) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCAmelCase__) if n != "") def lowercase_ ( _lowerCamelCase : Union[str, Any]): if os.path.basename(lowerCAmelCase__) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''') return camelcase_to_snakecase(lowerCAmelCase__) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple): if os.path.basename(lowerCAmelCase__) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''') if not re.match(_split_re , lowerCAmelCase__): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''') return f'''{filename_prefix_for_name(lowerCAmelCase__)}-{split}''' def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : str=None): lowercase__ : int = filename_prefix_for_split(lowerCAmelCase__ , lowerCAmelCase__) if filetype_suffix: prefix += f'''.{filetype_suffix}''' lowercase__ : str = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) return f'''{filepath}*''' def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Any=None , _lowerCamelCase : List[str]=None): lowercase__ : Optional[Any] = filename_prefix_for_split(lowerCAmelCase__ , lowerCAmelCase__) lowercase__ : Optional[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) if shard_lengths: lowercase__ : Any = len(lowerCAmelCase__) lowercase__ : List[Any] = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowerCAmelCase__)] if filetype_suffix: lowercase__ : Union[str, Any] = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowercase__ : Optional[Any] = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Union[str, Any] = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["LayoutLMv3FeatureExtractor"] a_ : List[str] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
168
0
def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case__ : List[str] = 1 snake_case__ : int = 1 while repunit: snake_case__ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( __lowerCAmelCase = 1000000 ) -> int: """simple docstring""" snake_case__ : str = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
44
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class a : def __init__( self :str ,__lowercase :Optional[Any] ,__lowercase :List[Any]=1_3 ,__lowercase :str=7 ,__lowercase :Dict=True ,__lowercase :Any=True ,__lowercase :str=True ,__lowercase :Any=True ,__lowercase :Tuple=9_9 ,__lowercase :List[str]=3_2 ,__lowercase :int=5 ,__lowercase :Union[str, Any]=4 ,__lowercase :List[str]=4 ,__lowercase :Any="gelu" ,__lowercase :Any=0.0 ,__lowercase :Tuple=0.1 ,__lowercase :str=True ,__lowercase :Tuple=5_1_2 ,__lowercase :Dict=1_6 ,__lowercase :Tuple=2 ,__lowercase :List[str]=0.02 ,__lowercase :Dict=3 ,__lowercase :Optional[int]=4 ,__lowercase :Tuple=None ,): snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : Tuple = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : List[Any] = use_token_type_ids snake_case__ : str = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = intermediate_multiple_size snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = hidden_dropout snake_case__ : str = attention_dropout snake_case__ : List[str] = weight_tying snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : str = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : int = num_labels snake_case__ : int = num_choices snake_case__ : int = scope def __lowerCamelCase ( self :List[str] ): snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCamelCase ( self :int ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_multiple_size=self.intermediate_multiple_size ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,weight_tying=self.weight_tying ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def __lowerCamelCase ( self :List[Any] ,__lowercase :Any ,__lowercase :Dict ,__lowercase :Optional[Any] ): snake_case__ : Union[str, Any] = GPTNeoXJapaneseModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Union[str, Any] = model(__lowercase ,attention_mask=__lowercase ) snake_case__ : Optional[Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :Tuple ,__lowercase :Union[str, Any] ): snake_case__ : Any = True snake_case__ : Tuple = GPTNeoXJapaneseModel(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : str = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ,__lowercase :Any ): snake_case__ : Any = GPTNeoXJapaneseForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Any ,__lowercase :int ,__lowercase :List[str] ): snake_case__ : Optional[int] = True snake_case__ : Optional[int] = GPTNeoXJapaneseForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass snake_case__ : List[Any] = model(__lowercase ,attention_mask=__lowercase ,use_cache=__lowercase ) snake_case__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case__ : int = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and snake_case__ : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] ,dim=-1 ) snake_case__ : Dict = model(__lowercase ,attention_mask=__lowercase ,output_hidden_states=__lowercase ) snake_case__ : Tuple = output_from_no_past['''hidden_states'''][0] snake_case__ : List[str] = model( __lowercase ,attention_mask=__lowercase ,past_key_values=__lowercase ,output_hidden_states=__lowercase ,)['''hidden_states'''][0] # select random slice snake_case__ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case__ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase ,__lowercase ,atol=1e-3 ) ) def __lowerCamelCase ( self :Dict ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = config_and_inputs snake_case__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __lowerCAmelCase : List[str] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __lowerCAmelCase : int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : str = False def __lowerCamelCase ( self :Any ): snake_case__ : int = GPTNeoXJapaneseModelTester(self ) snake_case__ : Any = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :Any ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): # This regression test was failing with PyTorch < 1.3 snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : List[str] = None self.model_tester.create_and_check_model_as_decoder(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowercase ) @slow def __lowerCamelCase ( self :Dict ): snake_case__ : str = '''abeja/gpt-neox-japanese-2.7b''' snake_case__ : int = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] snake_case__ : Optional[int] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] snake_case__ : Optional[int] = GPTNeoXJapaneseTokenizer.from_pretrained(__lowercase ) snake_case__ : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowercase ) snake_case__ : Optional[int] = [] for prompt in prompts: snake_case__ : Dict = tokenizer(__lowercase ,return_tensors='''pt''' ).input_ids snake_case__ : Union[str, Any] = model.generate(__lowercase ,max_length=5_0 ) snake_case__ : int = tokenizer.batch_decode(__lowercase ,skip_special_tokens=__lowercase ) predicted_outputs += generated_string self.assertListEqual(__lowercase ,__lowercase )
44
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Any = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] ='efficientformer' def __init__( self, lowerCAmelCase = [3, 2, 6, 4], lowerCAmelCase = [48, 96, 224, 448], lowerCAmelCase = [True, True, True, True], lowerCAmelCase = 448, lowerCAmelCase = 32, lowerCAmelCase = 4, lowerCAmelCase = 7, lowerCAmelCase = 5, lowerCAmelCase = 8, lowerCAmelCase = 4, lowerCAmelCase = 0.0, lowerCAmelCase = 16, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 2, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = 1e-5, lowerCAmelCase = "gelu", lowerCAmelCase = 0.0_2, lowerCAmelCase = 1e-12, lowerCAmelCase = 224, lowerCAmelCase = 1e-05, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =hidden_sizes lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =depths lowerCamelCase_ =mlp_expansion_ratio lowerCamelCase_ =downsamples lowerCamelCase_ =dim lowerCamelCase_ =key_dim lowerCamelCase_ =attention_ratio lowerCamelCase_ =resolution lowerCamelCase_ =pool_size lowerCamelCase_ =downsample_patch_size lowerCamelCase_ =downsample_stride lowerCamelCase_ =downsample_pad lowerCamelCase_ =drop_path_rate lowerCamelCase_ =num_metaad_blocks lowerCamelCase_ =distillation lowerCamelCase_ =use_layer_scale lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =image_size lowerCamelCase_ =batch_norm_eps
75
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ ='''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) return image def a_ ( __snake_case : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =dct.pop(__snake_case ) lowerCamelCase_ =val def a_ ( __snake_case : str , __snake_case : Optional[Any] ) -> Any: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase_ =state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase_ =state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase_ =torch.cat((q_bias, torch.zeros_like(__snake_case , requires_grad=__snake_case ), v_bias) ) lowerCamelCase_ =qkv_bias def a_ ( __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =364 if '''coco''' in model_name else 224 lowerCamelCase_ =InstructBlipVisionConfig(image_size=__snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowerCamelCase_ =TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase_ =TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowerCamelCase_ =LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: lowerCamelCase_ =LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowerCamelCase_ =InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() lowerCamelCase_ =InstructBlipConfig(vision_config=__snake_case , text_config=__snake_case , qformer_config=__snake_case ) return config, image_size @torch.no_grad() def a_ ( __snake_case : Optional[int] , __snake_case : str=None , __snake_case : List[Any]=False ) -> List[str]: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: lowerCamelCase_ =TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowerCamelCase_ =LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) lowerCamelCase_, lowerCamelCase_ =get_blipa_config(__snake_case ) lowerCamelCase_ =InstructBlipForConditionalGeneration(__snake_case ).eval() lowerCamelCase_ ={ '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } lowerCamelCase_, lowerCamelCase_ =model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowerCamelCase_ ='''cuda:1''' if torch.cuda.is_available() else '''cpu''' lowerCamelCase_ ='''cuda:2''' if torch.cuda.is_available() else '''cpu''' lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =load_model_and_preprocess( name=__snake_case , model_type=__snake_case , is_eval=__snake_case , device=__snake_case ) original_model.eval() print('''Done!''' ) # update state dict keys lowerCamelCase_ =original_model.state_dict() lowerCamelCase_ =create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase_ =state_dict.pop(__snake_case ) if key.startswith('''Qformer.bert''' ): lowerCamelCase_ =key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowerCamelCase_ =key.replace('''self''' , '''attention''' ) if "llm_proj" in key: lowerCamelCase_ =key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: lowerCamelCase_ =key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): lowerCamelCase_ =key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): lowerCamelCase_ =key.replace('''t5''' , '''language''' ) lowerCamelCase_ =val # read in qv biases read_in_q_v_bias(__snake_case , __snake_case ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__snake_case , strict=__snake_case ) lowerCamelCase_ =load_demo_image() lowerCamelCase_ ='''What is unusual about this image?''' # create processor lowerCamelCase_ =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__snake_case , image_std=__snake_case ) lowerCamelCase_ =InstructBlipProcessor( image_processor=__snake_case , tokenizer=__snake_case , qformer_tokenizer=__snake_case , ) lowerCamelCase_ =processor(images=__snake_case , text=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # make sure processor creates exact same pixel values lowerCamelCase_ =vis_processors['''eval'''](__snake_case ).unsqueeze(0 ).to(__snake_case ) lowerCamelCase_ =inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __snake_case ) original_model.to(__snake_case ) hf_model.to(__snake_case ) with torch.no_grad(): if "vicuna" in model_name: lowerCamelCase_ =original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits lowerCamelCase_ =hf_model(**__snake_case ).logits else: lowerCamelCase_ =original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits lowerCamelCase_ =tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(__snake_case ) lowerCamelCase_ =label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase_ =hf_model(**__snake_case , labels=__snake_case ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowerCamelCase_ =1e-4 if '''vicuna''' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __snake_case , atol=__snake_case ) print('''Looks ok!''' ) print('''Generating with original model...''' ) lowerCamelCase_ =original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) lowerCamelCase_ =hf_model.generate( **__snake_case , do_sample=__snake_case , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowerCamelCase_ =2 print('''Original generation:''' , __snake_case ) lowerCamelCase_ =processor.batch_decode(__snake_case , skip_special_tokens=__snake_case ) lowerCamelCase_ =[text.strip() for text in output_text] print('''HF generation:''' , __snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__snake_case ) hf_model.save_pretrained(__snake_case ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() a_ : Any = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
75
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = " " ): lowercase__ = [] lowercase__ = 0 for index, char in enumerate(SCREAMING_SNAKE_CASE_ ): if char == separator: split_words.append(string[last_index:index] ) lowercase__ = index + 1 elif index + 1 == len(SCREAMING_SNAKE_CASE_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
224
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") lowercase_ = parser.parse_args() if args.model_type == "roberta": lowercase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase_ = """roberta""" elif args.model_type == "gpt2": lowercase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase_ = """transformer""" lowercase_ = model.state_dict() lowercase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase_ = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase_ = F'{prefix}.embeddings.{w}.weight' lowercase_ = state_dict[param_name] for w in ["weight", "bias"]: lowercase_ = F'{prefix}.embeddings.LayerNorm.{w}' lowercase_ = state_dict[param_name] # Transformer Blocks # lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowercase_ = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase_ = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[F'lm_head.dense.{w}'] lowercase_ = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase_ = state_dict[F'{prefix}.ln_f.{w}'] lowercase_ = state_dict["""lm_head.weight"""] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
224
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a ( UpperCAmelCase__ ): UpperCamelCase : torch.FloatTensor class a ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : List[str] , lowerCAmelCase : int = 6_5536 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 0 , lowerCAmelCase : str = "fourier" , lowerCAmelCase : bool = True , lowerCAmelCase : bool = False , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase : str = None , lowerCAmelCase : Tuple[int] = (32, 32, 64) , lowerCAmelCase : str = None , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1 , lowerCAmelCase : bool = False , ) -> Optional[int]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE_: Tuple =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase , log=lowerCAmelCase , flip_sin_to_cos=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE_: Dict =Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase , downscale_freq_shift=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE_: Optional[Any] =block_out_channels[0] * 4 SCREAMING_SNAKE_CASE_: str =TimestepEmbedding( in_channels=lowerCAmelCase , time_embed_dim=lowerCAmelCase , act_fn=lowerCAmelCase , out_dim=block_out_channels[0] , ) SCREAMING_SNAKE_CASE_: Optional[int] =nn.ModuleList([] ) SCREAMING_SNAKE_CASE_: int =None SCREAMING_SNAKE_CASE_: List[Any] =nn.ModuleList([] ) SCREAMING_SNAKE_CASE_: Any =None # down SCREAMING_SNAKE_CASE_: Tuple =in_channels for i, down_block_type in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Any =output_channel SCREAMING_SNAKE_CASE_: List[Any] =block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE_: Optional[Any] =i == len(lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_: Any =get_down_block( lowerCAmelCase , num_layers=lowerCAmelCase , in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase ) # mid SCREAMING_SNAKE_CASE_: str =get_mid_block( lowerCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase , add_downsample=lowerCAmelCase , ) # up SCREAMING_SNAKE_CASE_: Any =list(reversed(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: str =reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE_: Union[str, Any] =out_channels else: SCREAMING_SNAKE_CASE_: str =block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =output_channel SCREAMING_SNAKE_CASE_: str =( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase ) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE_: Tuple =i == len(lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_: List[str] =get_up_block( lowerCAmelCase , num_layers=lowerCAmelCase , in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =output_channel # out SCREAMING_SNAKE_CASE_: List[str] =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) SCREAMING_SNAKE_CASE_: Tuple =get_out_block( out_block_type=lowerCAmelCase , num_groups_out=lowerCAmelCase , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase , act_fn=lowerCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Union[torch.Tensor, float, int] , lowerCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =timestep if not torch.is_tensor(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Dict =torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_: List[Any] =timesteps[None].to(sample.device ) SCREAMING_SNAKE_CASE_: Any =self.time_proj(lowerCAmelCase ) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE_: List[Any] =self.time_mlp(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: str =timestep_embed[..., None] SCREAMING_SNAKE_CASE_: int =timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) SCREAMING_SNAKE_CASE_: Optional[Any] =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down SCREAMING_SNAKE_CASE_: List[Any] =() for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =downsample_block(hidden_states=lowerCAmelCase , temb=lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE_: Any =self.mid_block(lowerCAmelCase , lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): SCREAMING_SNAKE_CASE_: Union[str, Any] =down_block_res_samples[-1:] SCREAMING_SNAKE_CASE_: Optional[int] =down_block_res_samples[:-1] SCREAMING_SNAKE_CASE_: Union[str, Any] =upsample_block(lowerCAmelCase , res_hidden_states_tuple=lowerCAmelCase , temb=lowerCAmelCase ) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE_: str =self.out_block(lowerCAmelCase , lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase )
173
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE_: Tuple =[(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __magic_name__ ( lowercase , lowercase , lowercase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_: Dict ="""""" else: SCREAMING_SNAKE_CASE_: Dict ="""deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Any =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_: Any =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: int =in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_: List[str] =in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: Optional[int] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: int =in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: str =in_proj_bias[-config.hidden_size :] def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =dct.pop(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =val def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: Dict =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE_: Optional[int] =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_: Dict =1000 SCREAMING_SNAKE_CASE_: Tuple ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: int ="""imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE_: Optional[int] =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Dict ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: int =idalabel SCREAMING_SNAKE_CASE_: List[str] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any =int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE_: int =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): SCREAMING_SNAKE_CASE_: str =192 SCREAMING_SNAKE_CASE_: str =768 SCREAMING_SNAKE_CASE_: str =12 SCREAMING_SNAKE_CASE_: List[str] =3 elif deit_name[9:].startswith("""small""" ): SCREAMING_SNAKE_CASE_: List[str] =384 SCREAMING_SNAKE_CASE_: Optional[Any] =1536 SCREAMING_SNAKE_CASE_: Dict =12 SCREAMING_SNAKE_CASE_: List[Any] =6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): SCREAMING_SNAKE_CASE_: str =1024 SCREAMING_SNAKE_CASE_: Any =4096 SCREAMING_SNAKE_CASE_: str =24 SCREAMING_SNAKE_CASE_: str =16 # load original model from timm SCREAMING_SNAKE_CASE_: int =timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_: List[Any] =timm_model.state_dict() SCREAMING_SNAKE_CASE_: int =create_rename_keys(lowercase , lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , lowercase ) # load HuggingFace model SCREAMING_SNAKE_CASE_: List[Any] =DeiTForImageClassificationWithTeacher(lowercase ).eval() model.load_state_dict(lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE_: Tuple =int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE_: Optional[int] =DeiTImageProcessor(size=lowercase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE_: List[Any] =image_processor(images=prepare_img() , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =encoding["""pixel_values"""] SCREAMING_SNAKE_CASE_: Tuple =model(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1e-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
173
1
"""simple docstring""" import warnings from functools import wraps from typing import Callable def _lowercase ( __snake_case ) -> Callable: @wraps(__snake_case ) def _inner_fn(*__snake_case ,**__snake_case ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,__snake_case ,) return fn(*__snake_case ,**__snake_case ) return _inner_fn
350
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __snake_case : int = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['input_features'] def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any]=80 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1_6000 , _SCREAMING_SNAKE_CASE: Optional[int]=160 , _SCREAMING_SNAKE_CASE: Dict=30 , _SCREAMING_SNAKE_CASE: str=400 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=False , **_SCREAMING_SNAKE_CASE: Tuple , ) -> List[Any]: """simple docstring""" super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = n_fft __lowerCAmelCase : Any = hop_length __lowerCAmelCase : List[Any] = chunk_length __lowerCAmelCase : Dict = chunk_length * sampling_rate __lowerCAmelCase : Optional[int] = self.n_samples // hop_length __lowerCAmelCase : Tuple = sampling_rate __lowerCAmelCase : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: np.array) -> np.ndarray: """simple docstring""" __lowerCAmelCase : Optional[Any] = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , "hann") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __lowerCAmelCase : Dict = log_spec[:, :-1] __lowerCAmelCase : List[str] = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0) __lowerCAmelCase : Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: List[np.ndarray] , _SCREAMING_SNAKE_CASE: List[np.ndarray] , _SCREAMING_SNAKE_CASE: float = 0.0) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: __lowerCAmelCase : List[str] = np.array(_SCREAMING_SNAKE_CASE , np.intaa) __lowerCAmelCase : int = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1)): __lowerCAmelCase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: __lowerCAmelCase : List[str] = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE) else: __lowerCAmelCase : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "max_length" , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") __lowerCAmelCase : str = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") __lowerCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __lowerCAmelCase : str = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray): __lowerCAmelCase : Union[str, Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __lowerCAmelCase : List[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __lowerCAmelCase : str = [np.asarray([raw_speech]).T] __lowerCAmelCase : str = BatchFeature({"input_features": raw_speech}) # convert into correct format for padding __lowerCAmelCase : Optional[int] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __lowerCAmelCase : List[str] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __lowerCAmelCase : Dict = np.stack(padded_inputs["input_features"] , axis=0) # make sure list is in array format __lowerCAmelCase : Union[str, Any] = padded_inputs.get("input_features").transpose(2 , 0 , 1) __lowerCAmelCase : Dict = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa) for feature in input_features] else: __lowerCAmelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __lowerCAmelCase : Optional[Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __lowerCAmelCase : List[str] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE) return padded_inputs def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict[str, Any]: """simple docstring""" __lowerCAmelCase : Any = copy.deepcopy(self.__dict__) __lowerCAmelCase : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
58
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def _SCREAMING_SNAKE_CASE ( ) -> Dict: raise RuntimeError("CUDA out of memory." ) class UpperCAmelCase_ ( nn.Module ): def __init__( self : List[Any] ) -> str: '''simple docstring''' super().__init__() A__ = nn.Linear(3 , 4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4 , 5 ) def __magic_name__ ( self : Tuple , snake_case_ : int ) -> List[str]: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case_ ) ) ) class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(snake_case_ : Dict ): nonlocal batch_sizes batch_sizes.append(snake_case_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(snake_case_ , [128, 64, 32, 16, 8] ) def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(snake_case_ : Any , snake_case_ : List[str] ): nonlocal batch_sizes batch_sizes.append(snake_case_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga A__, A__ = mock_training_loop_function("hello" ) self.assertListEqual(snake_case_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def __magic_name__ ( self : List[Any] ) -> List[str]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(snake_case_ : Optional[Any] ): pass with self.assertRaises(snake_case_ ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(snake_case_ : Tuple ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(snake_case_ ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __magic_name__ ( self : Tuple ) -> int: '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(snake_case_ ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def __magic_name__ ( self : str ) -> Union[str, Any]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(snake_case_ : Tuple ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(snake_case_ ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def __magic_name__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = torch.cuda.memory_allocated() A__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , snake_case_ ) A__ = release_memory(snake_case_ ) self.assertEqual(torch.cuda.memory_allocated() , snake_case_ )
247
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict=13 , snake_case_ : Optional[Any]=32 , snake_case_ : List[Any]=3 , snake_case_ : Dict=4 , snake_case_ : Tuple=[10, 20, 30, 40] , snake_case_ : int=[2, 2, 3, 2] , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=True , snake_case_ : Union[str, Any]=37 , snake_case_ : Any="gelu" , snake_case_ : Union[str, Any]=10 , snake_case_ : str=0.02 , snake_case_ : str=["stage2", "stage3", "stage4"] , snake_case_ : str=3 , snake_case_ : List[Any]=None , ) -> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def __magic_name__ ( self : str ) -> Tuple: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __magic_name__ ( self : Optional[Any] ) -> str: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=snake_case_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=snake_case_ , loss_ignore_index=255 , num_labels=self.num_labels , ) def __magic_name__ ( self : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ = UperNetForSemanticSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __magic_name__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ), ( A__ ), ( A__ ), ) = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __magic_name__ ( self : int ) -> int: '''simple docstring''' A__ = UperNetModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(snake_case_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __magic_name__ ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __magic_name__ ( self : Dict ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __magic_name__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __magic_name__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __magic_name__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass def __magic_name__ ( self : List[Any] ) -> str: '''simple docstring''' def check_hidden_states_output(snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): A__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : List[Any] ) -> int: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(snake_case_ ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @slow def __magic_name__ ( self : Any ) -> str: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _SCREAMING_SNAKE_CASE ( ) -> int: A__ = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) A__ = Image.open(lowercase_ ).convert("RGB" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : int ) -> List[Any]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) A__ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(snake_case_ ) A__ = prepare_img() A__ = processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) with torch.no_grad(): A__ = model(**snake_case_ ) A__ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case_ ) A__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) A__ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(snake_case_ ) A__ = prepare_img() A__ = processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) with torch.no_grad(): A__ = model(**snake_case_ ) A__ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case_ ) A__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 ) )
247
1
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A (snake_case_): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = tempfile.mkdtemp() snake_case_ = 5 # Realm tok snake_case_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case_ = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) snake_case_ = os.path.join(UpperCAmelCase_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) snake_case_ = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->RealmTokenizer: """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" snake_case_ = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" snake_case_ = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=UpperCAmelCase_ , ) return block_records def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" snake_case_ = self.get_config() snake_case_ = self.get_dummy_retriever() snake_case_ = retriever.tokenizer snake_case_ = np.array([0, 3] , dtype="""long""" ) snake_case_ = tokenizer(["""Test question"""] ).input_ids snake_case_ = tokenizer( ["""the fourth"""] , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ).input_ids snake_case_ = config.reader_seq_len snake_case_ , snake_case_ , snake_case_ , snake_case_ = retriever( UpperCAmelCase_ , UpperCAmelCase_ , answer_ids=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="""np""" ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" snake_case_ = self.get_config() snake_case_ = self.get_dummy_retriever() snake_case_ = retriever.tokenizer snake_case_ = np.array([0, 3, 5] , dtype="""long""" ) snake_case_ = tokenizer(["""Test question"""] ).input_ids snake_case_ = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ).input_ids snake_case_ = config.reader_seq_len snake_case_ , snake_case_ , snake_case_ , snake_case_ = retriever( UpperCAmelCase_ , UpperCAmelCase_ , answer_ids=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , UpperCAmelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , UpperCAmelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path snake_case_ = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: snake_case_ = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) snake_case_ = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
353
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""}) __lowercase: Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""}) __lowercase: Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""}) __lowercase: Optional[int] = field( default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""}) __lowercase: Optional[float] = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""}) __lowercase: Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""}) __lowercase: Optional[int] = field( default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""}) __lowercase: Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""}) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""}) __lowercase: Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""}) __lowercase: Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) __lowercase: Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""}) __lowercase: Optional[int] = field( default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __lowercase: Optional[str] = field( default=snake_case__ , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """If True the data is pretokenized."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""}) __lowercase: Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) __lowercase: Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) __lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""}) __lowercase: Optional[int] = field( default=snake_case__ , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Sample from the language model's output distribution."""}) __lowercase: Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""}) __lowercase: Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""}) __lowercase: Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""}) __lowercase: Optional[float] = field(default=0.9_5 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""}) __lowercase: Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""}) __lowercase: Optional[int] = field( default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) __lowercase: Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""}) __lowercase: Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""}) __lowercase: Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = field( default=snake_case__ , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __lowercase: Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""}) __lowercase: Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""}) __lowercase: Optional[int] = field( default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""}) __lowercase: Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) __lowercase: Optional[float] = field( default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=0.2_5 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """If True, near-duplicate samples are removed."""}) __lowercase: Optional[float] = field( default=0.8_5 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""}) __lowercase: Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""}) __lowercase: Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) __lowercase: Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""}) __lowercase: Optional[int] = field( default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""}) __lowercase: Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""}) __lowercase: Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""}) __lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""}) __lowercase: Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""})
233
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> bool: _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) + 1 _lowerCAmelCase : Any = len(_lowerCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowerCAmelCase : Union[str, Any] = [[0 for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] # since string of zero length match pattern of zero length _lowerCAmelCase : Tuple = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 ,_lowerCamelCase ): _lowerCAmelCase : List[str] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 ,_lowerCamelCase ): _lowerCAmelCase : Any = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 ,_lowerCamelCase ): for j in range(1 ,_lowerCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowerCAmelCase : int = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowerCAmelCase : Any = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowerCAmelCase : Optional[Any] = dp[i - 1][j] else: _lowerCAmelCase : Dict = 0 else: _lowerCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _a : Tuple = 'aab' _a : int = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
44
"""simple docstring""" from scipy.stats import pearsonr import datasets _a : str = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _a : List[str] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _a : List[Any] = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def __A ( self , a__ , a__ , a__=False ): if return_pvalue: _lowerCAmelCase : List[Any] = pearsonr(a__ , a__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a__ , a__ )[0] )}
44
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
__UpperCAmelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
257
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests lowercase__ : Optional[int] = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase__ : Optional[Any] = BASE_URL + """/user""" # https://github.com/settings/tokens lowercase__ : Dict = os.environ.get("""USER_TOKEN""", """""") def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> dict[Any, Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = { 'Authorization': f"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
224
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = field(default="""summarization""", metadata={"""include_in_asdict_even_if_is_default""": True} ) _SCREAMING_SNAKE_CASE = Features({"""text""": Value("""string""" )} ) _SCREAMING_SNAKE_CASE = Features({"""summary""": Value("""string""" )} ) _SCREAMING_SNAKE_CASE = "text" _SCREAMING_SNAKE_CASE = "summary" @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return {self.text_column: "text", self.summary_column: "summary"}
224
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _A (self ): __lowercase= self.dummy_uncond_unet __lowercase= KarrasVeScheduler() __lowercase= KarrasVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe(num_inference_steps=2 , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= torch.manual_seed(0 ) __lowercase= pipe(num_inference_steps=2 , generator=lowerCAmelCase , output_type='numpy' , return_dict=lowerCAmelCase )[0] __lowercase= image[0, -3:, -3:, -1] __lowercase= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase= np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def _A (self ): __lowercase= 'google/ncsnpp-celebahq-256' __lowercase= UNetaDModel.from_pretrained(lowerCAmelCase ) __lowercase= KarrasVeScheduler() __lowercase= KarrasVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe(num_inference_steps=2_0 , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase= np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
15
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a_ ( snake_case_ ): '''simple docstring''' def snake_case_( self ) -> Tuple: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(A ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(A ): self.assertDictEqual(A , example_records[i] ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) _SCREAMING_SNAKE_CASE = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case_( self ) -> Union[str, Any]: # checks what happens with missing columns _SCREAMING_SNAKE_CASE = [{"""col_1""": 1}, {"""col_2""": """x"""}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def snake_case_( self ) -> Optional[Any]: # checks if the type can be inferred from the second record _SCREAMING_SNAKE_CASE = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = Dataset.from_list([] ) self.assertEqual(len(A ) , 0 ) self.assertListEqual(dset.column_names , [] )
58
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ ( __lowercase ): def __init__( self : List[Any] , _snake_case : str , _snake_case : Optional[Any] )->List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=_snake_case , scheduler=_snake_case ) @torch.no_grad() def __call__( self : List[str] , _snake_case : int = 1 , _snake_case : int = 100 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[float] = None , _snake_case : bool = True , )->Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: __lowerCAmelCase : Optional[int] = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCAmelCase : int = audio_length_in_s * self.unet.config.sample_rate __lowerCAmelCase : List[str] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __lowerCAmelCase : Union[str, Any] = int(_snake_case ) if sample_size % down_scale_factor != 0: __lowerCAmelCase : str = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) __lowerCAmelCase : List[Any] = int(_snake_case ) __lowerCAmelCase : Any = next(iter(self.unet.parameters() ) ).dtype __lowerCAmelCase : Any = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_snake_case )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __lowerCAmelCase : int = randn_tensor(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) # set step values self.scheduler.set_timesteps(_snake_case , device=audio.device ) __lowerCAmelCase : Dict = self.scheduler.timesteps.to(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCAmelCase : str = self.unet(_snake_case , _snake_case ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCAmelCase : Union[str, Any] = self.scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample __lowerCAmelCase : Optional[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCAmelCase : Dict = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_snake_case )
232
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> Dict: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if n == 0: return 0 __lowerCAmelCase : Union[str, Any] = float("""-inf""" ) for i in range(1 , n + 1 ): __lowerCAmelCase : Union[str, Any] = max( SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE ) ) return max_revue def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> List[str]: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __lowerCAmelCase : str = float("""-inf""" ) for i in range(1 , n + 1 ): __lowerCAmelCase : List[Any] = max( SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) __lowerCAmelCase : List[str] = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> Union[str, Any]: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __lowerCAmelCase : Optional[int] = [float("""-inf""" ) for _ in range(n + 1 )] __lowerCAmelCase : List[str] = 0 for i in range(1 , n + 1 ): __lowerCAmelCase : Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): __lowerCAmelCase : Optional[int] = max(SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) __lowerCAmelCase : Optional[int] = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> List[Any]: if n < 0: __lowerCAmelCase : Any = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(SCREAMING_SNAKE_CASE ) if n > len(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = ( """Each integral piece of rod must have a corresponding price. """ F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE )}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowerCAmelCase : Tuple = [6, 10, 12, 15, 20, 23] __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __lowerCAmelCase : Union[str, Any] = 36 __lowerCAmelCase : Optional[int] = top_down_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = bottom_up_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
232
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""String lengths must match!""" ) lowerCamelCase__ : int = 0 for chara, chara in zip(UpperCamelCase , UpperCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
41
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''naver-clova-ix/donut-base-finetuned-docvqa''' _A : Any = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _A : Tuple = '''document_qa''' _A : Dict = AutoProcessor _A : Tuple = VisionEncoderDecoderModel _A : Optional[int] = ['''image''', '''text'''] _A : Optional[int] = ['''text'''] def __init__( self : Any , *__a : List[str] , **__a : Any ) -> Optional[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : "Image" , __a : str ) -> List[str]: """simple docstring""" __lowercase : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowercase : str = task_prompt.replace("""{user_input}""" , __a ) __lowercase : Union[str, Any] = self.pre_processor.tokenizer( __a , add_special_tokens=__a , return_tensors="""pt""" ).input_ids __lowercase : int = self.pre_processor(__a , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase ( self : Optional[int] , __a : int ) -> int: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.pre_processor.batch_decode(__a )[0] __lowercase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) __lowercase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) __lowercase : Optional[Any] = re.sub(r"""<.*?>""" , """""" , __a , count=1 ).strip() # remove first task start token __lowercase : Dict = self.pre_processor.tokenajson(__a ) return sequence["answer"]
233
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' try: with open(lowerCAmelCase_ , """rb""" ) as flax_state_f: _UpperCAmelCase : str = from_bytes(lowerCAmelCase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _UpperCAmelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase_ : x.dtype == jnp.bfloataa , lowerCAmelCase_ ) ).values() if any(lowerCAmelCase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _UpperCAmelCase : Union[str, Any] = jax.tree_util.tree_map( lambda lowerCAmelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase_ ) _UpperCAmelCase : int = """""" _UpperCAmelCase : Any = flatten_dict(lowerCAmelCase_ , sep=""".""" ) _UpperCAmelCase : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase : int = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _UpperCAmelCase : Dict = flax_key_tuple_array[:-1] + ["""weight"""] _UpperCAmelCase : List[Any] = jnp.transpose(lowerCAmelCase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _UpperCAmelCase : int = flax_key_tuple_array[:-1] + ["""weight"""] _UpperCAmelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _UpperCAmelCase : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Dict = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _UpperCAmelCase : Any = """.""".join(lowerCAmelCase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _UpperCAmelCase : int = np.asarray(lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , np.ndarray ) else flax_tensor _UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowerCAmelCase_ ) # remove from missing keys missing_keys.remove(lowerCAmelCase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase_ ) pt_model.load_state_dict(lowerCAmelCase_ ) # re-transform missing_keys to list _UpperCAmelCase : Tuple = list(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowerCAmelCase_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
"""simple docstring""" # Imports import numpy as np class A_ : '''simple docstring''' def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" if red is not None: UpperCAmelCase_ : Union[str, Any] = red if green is not None: UpperCAmelCase_ : Dict = green if blue is not None: UpperCAmelCase_ : Optional[int] = blue if red_edge is not None: UpperCAmelCase_ : Optional[int] = red_edge if nir is not None: UpperCAmelCase_ : str = nir return True def UpperCamelCase__ ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) UpperCAmelCase_ : str = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def UpperCamelCase__ ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCamelCase__ ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCamelCase__ ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCamelCase__ ( self , lowercase_=0.08 , lowercase_=1.22 , lowercase_=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCamelCase__ ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / self.green) - 1 def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCamelCase__ ( self ): """simple docstring""" return (self.red - self.blue) / self.red def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir - self.green def UpperCamelCase__ ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCamelCase__ ( self , lowercase_=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCamelCase__ ( self , lowercase_=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCamelCase__ ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCamelCase__ ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / self.red def UpperCamelCase__ ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCamelCase__ ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCamelCase__ ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase_ : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCamelCase__ ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / self.red def UpperCamelCase__ ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
61
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : int = MBartConfig UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = '''gelu''' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def _A ( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModel(config=_A ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def __lowercase ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> str: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCamelCase__ : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ : List[str] = True UpperCamelCase__ : Tuple = False UpperCamelCase__ : Union[str, Any] = False def _A ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCamelCase__ : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCamelCase__ : List[str] = '''facebook/mbart-large-en-ro''' @cached_property def _A ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def _A ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
257
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
1
from copy import deepcopy class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase = None,__lowerCamelCase = None ): if arr is None and size is not None: A__ = size A__ = [0] * size elif arr is not None: self.init(_A ) else: raise ValueError('''Either arr or size must be specified''' ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = len(_A ) A__ = deepcopy(_A ) for i in range(1,self.size ): A__ = self.next_(_A ) if j < self.size: self.tree[j] += self.tree[i] def UpperCamelCase ( self ): A__ = self.tree[:] for i in range(self.size - 1,0,-1 ): A__ = self.next_(_A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index + (index & (-index)) @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index - (index & (-index)) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A__ = self.next_(_A ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): self.add(_A,value - self.get(_A ) ) def UpperCamelCase ( self,__lowerCamelCase ): if right == 0: return 0 A__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A__ = self.prev(_A ) return result def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): return self.prefix(_A ) - self.prefix(_A ) def UpperCamelCase ( self,__lowerCamelCase ): return self.query(_A,index + 1 ) def UpperCamelCase ( self,__lowerCamelCase ): value -= self.tree[0] if value < 0: return -1 A__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys snake_case_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') snake_case_ = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('utf-8').split() ) snake_case_ = '|'.join(sys.argv[1:]) snake_case_ = re.compile(RF'^({joined_dirs}).*?\.py$') snake_case_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'char' _A = 'bpe' _A = 'wp' lowercase : int = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ['image_processor', 'char_tokenizer'] _A = 'ViTImageProcessor' _A = 'MgpstrTokenizer' def __init__( self :Optional[Any] , a :str=None , a :List[str]=None , **a :List[Any] ) -> int: __UpperCamelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) __UpperCamelCase : List[str] = kwargs.pop("feature_extractor" ) __UpperCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) __UpperCamelCase : str = tokenizer __UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("gpt2" ) __UpperCamelCase : int = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(a , a ) def __call__( self :List[str] , a :Any=None , a :Optional[int]=None , a :Tuple=None , **a :Optional[Any] ) -> Optional[Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: __UpperCamelCase : int = self.image_processor(a , return_tensors=a , **a ) if text is not None: __UpperCamelCase : Optional[Any] = self.char_tokenizer(a , return_tensors=a , **a ) if text is None: return inputs elif images is None: return encodings else: __UpperCamelCase : Union[str, Any] = encodings["input_ids"] return inputs def _lowerCamelCase ( self :List[Any] , a :Union[str, Any] ) -> List[Any]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int = sequences __UpperCamelCase : Dict = char_preds.size(0 ) __UpperCamelCase , __UpperCamelCase : Tuple = self._decode_helper(a , "char" ) __UpperCamelCase , __UpperCamelCase : List[Any] = self._decode_helper(a , "bpe" ) __UpperCamelCase , __UpperCamelCase : int = self._decode_helper(a , "wp" ) __UpperCamelCase : List[str] = [] __UpperCamelCase : List[Any] = [] for i in range(a ): __UpperCamelCase : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] __UpperCamelCase : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] __UpperCamelCase : Any = scores.index(max(a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __UpperCamelCase : int = {} __UpperCamelCase : Union[str, Any] = final_strs __UpperCamelCase : Any = final_scores __UpperCamelCase : Union[str, Any] = char_strs __UpperCamelCase : Tuple = bpe_strs __UpperCamelCase : Dict = wp_strs return out def _lowerCamelCase ( self :Optional[Any] , a :int , a :Optional[Any] ) -> Optional[int]: if format == DecodeType.CHARACTER: __UpperCamelCase : str = self.char_decode __UpperCamelCase : str = 1 __UpperCamelCase : int = "[s]" elif format == DecodeType.BPE: __UpperCamelCase : Dict = self.bpe_decode __UpperCamelCase : Any = 2 __UpperCamelCase : str = "#" elif format == DecodeType.WORDPIECE: __UpperCamelCase : Optional[int] = self.wp_decode __UpperCamelCase : int = 1_0_2 __UpperCamelCase : List[Any] = "[SEP]" else: raise ValueError(f'Format {format} is not supported.' ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = [], [] __UpperCamelCase : Dict = pred_logits.size(0 ) __UpperCamelCase : Union[str, Any] = pred_logits.size(1 ) __UpperCamelCase , __UpperCamelCase : int = pred_logits.topk(1 , dim=-1 , largest=a , sorted=a ) __UpperCamelCase : int = preds_index.view(-1 , a )[:, 1:] __UpperCamelCase : Dict = decoder(a ) __UpperCamelCase , __UpperCamelCase : Dict = torch.nn.functional.softmax(a , dim=2 ).max(dim=2 ) __UpperCamelCase : Tuple = preds_max_prob[:, 1:] for index in range(a ): __UpperCamelCase : List[str] = preds_str[index].find(a ) __UpperCamelCase : List[str] = preds_str[index][:pred_eos] __UpperCamelCase : Any = preds_index[index].cpu().tolist() __UpperCamelCase : Optional[int] = pred_index.index(a ) if eos_token in pred_index else -1 __UpperCamelCase : Any = preds_max_prob[index][: pred_eos_index + 1] __UpperCamelCase : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(a ) conf_scores.append(a ) return dec_strs, conf_scores def _lowerCamelCase ( self :Optional[int] , a :Optional[int] ) -> Dict: __UpperCamelCase : Tuple = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(a )] return decode_strs def _lowerCamelCase ( self :Optional[Any] , a :Union[str, Any] ) -> Any: return self.bpe_tokenizer.batch_decode(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] ) -> Dict: __UpperCamelCase : Optional[int] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(a )] return decode_strs
232
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Any = len(_lowerCamelCase) # We need to create solution object to save path. __UpperCamelCase : List[str] = [[0 for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase)] __UpperCamelCase : Optional[int] = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase) if solved: print("\n".join(str(_lowerCamelCase) for row in solutions)) else: print("No solution exists!") return solved def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Tuple = len(_lowerCamelCase) # Final check point. if i == j == (size - 1): __UpperCamelCase : Optional[int] = 1 return True __UpperCamelCase : List[Any] = (not i < 0) and (not j < 0) # Check lower bounds __UpperCamelCase : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCamelCase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCamelCase : Tuple = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase) ): return True __UpperCamelCase : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
232
1
lowercase : int = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowercase : Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowercase : Any = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
225
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase : Optional[Any] = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowercase : List[str] = { """RUCAIBox/mvp""": 1_0_2_4, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ['''input_ids''', '''attention_mask'''] __A : Tuple = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> str: '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) a__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Dict = getattr(lowercase , pre_tok_state.pop('type')) a__ : str = add_prefix_space a__ : Union[str, Any] = pre_tok_class(**lowercase) a__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Optional[int] = 'post_processor' a__ : Optional[int] = getattr(self.backend_tokenizer , lowercase , lowercase) if tokenizer_component_instance: a__ : str = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Any = tuple(state['sep']) if "cls" in state: a__ : str = tuple(state['cls']) a__ : List[str] = False if state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : List[str] = add_prefix_space a__ : List[str] = True if state.get('trim_offsets' , lowercase) != trim_offsets: a__ : Optional[int] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : Optional[int] = getattr(lowercase , state.pop('type')) a__ : Tuple = component_class(**lowercase) setattr(self.backend_tokenizer , lowercase , lowercase) @property def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , lowercase) -> Any: '''simple docstring''' a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else value a__ : str = value def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : List[str] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : List[str] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase) def __lowercase ( self , lowercase , lowercase=None) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : int = [self.sep_token_id] a__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
225
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'gpt-neox-20b': 2048, } class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __lowerCamelCase : Any =VOCAB_FILES_NAMES __lowerCamelCase : int =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int =['input_ids', 'attention_mask'] def __init__( self : int , __lowercase : Any=None , __lowercase : Tuple=None , __lowercase : Dict=None , __lowercase : Tuple="<|endoftext|>" , __lowercase : Optional[Any]="<|endoftext|>" , __lowercase : str="<|endoftext|>" , __lowercase : List[str]=False , **__lowercase : Optional[Any] , ): '''simple docstring''' super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowercase ) != add_prefix_space: __a = getattr(__lowercase , pre_tok_state.pop("""type""" ) ) __a = add_prefix_space __a = pre_tok_class(**__lowercase ) __a = add_prefix_space def UpperCamelCase_ ( self : int , __lowercase : Optional[int] , __lowercase : Optional[Any] = None ): '''simple docstring''' __a = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Any ): '''simple docstring''' __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] ) if len(__lowercase ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
302
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
import math import unittest def lowercase__ ( __snake_case : int ): '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def __UpperCAmelCase ( self ) -> Tuple: with self.assertRaises(_UpperCamelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
145
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = RemBertConfig.from_json_file(__snake_case ) print('Building PyTorch model from configuration: {}'.format(str(__snake_case ) ) ) UpperCAmelCase_ : Dict = RemBertModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print('Save PyTorch model to {}'.format(__snake_case ) ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
145
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase : Optional[int] = logging.getLogger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None): super().__init__( lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = None def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int): logger.info("initializing retrieval") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized") # needs to be set manually SCREAMING_SNAKE_CASE_: Dict = self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE_: List[Any] = str(distributed_port + 1) SCREAMING_SNAKE_CASE_: int = dist.new_group(ranks=lowerCAmelCase__ , backend="gloo") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return dist.get_rank(group=self.process_group) == 0 def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa): SCREAMING_SNAKE_CASE_: str = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__) dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group) return target_tensor def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE_: Any = next((addr for addr in addrs if addr.startswith("e")) , lowerCAmelCase__) return ifname def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int): # single GPU training if not dist.is_initialized(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__) # distributed training SCREAMING_SNAKE_CASE_: Dict = dist.get_world_size(group=self.process_group) # gather logic SCREAMING_SNAKE_CASE_: Optional[Any] = None if self._is_main(): SCREAMING_SNAKE_CASE_: Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase__)] dist.gather(torch.tensor(lowerCAmelCase__) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group) # scatter logic SCREAMING_SNAKE_CASE_: Optional[Any] = question_hidden_states.shape[0] SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: List[Any] = [] if self._is_main(): assert len(lowerCAmelCase__) == world_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._main_retrieve(torch.cat(lowerCAmelCase__).numpy() , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa) SCREAMING_SNAKE_CASE_: int = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__)
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ : Any = 1_6 lowerCamelCase__ : Optional[int] = 3_2 def __lowerCamelCase ( __a :Accelerator , __a :int = 1_6 ) -> Optional[Any]: """simple docstring""" A__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__a :Dict ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( __a , batched=__a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__a :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( __a , padding="""longest""" , max_length=__a , pad_to_multiple_of=__a , return_tensors="""pt""" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) A__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ : List[str] = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( __a :List[Any] , __a :List[str] ) -> Optional[Any]: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __a ) == "1": A__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["""lr"""] A__ = int(config["""num_epochs"""] ) A__ = int(config["""seed"""] ) A__ = int(config["""batch_size"""] ) set_seed(__a ) A__ , A__ = get_dataloaders(__a , __a ) A__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( __a , __a , __a , __a , __a ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A__ = os.path.split(__a )[-1].split(""".""" )[0] accelerator.init_trackers(__a , __a ) # Now we train the model for epoch in range(__a ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A__ = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**__a ) A__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A__ = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**__a ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__a , references=__a , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __a ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(__a ), """epoch""": epoch, } , step=__a , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __lowerCamelCase ( ) -> int: """simple docstring""" A__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__a , default=__a , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__a , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) A__ = parser.parse_args() A__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
350
import math def __lowerCamelCase ( ) -> None: """simple docstring""" A__ = input("""Enter message: """ ) A__ = int(input(F'Enter key [2-{len(__a ) - 1}]: ' ) ) A__ = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): A__ = encrypt_message(__a , __a ) elif mode.lower().startswith("""d""" ): A__ = decrypt_message(__a , __a ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def __lowerCamelCase ( __a :int , __a :str ) -> str: """simple docstring""" A__ = [""""""] * key for col in range(__a ): A__ = col while pointer < len(__a ): cipher_text[col] += message[pointer] pointer += key return "".join(__a ) def __lowerCamelCase ( __a :int , __a :str ) -> str: """simple docstring""" A__ = math.ceil(len(__a ) / key ) A__ = key A__ = (num_cols * num_rows) - len(__a ) A__ = [""""""] * num_cols A__ = 0 A__ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): A__ = 0 row += 1 return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
276
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : int = 32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 , __magic_name__ : str = "bert-base-cased" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__magic_name__ ) UpperCamelCase :Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase :List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase :List[Any] = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__magic_name__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase :Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase :List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) UpperCamelCase :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase :Union[str, Any] = config["""lr"""] UpperCamelCase :List[str] = int(config["""num_epochs"""] ) UpperCamelCase :str = int(config["""seed"""] ) UpperCamelCase :Dict = int(config["""batch_size"""] ) UpperCamelCase :Union[str, Any] = args.model_name_or_path set_seed(__magic_name__ ) UpperCamelCase , UpperCamelCase :Dict = get_dataloaders(__magic_name__ , __magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) # Instantiate optimizer UpperCamelCase :Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__magic_name__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase :Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase :Any = 1 UpperCamelCase :Dict = (len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase :List[Any] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=0 , num_training_steps=__magic_name__ , ) else: UpperCamelCase :Any = DummyScheduler(__magic_name__ , total_num_steps=__magic_name__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase :int = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase :Tuple = 0 # Now we train the model UpperCamelCase :Any = evaluate.load("""glue""" , """mrpc""" ) UpperCamelCase :Tuple = 0 UpperCamelCase :List[Any] = {} for epoch in range(__magic_name__ , __magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): UpperCamelCase :List[str] = model(**__magic_name__ ) UpperCamelCase :Dict = outputs.loss UpperCamelCase :Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase :str = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase :Optional[int] = model(**__magic_name__ ) UpperCamelCase :List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase , UpperCamelCase :Optional[int] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__magic_name__ ) - 1: UpperCamelCase :Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) UpperCamelCase :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __magic_name__ ) UpperCamelCase :Dict = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCamelCase :str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__magic_name__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__magic_name__ , ) parser.add_argument( """--output_dir""" , type=__magic_name__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__magic_name__ , default=__magic_name__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__magic_name__ , default=3 , help="""Number of train epochs.""" , ) UpperCamelCase :str = parser.parse_args() UpperCamelCase :Any = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
"""simple docstring""" def snake_case__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _lowercase : str = generate_large_matrix() _lowercase : str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def snake_case__ ( __lowerCamelCase : list[list[int]] ): """simple docstring""" assert all(row == sorted(__lowerCamelCase , reverse=__lowerCamelCase ) for row in grid ) assert all(list(__lowerCamelCase ) == sorted(__lowerCamelCase , reverse=__lowerCamelCase ) for col in zip(*__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : list[int] ): """simple docstring""" lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =len(__lowerCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ : List[str] =(left + right) // 2 lowerCamelCase__ : Union[str, Any] =array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ : Union[str, Any] =mid + 1 else: lowerCamelCase__ : Dict =mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : list[list[int]] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =0 lowerCamelCase__ : str =len(grid[0] ) for i in range(len(__lowerCamelCase ) ): lowerCamelCase__ : Any =find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCamelCase ) * len(grid[0] )) - total def snake_case__ ( __lowerCamelCase : list[list[int]] ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def snake_case__ ( __lowerCamelCase : list[list[int]] ): """simple docstring""" lowerCamelCase__ : Tuple =0 for row in grid: for i, number in enumerate(__lowerCamelCase ): if number < 0: total += len(__lowerCamelCase ) - i break return total def snake_case__ ( ): """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) lowerCamelCase__ : List[str] =( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ : Union[str, Any] =timeit(f'''{func}(grid=grid)''' , setup=__lowerCamelCase , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
238
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a :Any = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __a (unittest.TestCase): '''simple docstring''' @classmethod def _a ( cls ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = TOKEN HfFolder.save_token(_a ) @classmethod def _a ( cls ) -> int: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxBertModel(_a ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : List[Any] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE__ : Tuple = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id="""test-model-flax""" , push_to_hub=_a , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : List[Any] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE__ : List[Any] = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE__ : List[str] = FlaxBertModel(_a ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=_a , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : str = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) SCREAMING_SNAKE_CASE__ : List[Any] = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : List[str] = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE__ : List[str] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE__ : Tuple = False return models_are_equal @require_flax class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) SCREAMING_SNAKE_CASE__ : List[str] = FlaxBertModel(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxBertModel.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxBertModel(_a ) SCREAMING_SNAKE_CASE__ : List[str] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size="""10KB""" ) with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Dict = FlaxBertModel.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Any = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """bert""" SCREAMING_SNAKE_CASE__ : Dict = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxBertModel.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : int = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = """bert""" SCREAMING_SNAKE_CASE__ : Any = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : Dict = FlaxBertModel.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
56
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> int: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
56
1
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return abs(__UpperCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = y, x % y return abs(__UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Optional[int]: try: SCREAMING_SNAKE_CASE_ = input('Enter two integers separated by comma (,): ' ).split(',' ) SCREAMING_SNAKE_CASE_ = int(nums[0] ) SCREAMING_SNAKE_CASE_ = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(__UpperCAmelCase , __UpperCAmelCase )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__UpperCAmelCase , __UpperCAmelCase )}" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
225
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop('image_processor_type' ) SCREAMING_SNAKE_CASE_ = CLIPImageProcessor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , 'clip-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('clip-base' ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : str ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCAmelCase_ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = CustomImageProcessor.from_pretrained(_lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : Union[str, Any] ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_lowerCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
225
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : Tuple = [0] * len(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): # use last results for better performance - dynamic programming lowercase__ : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : int = j return prefix_result def __UpperCAmelCase ( __lowerCamelCase ) -> int: return max(prefix_function(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __a = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __a = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __a = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __a = '' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCAmelCase ( a_: Any, a_: Any ): assert ReadMe.from_string(a_, a_ ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCAmelCase ( a_: Optional[int], a_: int ): with pytest.raises(a_, match=re.escape(expected_error.format(path="root" ) ) ): _UpperCAmelCase : Union[str, Any] = ReadMe.from_string(a_, a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: str, a_: Optional[Any] ): with pytest.raises(a_, match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(a_, a_ ) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: str ): ReadMe.from_string(a_, a_, suppress_parsing_errors=a_ ) @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCAmelCase ( a_: str, a_: Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Tuple = ReadMe.from_readme(a_, a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCAmelCase ( a_: List[Any], a_: str ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Any = expected_error.format(path=a_ ) with pytest.raises(a_, match=re.escape(a_ ) ): _UpperCAmelCase : str = ReadMe.from_readme(a_, a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: Tuple, a_: Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[str] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Any = expected_error.format(path=a_ ) with pytest.raises(a_, match=re.escape(a_ ) ): ReadMe.from_readme(a_, a_ ) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: Any ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_, a_, suppress_parsing_errors=a_ )
145
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : Tuple=1_6_0_0_0 , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=True , **lowerCAmelCase__ : int , ) -> int: """simple docstring""" super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : str = num_mel_bins _UpperCAmelCase : Optional[int] = do_ceptral_normalize _UpperCAmelCase : List[str] = normalize_means _UpperCAmelCase : str = normalize_vars _UpperCAmelCase : Union[str, Any] = True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : np.ndarray , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Tuple = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) _UpperCAmelCase : List[Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: _UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : Dict = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if normalize_vars: _UpperCAmelCase : Any = x[:input_length].std(axis=0 ) _UpperCAmelCase : Optional[int] = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: _UpperCAmelCase : str = padding_value # make sure array is in float32 _UpperCAmelCase : Union[str, Any] = x.astype(np.floataa ) return x def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[np.ndarray] , lowerCAmelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" _UpperCAmelCase : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] def __call__( self : List[Any] , lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Any = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[Any] = [raw_speech] # extract fbank features _UpperCAmelCase : Tuple = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Optional[Any] = BatchFeature({"input_features": features} ) _UpperCAmelCase : Optional[Any] = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format _UpperCAmelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Dict = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCAmelCase : List[str] = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase : str = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: _UpperCAmelCase : Any = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
145
1
"""simple docstring""" import numpy as np from transformers import Pipeline def lowerCamelCase (a_ :Any) -> Optional[int]: lowercase :int = np.max(a_ , axis=-1 , keepdims=a_) lowercase :Any = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a_) class __magic_name__ ( __UpperCAmelCase ): def __snake_case ( self : Optional[int] , **snake_case__ : int ): '''simple docstring''' lowercase :int = {} if "second_text" in kwargs: lowercase :List[Any] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def __snake_case ( self : List[str] , snake_case__ : int , snake_case__ : Dict=None ): '''simple docstring''' return self.tokenizer(snake_case__ , text_pair=snake_case__ , return_tensors=self.framework ) def __snake_case ( self : Tuple , snake_case__ : Tuple ): '''simple docstring''' return self.model(**snake_case__ ) def __snake_case ( self : int , snake_case__ : List[str] ): '''simple docstring''' lowercase :int = model_outputs.logits[0].numpy() lowercase :Tuple = softmax(snake_case__ ) lowercase :str = np.argmax(snake_case__ ) lowercase :List[Any] = self.model.config.idalabel[best_class] lowercase :Dict = probabilities[best_class].item() lowercase :List[str] = logits.tolist() return {"label": label, "score": score, "logits": logits}
172
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
1
def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(a_ ) * abs(a_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
15
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> Optional[int]: '''simple docstring''' _a , _a : List[str] =text, pattern _a , _a : Union[str, Any] =len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCAmelCase ( self :Union[str, Any] ) -> list[int]: '''simple docstring''' # searches pattern in text and returns index positions _a : Union[str, Any] =[] for i in range(self.textLen - self.patLen + 1 ): _a : Any =self.mismatch_in_text(SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE ) else: _a : int =self.match_in_pattern(self.text[mismatch_index] ) _a : List[str] =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A__: Any = '''ABAABA''' A__: int = '''AB''' A__: Optional[int] = BoyerMooreSearch(text, pattern) A__: Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
276
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(A_ ) class UpperCAmelCase ( A_ ): def __init__(self : int , **snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self : List[str] , snake_case__ : Union[str, List[str], "Image", List["Image"]] , **snake_case__ : Any ) -> Dict: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (self : List[str] , **snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = {} if "candidate_labels" in kwargs: snake_case : Union[str, Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: snake_case : List[Any] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[Any] , snake_case__ : str=None , snake_case__ : Optional[Any]="This is a photo of {}." ) -> Any: '''simple docstring''' snake_case : Dict = load_image(_lowerCAmelCase ) snake_case : Dict = self.image_processor(images=[image] , return_tensors=self.framework ) snake_case : Tuple = candidate_labels snake_case : Dict = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] snake_case : Optional[Any] = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase ) snake_case : Dict = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = model_inputs.pop("candidate_labels" ) snake_case : List[Any] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , _lowerCAmelCase ): snake_case : List[Any] = text_inputs[0] else: # Batching case. snake_case : Any = text_inputs[0][0] snake_case : List[str] = self.model(**_lowerCAmelCase , **_lowerCAmelCase ) snake_case : Optional[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Optional[int] ) -> str: '''simple docstring''' snake_case : List[str] = model_outputs.pop("candidate_labels" ) snake_case : Tuple = model_outputs["logits"][0] if self.framework == "pt": snake_case : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case : Optional[Any] = probs.tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case : List[str] = [scores] elif self.framework == "tf": snake_case : Any = stable_softmax(_lowerCAmelCase , axis=-1 ) snake_case : int = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) snake_case : Any = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda snake_case__ : -x[0] ) ] return result
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
'''simple docstring''' import math import os import sys def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = '''''' try: with open(__UpperCAmelCase, '''rb''' ) as binary_file: snake_case_ = binary_file.read() for dat in data: snake_case_ = F"{dat:08b}" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> None: '''simple docstring''' lexicon.pop(__UpperCAmelCase ) snake_case_ = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: snake_case_ = '''0''' + lexicon[curr_key] snake_case_ = bin(__UpperCAmelCase )[2:] def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = {'''0''': '''0''', '''1''': '''1'''} snake_case_ ,snake_case_ = '''''', '''''' snake_case_ = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) index += 1 snake_case_ = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": snake_case_ = lexicon[curr_string] result += last_match_id return result def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = os.path.getsize(__UpperCAmelCase ) snake_case_ = bin(__UpperCAmelCase )[2:] snake_case_ = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> None: '''simple docstring''' snake_case_ = 8 try: with open(__UpperCAmelCase, '''wb''' ) as opened_file: snake_case_ = [ to_write[i : i + byte_length] for i in range(0, len(__UpperCAmelCase ), __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase, 2 ).to_bytes(1, byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> None: '''simple docstring''' snake_case_ = read_file_binary(__UpperCAmelCase ) snake_case_ = compress_data(__UpperCAmelCase ) snake_case_ = add_file_length(__UpperCAmelCase, __UpperCAmelCase ) write_file_binary(__UpperCAmelCase, __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
1
"""simple docstring""" import math def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" if ( not isinstance(_a ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" if ( not isinstance(_a ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0