code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """CLIPImageProcessor""" snake_case_ = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[Any] , __lowercase : Union[str, Any]=None , __lowercase : int=None , **__lowercase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) def __call__( self : Union[str, Any] , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]=None , __lowercase : List[str]=None , **__lowercase : str ) -> Tuple: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : int =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def __magic_name__ ( self : int , *__lowercase : Optional[Any] , **__lowercase : Tuple ) -> Dict: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ) -> Union[str, Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def __magic_name__ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
152
'''simple docstring''' import socket def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE__ : str =socket.gethostname() SCREAMING_SNAKE_CASE__ : List[Any] =1_2_3_1_2 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''', '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: SCREAMING_SNAKE_CASE__ : List[str] =sock.recv(1_0_2_4 ) if not data: break out_file.write(UpperCamelCase__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
152
1
import os from math import logaa def __A (_SCREAMING_SNAKE_CASE = "base_exp.txt" ) ->int: """simple docstring""" lowerCAmelCase__ :float = 0 lowerCAmelCase__ :Union[str, Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): lowerCAmelCase__ :Union[str, Any] = list(map(lowercase__ , line.split(',' ) ) ) if x * logaa(lowercase__ ) > largest: lowerCAmelCase__ :Any = x * logaa(lowercase__ ) lowerCAmelCase__ :List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
351
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->str: """simple docstring""" if attention_mask is None: lowerCAmelCase__ :List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ :Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ :Union[str, Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=9_9 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = parent lowerCAmelCase__ :Any = batch_size lowerCAmelCase__ :Optional[Any] = seq_length lowerCAmelCase__ :int = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :Union[str, Any] = vocab_size lowerCAmelCase__ :Tuple = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :Tuple = num_attention_heads lowerCAmelCase__ :Dict = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :Dict = attention_probs_dropout_prob lowerCAmelCase__ :Tuple = encoder_layerdrop lowerCAmelCase__ :Tuple = decoder_layerdrop lowerCAmelCase__ :Tuple = max_position_embeddings lowerCAmelCase__ :Any = eos_token_id lowerCAmelCase__ :str = pad_token_id lowerCAmelCase__ :Tuple = bos_token_id def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Tuple = self.eos_token_id # Eos Token lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ :List[Any] = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Optional[Any] = self.get_config() lowerCAmelCase__ :Any = prepare_mam_aaa_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def snake_case ( self ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = MaMaaaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() lowerCAmelCase__ :Optional[int] = inputs_dict['input_ids'] lowerCAmelCase__ :Any = inputs_dict['attention_mask'] lowerCAmelCase__ :Tuple = inputs_dict['head_mask'] # first forward pass lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ :Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase__ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ :Union[str, Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )['last_hidden_state'] lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[ 'last_hidden_state' ] # select random slice lowerCAmelCase__ :Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ :List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ :Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :int = outputs.encoder_last_hidden_state lowerCAmelCase__ :Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Union[str, Any] = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = MaMaaaEncoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Dict = MaMaaaDecoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __magic_name__ :str = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __magic_name__ :str = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __magic_name__ :Any = True __magic_name__ :Union[str, Any] = True __magic_name__ :Tuple = False __magic_name__ :List[str] = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = MaMaaaModelTester(self ) lowerCAmelCase__ :Tuple = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if not self.is_encoder_decoder: lowerCAmelCase__ :List[str] = inputs['input_ids'] del inputs["input_ids"] else: lowerCAmelCase__ :int = inputs['input_ids'] lowerCAmelCase__ :str = inputs.get('decoder_input_ids' , __UpperCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase__ :Tuple = wte(__UpperCAmelCase ) else: lowerCAmelCase__ :List[Any] = wte(__UpperCAmelCase ) lowerCAmelCase__ :Dict = wte(__UpperCAmelCase ) with torch.no_grad(): model(**__UpperCAmelCase )[0] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ :Any = input_dict['input_ids'] lowerCAmelCase__ :Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = MaMaaaForConditionalGeneration(__UpperCAmelCase ).eval().to(__UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) model.generate(num_beams=4 , do_sample=__UpperCAmelCase , early_stopping=__UpperCAmelCase , num_return_sequences=3 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __A = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Optional[int] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :Union[str, Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Any = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :int = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) # change to intended input lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Any = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :Any = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :List[Any] = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) lowerCAmelCase__ :Tuple = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model.generate( input_ids=dct['input_ids'].to(__UpperCAmelCase ) , attention_mask=dct['attention_mask'].to(__UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) lowerCAmelCase__ :Optional[Any] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] lowerCAmelCase__ :Any = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) assert generated == expected_en
254
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Tuple = "bloom" UpperCAmelCase__ : List[Any] = ["past_key_values"] UpperCAmelCase__ : str = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, SCREAMING_SNAKE_CASE_=25_0880, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : str = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase : Optional[Any] = kwargs.pop('n_embed', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = hidden_size if n_embed is None else n_embed UpperCamelCase : Tuple = n_layer UpperCamelCase : Dict = n_head UpperCamelCase : List[Any] = layer_norm_epsilon UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : int = use_cache UpperCamelCase : int = pretraining_tp UpperCamelCase : Optional[int] = apply_residual_connection_post_layernorm UpperCamelCase : str = hidden_dropout UpperCamelCase : str = attention_dropout UpperCamelCase : List[Any] = bos_token_id UpperCamelCase : Tuple = eos_token_id UpperCamelCase : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = version.parse("1.12" ) def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : Tuple = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs', inverted_values_shape=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head @property def snake_case_ ( self ) -> float: return 1e-3 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Dict = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Any = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : Any = seqlen + 2 UpperCamelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads UpperCamelCase : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase : List[str] = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : str = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : int = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCamelCase__ ) _UpperCAmelCase : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _UpperCAmelCase : Union[str, Any] = dataset_size < in_memory_max_size else: _UpperCAmelCase : Dict = False _UpperCAmelCase : Any = is_small_dataset(UpperCamelCase__ ) assert result == expected
68
"""simple docstring""" import datasets from .evaluate import evaluate _lowerCAmelCase :int = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCAmelCase :int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCAmelCase :str = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , A , A ) -> List[Any]: _UpperCAmelCase : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} _UpperCAmelCase : Optional[Any] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] _UpperCAmelCase : Union[str, Any] = evaluate(dataset=A , predictions=A ) return score
68
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['speech'] def __init__( self : Tuple , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Dict ) -> int: '''simple docstring''' requires_backends(self , ["""speech"""] ) class lowerCamelCase ( metaclass=lowercase_ ): '''simple docstring''' __snake_case = ['speech'] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' requires_backends(self , ["""speech"""] )
134
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
0
UpperCamelCase = tuple[float, float, float] UpperCamelCase = tuple[float, float, float] def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Vectorad: """simple docstring""" _SCREAMING_SNAKE_CASE = end_pointa[0] - end_pointa[0] _SCREAMING_SNAKE_CASE = end_pointa[1] - end_pointa[1] _SCREAMING_SNAKE_CASE = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Vectorad: """simple docstring""" _SCREAMING_SNAKE_CASE = ab[1] * ac[2] - ab[2] * ac[1] # *i _SCREAMING_SNAKE_CASE = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _SCREAMING_SNAKE_CASE = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> bool: """simple docstring""" return tuple(round(snake_case__ ,snake_case__ ) for x in vector ) == (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 10 ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = create_vector(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = create_vector(snake_case__ ,snake_case__ ) return is_zero_vector(get_ad_vectors_cross(snake_case__ ,snake_case__ ) ,snake_case__ )
125
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[str] = KandinskyVaaInpaintPipeline __snake_case : Union[str, Any] = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Tuple = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : str = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : List[str] = False @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
125
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _UpperCamelCase = TaTokenizerFast _UpperCamelCase = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _UpperCamelCase = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
254
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCamelCase = '''pt''' elif is_tf_available(): _UpperCamelCase = '''tf''' else: _UpperCamelCase = '''jax''' class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = ByTaTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def __A ( self ) -> int: '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> Optional[int]: '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def __A ( self , **__UpperCAmelCase ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=20 , __UpperCAmelCase=5 ) -> Tuple[str, list]: '''simple docstring''' # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCAmelCase : Optional[Any] = [] for i in range(len(__UpperCAmelCase ) ): try: __UpperCAmelCase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCAmelCase : List[Any] = list(filter(lambda __UpperCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = list(filter(lambda __UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCAmelCase ) , __UpperCAmelCase ) ) if max_length is not None and len(__UpperCAmelCase ) > max_length: __UpperCAmelCase : Dict = toks[:max_length] if min_length is not None and len(__UpperCAmelCase ) < min_length and len(__UpperCAmelCase ) > 0: while len(__UpperCAmelCase ) < min_length: __UpperCAmelCase : Dict = toks + toks # toks_str = [t[1] for t in toks] __UpperCAmelCase : Tuple = [t[0] for t in toks] # Ensure consistency __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) if " " not in output_txt and len(__UpperCAmelCase ) > 1: __UpperCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCAmelCase ) ) if with_prefix_space: __UpperCAmelCase : List[Any] = """ """ + output_txt __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) return output_txt, output_ids def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.ta_base_tokenizer __UpperCAmelCase : Optional[int] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) __UpperCAmelCase : List[str] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.ta_base_tokenizer __UpperCAmelCase : List[Any] = """Unicode €.""" __UpperCAmelCase : Dict = tokenizer(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , __UpperCAmelCase ) # decoding __UpperCAmelCase : List[Any] = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , """Unicode €.</s>""" ) __UpperCAmelCase : Dict = tokenizer("""e è é ê ë""" ) __UpperCAmelCase : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , __UpperCAmelCase ) # decoding __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = self.ta_base_tokenizer __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __UpperCAmelCase : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __UpperCAmelCase : Any = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) if FRAMEWORK != "jax": __UpperCAmelCase : List[str] = list(batch.input_ids.numpy()[0] ) else: __UpperCAmelCase : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.ta_base_tokenizer __UpperCAmelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Tuple = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __UpperCAmelCase ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertNotIn("""decoder_input_ids""" , __UpperCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , __UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.ta_base_tokenizer __UpperCAmelCase : Any = [ """Summary of the text.""", """Another summary.""", ] __UpperCAmelCase : List[str] = tokenizer( text_target=__UpperCAmelCase , max_length=32 , padding="""max_length""" , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.ta_base_tokenizer __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization. </s>"""] __UpperCAmelCase : Tuple = ["""Summary of the text. </s>"""] # fmt: off __UpperCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __UpperCAmelCase : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __UpperCAmelCase : Optional[int] = tokenizer(__UpperCAmelCase , text_target=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , batch["""input_ids"""][0] ) self.assertEqual(__UpperCAmelCase , batch["""labels"""][0] ) def __A ( self ) -> List[str]: '''simple docstring''' # safety check on max_len default value so we are sure the test works __UpperCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : Any = tempfile.mkdtemp() __UpperCAmelCase : Any = """ He is very happy, UNwant\u00E9d,running""" __UpperCAmelCase : Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) shutil.rmtree(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : str = tempfile.mkdtemp() __UpperCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __UpperCAmelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __UpperCAmelCase : str = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Any = tokenizer.__class__.from_pretrained(__UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : Optional[Any] = json.load(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__UpperCAmelCase ) __UpperCAmelCase : Any = [f'<extra_id_{i}>' for i in range(125 )] __UpperCAmelCase : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] __UpperCAmelCase : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__UpperCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : int = tokenizer_class.from_pretrained( __UpperCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : int = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__UpperCAmelCase )] __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained( __UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_class.from_pretrained(__UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> Any: '''simple docstring''' # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __UpperCAmelCase : Tuple = self.get_tokenizers(fast=__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : Optional[int] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] __UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : List[str] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for attr in attributes_list: setattr(__UpperCAmelCase , attr + """_id""" , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , attr + """_id""" ) , __UpperCAmelCase ) setattr(__UpperCAmelCase , attr + """_id""" , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , attr + """_id""" ) , __UpperCAmelCase ) setattr(__UpperCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens_ids""" ) , [] ) setattr(__UpperCAmelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
254
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """git_vision_model""" def __init__( self :str , lowercase_ :Union[str, Any]=7_68 , lowercase_ :Optional[Any]=30_72 , lowercase_ :Optional[Any]=12 , lowercase_ :Union[str, Any]=12 , lowercase_ :List[Any]=3 , lowercase_ :Dict=2_24 , lowercase_ :List[Any]=16 , lowercase_ :str="quick_gelu" , lowercase_ :Dict=1E-5 , lowercase_ :Optional[Any]=0.0 , lowercase_ :Union[str, Any]=0.02 , **lowercase_ :int , ) -> Tuple: super().__init__(**lowercase_ ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = image_size UpperCAmelCase = initializer_range UpperCAmelCase = attention_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = hidden_act @classmethod def UpperCAmelCase__ ( cls :List[str] , lowercase_ :Union[str, os.PathLike] , **lowercase_ :Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": UpperCAmelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """git""" def __init__( self :str , lowercase_ :Optional[Any]=None , lowercase_ :List[str]=3_05_22 , lowercase_ :Any=7_68 , lowercase_ :List[str]=6 , lowercase_ :Dict=12 , lowercase_ :Optional[int]=30_72 , lowercase_ :Union[str, Any]="gelu" , lowercase_ :Any=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=10_24 , lowercase_ :Optional[int]=0.02 , lowercase_ :Any=1E-12 , lowercase_ :Union[str, Any]=0 , lowercase_ :List[str]="absolute" , lowercase_ :Tuple=True , lowercase_ :List[str]=False , lowercase_ :Optional[int]=1_01 , lowercase_ :List[str]=1_02 , lowercase_ :Tuple=None , **lowercase_ :Dict , ) -> Tuple: super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_ ) if vision_config is None: UpperCAmelCase = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) UpperCAmelCase = GitVisionConfig(**lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = tie_word_embeddings UpperCAmelCase = num_image_with_embedding UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id def UpperCAmelCase__ ( self :Any ) -> Dict: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
181
"""simple docstring""" import operator as op snake_case_ = """scaler.pt""" snake_case_ = """pytorch_model""" snake_case_ = """random_states""" snake_case_ = """optimizer""" snake_case_ = """scheduler""" snake_case_ = """pytorch_model.bin""" snake_case_ = """pytorch_model.bin.index.json""" snake_case_ = """model.safetensors""" snake_case_ = """model.safetensors.index.json""" snake_case_ = """1.10.2""" snake_case_ = """py38""" snake_case_ = """4.17.0""" snake_case_ = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] snake_case_ = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] snake_case_ = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] snake_case_ = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] snake_case_ = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] snake_case_ = """2.0.1""" snake_case_ = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] snake_case_ = ["""default""", """reduce-overhead""", """max-autotune"""] snake_case_ = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 snake_case_ = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] snake_case_ = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] snake_case_ = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
181
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: List[str] ) -> Tuple: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: List[str]=0 ) -> Union[str, Any]: '''simple docstring''' return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[column] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Dict=float("inf" ) ) -> List[Any]: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): A__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A__ = current_dis return min_dis def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: List[str]=float("inf" ) ) -> int: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , SCREAMING_SNAKE_CASE_ ): for j in range(max(0 , i - 6 ) , SCREAMING_SNAKE_CASE_ ): A__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A__ = current_dis return min_dis def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Dict: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # recursion A__ = points_counts // 2 A__ = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE_ , points_sorted_on_y[:mid] , SCREAMING_SNAKE_CASE_ ) A__ = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE_ , points_sorted_on_y[mid:] , points_counts - mid ) A__ = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(SCREAMING_SNAKE_CASE_ ) A__ = dis_between_closest_in_strip( SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> Optional[int]: '''simple docstring''' A__ = column_based_sort(SCREAMING_SNAKE_CASE_ , column=0 ) A__ = column_based_sort(SCREAMING_SNAKE_CASE_ , column=1 ) return ( closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
68
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"height": 384, "width": 384} A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase , default_to_square=lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) A__ = (size["height"], size["width"]) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Optional[Any]: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = size if size is not None else self.size A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase ) return encoded_outputs
68
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[str] = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Union[str, Any] = ConsistencyModelPipeline A__ : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS A__ : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt A__ : List[str] = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Union[str, Any]=False ) -> List[Any]: '''simple docstring''' if class_cond: snake_case : List[Any] = self.dummy_cond_unet else: snake_case : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler snake_case : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case : List[Any] = { "unet": unet, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Any , snake_case__ : Optional[Any]=0 ) -> Optional[Any]: '''simple docstring''' if str(snake_case__ ).startswith("mps" ): snake_case : List[str] = torch.manual_seed(snake_case__ ) else: snake_case : Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Optional[int] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' snake_case : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.get_dummy_components() snake_case : Optional[Any] = ConsistencyModelPipeline(**snake_case__ ) snake_case : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) snake_case : Optional[int] = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) snake_case : Union[str, Any] = image[0, -3:, -3:, -1] snake_case : Dict = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : int = self.get_dummy_components(class_cond=snake_case__ ) snake_case : Any = ConsistencyModelPipeline(**snake_case__ ) snake_case : List[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) snake_case : Dict = 0 snake_case : List[Any] = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : Optional[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Union[str, Any] = self.get_dummy_components() snake_case : Optional[Any] = ConsistencyModelPipeline(**snake_case__ ) snake_case : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Dict = self.get_dummy_inputs(snake_case__ ) snake_case : List[Any] = 1 snake_case : Dict = None snake_case : Tuple = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) snake_case : Any = image[0, -3:, -3:, -1] snake_case : List[str] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components(class_cond=snake_case__ ) snake_case : List[Any] = ConsistencyModelPipeline(**snake_case__ ) snake_case : Union[str, Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : List[str] = self.get_dummy_inputs(snake_case__ ) snake_case : Any = 1 snake_case : Optional[int] = None snake_case : List[Any] = 0 snake_case : int = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) snake_case : Union[str, Any] = image[0, -3:, -3:, -1] snake_case : Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Optional[Any]=False , snake_case__ : str="cpu" , snake_case__ : Optional[int]=torch.floataa , snake_case__ : Optional[Any]=(1, 3, 64, 64) ) -> Tuple: '''simple docstring''' snake_case : List[str] = torch.manual_seed(snake_case__ ) snake_case : List[str] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: snake_case : Tuple = self.get_fixed_latents(seed=snake_case__ , device=snake_case__ , dtype=snake_case__ , shape=snake_case__ ) snake_case : int = latents return inputs def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any]=0 , snake_case__ : Union[str, Any]="cpu" , snake_case__ : int=torch.floataa , snake_case__ : Any=(1, 3, 64, 64) ) -> int: '''simple docstring''' if type(snake_case__ ) == str: snake_case : Optional[Any] = torch.device(snake_case__ ) snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : List[Any] = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) return latents def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) snake_case : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case : List[Any] = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : str = self.get_inputs() snake_case : Optional[int] = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : List[str] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) snake_case : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case : Dict = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : int = self.get_inputs() snake_case : Union[str, Any] = 1 snake_case : Optional[int] = None snake_case : int = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) snake_case : Dict = image[0, -3:, -3:, -1] snake_case : Union[str, Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : str = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) snake_case : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case : Optional[int] = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : str = self.get_inputs(get_fixed_latents=snake_case__ , device=snake_case__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case__ , enable_math=snake_case__ , enable_mem_efficient=snake_case__ ): snake_case : List[Any] = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : Optional[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) snake_case : str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case : str = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Dict = self.get_inputs(get_fixed_latents=snake_case__ , device=snake_case__ ) snake_case : Any = 1 snake_case : Union[str, Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case__ , enable_math=snake_case__ , enable_mem_efficient=snake_case__ ): snake_case : Union[str, Any] = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) snake_case : int = image[0, -3:, -3:, -1] snake_case : List[Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
59
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
1
from math import pow, sqrt def SCREAMING_SNAKE_CASE ( *lowercase_ ) -> bool: """simple docstring""" A__ = len(lowercase_ ) > 0 and all(value > 0.0 for value in values ) return result def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowercase_ , lowercase_ , lowercase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
231
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Tuple = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : int="shi-labs/oneformer_demo" ) -> Tuple: with open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ), '''r''' ) as f: UpperCAmelCase_ : Optional[Any] = json.load(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = {} UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[str] = [] for key, info in class_info.items(): UpperCAmelCase_ : str = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Tuple = thing_ids UpperCAmelCase_ : Tuple = class_names return metadata class __a (unittest.TestCase ): def __init__( self : int , __magic_name__ : List[str] , __magic_name__ : int=7 , __magic_name__ : List[str]=3 , __magic_name__ : Any=30 , __magic_name__ : Tuple=4_00 , __magic_name__ : int=None , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[int]=True , __magic_name__ : int=[0.5, 0.5, 0.5] , __magic_name__ : List[Any]=[0.5, 0.5, 0.5] , __magic_name__ : int=10 , __magic_name__ : Tuple=False , __magic_name__ : Optional[Any]=2_55 , __magic_name__ : List[str]="shi-labs/oneformer_demo" , __magic_name__ : int="ade20k_panoptic.json" , __magic_name__ : str=10 , ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : List[Any] = min_resolution UpperCAmelCase_ : Any = max_resolution UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : List[Any] = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean UpperCAmelCase_ : Union[str, Any] = image_std UpperCAmelCase_ : Dict = class_info_file UpperCAmelCase_ : List[str] = prepare_metadata(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Dict = num_text UpperCAmelCase_ : Tuple = repo_path # for the post_process_functions UpperCAmelCase_ : List[Any] = 2 UpperCAmelCase_ : Any = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Dict = 3 UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = do_reduce_labels UpperCAmelCase_ : int = ignore_index def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : str=False ) -> Tuple: """simple docstring""" if not batched: UpperCAmelCase_ : Dict = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : str = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Tuple = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Any = self.size['''shortest_edge'''] UpperCAmelCase_ : Tuple = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Optional[int] = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : str = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] UpperCAmelCase_ : Union[str, Any] = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __a (lowerCamelCase , unittest.TestCase ): __a : List[Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __a : List[Any] = image_processing_class def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''image_mean''' ) ) self.assertTrue(hasattr(__magic_name__ , '''image_std''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size''' ) ) self.assertTrue(hasattr(__magic_name__ , '''ignore_index''' ) ) self.assertTrue(hasattr(__magic_name__ , '''class_info_file''' ) ) self.assertTrue(hasattr(__magic_name__ , '''num_text''' ) ) self.assertTrue(hasattr(__magic_name__ , '''repo_path''' ) ) self.assertTrue(hasattr(__magic_name__ , '''metadata''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_reduce_labels''' ) ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" pass def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" # Initialize image_processor UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : Any = self.image_processing_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) UpperCAmelCase_ : Optional[int] = image_processor( __magic_name__ , ['''semantic'''] * len(__magic_name__ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" # Initialize image_processor UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.image_processing_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) UpperCAmelCase_ : List[Any] = image_processor( __magic_name__ , ['''semantic'''] * len(__magic_name__ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" # Initialize image_processor UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : Any = self.image_processing_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) UpperCAmelCase_ : Tuple = image_processor( __magic_name__ , ['''semantic'''] * len(__magic_name__ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict=False , __magic_name__ : Union[str, Any]=False , __magic_name__ : Any="np" ) -> str: """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Union[str, Any] = self.image_processing_tester.num_labels UpperCAmelCase_ : str = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=__magic_name__ ) if with_segmentation_maps: UpperCAmelCase_ : List[str] = num_labels if is_instance_map: UpperCAmelCase_ : List[Any] = list(range(__magic_name__ ) ) * 2 UpperCAmelCase_ : Any = dict(enumerate(__magic_name__ ) ) UpperCAmelCase_ : List[Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : int = [Image.fromarray(__magic_name__ ) for annotation in annotations] UpperCAmelCase_ : Dict = image_processor( __magic_name__ , ['''semantic'''] * len(__magic_name__ ) , __magic_name__ , return_tensors='''pt''' , instance_id_to_semantic_id=__magic_name__ , pad_and_return_pixel_mask=__magic_name__ , ) return inputs def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" def common(__magic_name__ : List[str]=False , __magic_name__ : Optional[int]=None ): UpperCAmelCase_ : str = self.comm_get_image_processor_inputs( with_segmentation_maps=__magic_name__ , is_instance_map=__magic_name__ , segmentation_type=__magic_name__ ) UpperCAmelCase_ : Tuple = inputs['''mask_labels'''] UpperCAmelCase_ : Union[str, Any] = inputs['''class_labels'''] UpperCAmelCase_ : Tuple = inputs['''pixel_values'''] UpperCAmelCase_ : List[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__magic_name__ , __magic_name__ , __magic_name__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__magic_name__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__magic_name__ ) common(is_instance_map=__magic_name__ , segmentation_type='''pil''' ) common(is_instance_map=__magic_name__ , segmentation_type='''pil''' ) def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = np.zeros((20, 50) ) UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Any = binary_mask_to_rle(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : str = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : int = fature_extractor.post_process_semantic_segmentation(__magic_name__ , target_sizes=__magic_name__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Any = image_processor.post_process_instance_segmentation(__magic_name__ , threshold=0 ) self.assertTrue(len(__magic_name__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __magic_name__ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" UpperCAmelCase_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[str] = image_processor.post_process_panoptic_segmentation(__magic_name__ , threshold=0 ) self.assertTrue(len(__magic_name__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __magic_name__ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
125
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __a : def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=99 , __magic_name__ : List[str]=32 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=37 , __magic_name__ : Dict="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Tuple=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=3 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=0 , ) -> Any: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Tuple = num_choices UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Union[str, Any] = projection_dim def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) UpperCAmelCase_ : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : int = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Any = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Tuple ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = TFDPRQuestionEncoder(config=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = TFDPRReader(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __a : int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __a : str = False __a : str = False __a : Dict = False __a : Optional[Any] = False __a : Any = False def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFDPRModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRReader.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) UpperCAmelCase_ : Optional[int] = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] UpperCAmelCase_ : List[Any] = model(__magic_name__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCAmelCase_ : List[str] = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
from __future__ import annotations import time __lowerCamelCase : Optional[Any] = list[tuple[int, int]] __lowerCamelCase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : int = pos_x snake_case__ : Tuple = pos_y snake_case__ : str = (pos_y, pos_x) snake_case__ : Any = goal_x snake_case__ : Tuple = goal_y snake_case__ : List[Any] = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : Optional[Any] = [self.start] snake_case__ : str = False def _lowercase ( self : Tuple ): while self.node_queue: snake_case__ : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : str = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Any , __A : Node | None ): snake_case__ : List[Any] = node snake_case__ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Any = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , __A : List[str] , __A : int ): snake_case__ : Tuple = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = BreadthFirstSearch(__A , __A ) snake_case__ : Optional[Any] = False def _lowercase ( self : Dict ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : str = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : Optional[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : Dict = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Optional[Any] = current_bwd_node snake_case__ : Any = current_fwd_node snake_case__ : str = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node , __A : Node ): snake_case__ : Union[str, Any] = self.fwd_bfs.retrace_path(__A ) snake_case__ : List[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : Optional[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : Optional[Any] = (0, 0) __lowerCamelCase : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[int] = BreadthFirstSearch(init, goal) __lowerCamelCase : List[str] = bfs.search() __lowerCamelCase : List[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[int] = time.time() __lowerCamelCase : str = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : Optional[int] = bd_bfs.search() __lowerCamelCase : List[str] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
286
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any ): snake_case__ : List[str] = b.T snake_case__ : Union[str, Any] = np.sum(np.square(snake_case_ ) , axis=1 ) snake_case__ : Dict = np.sum(np.square(snake_case_ ) , axis=0 ) snake_case__ : Dict = np.matmul(snake_case_ , snake_case_ ) snake_case__ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Tuple ): snake_case__ : Tuple = x.reshape(-1 , 3 ) snake_case__ : int = squared_euclidean_distance(snake_case_ , snake_case_ ) return np.argmin(snake_case_ , axis=1 ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self : str , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : bool = True , **__A : Union[str, Any] , ): super().__init__(**__A ) snake_case__ : Optional[int] = size if size is not None else {"height": 2_5_6, "width": 2_5_6} snake_case__ : List[Any] = get_size_dict(__A ) snake_case__ : Any = np.array(__A ) if clusters is not None else None snake_case__ : Optional[Any] = do_resize snake_case__ : Any = size snake_case__ : List[Any] = resample snake_case__ : List[Any] = do_normalize snake_case__ : Dict = do_color_quantize def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : Optional[Union[str, ChannelDimension]] = None , **__A : int , ): snake_case__ : List[Any] = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size["height"], size["width"]) , resample=__A , data_format=__A , **__A ) def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Optional[Union[str, ChannelDimension]] = None , ): snake_case__ : List[str] = rescale(image=__A , scale=1 / 1_2_7.5 , data_format=__A ) snake_case__ : List[Any] = image - 1 return image def _lowercase ( self : Dict , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Optional[bool] = None , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A : Optional[int] , ): snake_case__ : Any = do_resize if do_resize is not None else self.do_resize snake_case__ : Union[str, Any] = size if size is not None else self.size snake_case__ : Union[str, Any] = get_size_dict(__A ) snake_case__ : Optional[Any] = resample if resample is not None else self.resample snake_case__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ : Union[str, Any] = clusters if clusters is not None else self.clusters snake_case__ : Union[str, Any] = np.array(__A ) snake_case__ : Any = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ : Optional[Any] = [to_numpy_array(__A ) for image in images] if do_resize: snake_case__ : List[str] = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: snake_case__ : Union[str, Any] = [self.normalize(image=__A ) for image in images] if do_color_quantize: snake_case__ : int = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ : int = np.array(__A ) snake_case__ : Dict = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ : str = images.shape[0] snake_case__ : str = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ : Union[str, Any] = list(__A ) else: snake_case__ : Any = [to_channel_dimension_format(__A , __A ) for image in images] snake_case__ : Optional[int] = {"input_ids": images} return BatchFeature(data=__A , tensor_type=__A )
286
1
'''simple docstring''' UpperCamelCase__ = '''Tobias Carryer''' from time import time class lowerCamelCase_ : def __init__( self : int , _A : Union[str, Any] , _A : Dict , _A : Union[str, Any] , _A : Any=int(time() ) ): # noqa: B008 '''simple docstring''' UpperCAmelCase__ : List[Any] = multiplier UpperCAmelCase__ : Tuple = increment UpperCAmelCase__ : List[Any] = modulo UpperCAmelCase__ : str = seed def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCamelCase__ = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
181
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : List[Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[str] = {"""tokenizer_file""": """tokenizer.json"""} _lowercase : Optional[Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = VOCAB_FILES_NAMES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = ["input_ids", "attention_mask"] __magic_name__ : Optional[int] = None def __init__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Union[str, Any]="<pad>" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Optional[int] , )-> Union[str, Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str] )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any] )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
class _snake_case : def __init__( self: Dict ) -> Any: __UpperCAmelCase : List[Any] = {} def _lowerCamelCase ( self: int ) -> None: print(self.vertex ) for i in self.vertex: print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase ) else: # else make a new vertex __UpperCAmelCase : str = [to_vertex] def _lowerCamelCase ( self: List[str] ) -> None: # visited array for storing already visited nodes __UpperCAmelCase : List[str] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: list ) -> None: # mark start vertex as visited __UpperCAmelCase : List[Any] = True print(__lowerCamelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": _snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
342
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
1
def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" return " ".join( "".join(word[::-1] ) if len(__lowerCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
231
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
231
1
from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase : Tuple = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
208
from ..utils import DummyObject, requires_backends class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''keras_nlp'''] def __init__( self : Optional[int] , *A_ : Any , **A_ : Dict ) -> Optional[int]: """simple docstring""" requires_backends(self , ['keras_nlp'] )
208
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCamelCase_ : Union[str, Any] = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' lowerCamelCase_ : Optional[Any] = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' lowerCamelCase_ : int = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_=4 , snake_case_=False ): """simple docstring""" A_ : List[str] = compute_bleu( reference_corpus=snake_case_ , translation_corpus=snake_case_ , max_order=snake_case_ , smooth=snake_case_ ) ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) : int = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
286
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase_ : Any = re.compile(r'\s+') def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=5 ): """simple docstring""" A_ : Optional[int] = ['auto-generated', 'autogenerated', 'automatically generated'] A_ : List[str] = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=5 , _UpperCAmelCase=0.05 ): """simple docstring""" A_ : Any = ['unit tests', 'test file', 'configuration file'] A_ : Dict = example['content'].splitlines() A_ : List[Any] = 0 A_ : str = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : Tuple = example['content'].count('\n' ) A_ : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = ['def ', 'class ', 'for ', 'while '] A_ : Tuple = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=4 ): """simple docstring""" A_ : Union[str, Any] = example['content'].splitlines() A_ : Any = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] A_ : Dict = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings lowerCamelCase_ : Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : int = multiprocessing.cpu_count() lowerCamelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase_ : Tuple = time.time() lowerCamelCase_ : Tuple = load_dataset(args.dataset_name, split='train') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase_ : int = set(ds.unique('hash')) lowerCamelCase_ : Union[str, Any] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase_ : Optional[int] = time.time() lowerCamelCase_ : Tuple = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase_ : Union[str, Any] = time.time() lowerCamelCase_ , lowerCamelCase_ : str = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase_ : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowerCamelCase_ : Optional[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) lowerCamelCase_ : List[str] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase_ : Optional[int] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase_ : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
286
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ :str = logging.get_logger(__name__) class __A ( __lowercase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**UpperCAmelCase__ ) __UpperCamelCase : Union[str, Any] =size if size is not None else {'shortest_edge': 256} __UpperCamelCase : Optional[Any] =get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __UpperCamelCase : str =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase : Optional[Any] =get_size_dict(UpperCAmelCase__ ) __UpperCamelCase : Dict =do_resize __UpperCamelCase : List[str] =size __UpperCamelCase : Optional[int] =resample __UpperCamelCase : int =do_center_crop __UpperCamelCase : Any =crop_size __UpperCamelCase : List[str] =do_rescale __UpperCamelCase : Dict =rescale_factor __UpperCamelCase : Optional[int] =do_normalize __UpperCamelCase : Tuple =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase : List[str] =image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[Any] =get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCamelCase : List[Any] =get_resize_output_image_size(UpperCAmelCase__ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =get_size_dict(UpperCAmelCase__ ) return center_crop(UpperCAmelCase__ , size=(size['height'], size['width']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ): """simple docstring""" return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : int =do_resize if do_resize is not None else self.do_resize __UpperCamelCase : int =size if size is not None else self.size __UpperCamelCase : Optional[int] =get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __UpperCamelCase : Any =resample if resample is not None else self.resample __UpperCamelCase : Optional[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase : Optional[int] =crop_size if crop_size is not None else self.crop_size __UpperCamelCase : Optional[int] =get_size_dict(UpperCAmelCase__ ) __UpperCamelCase : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase : Optional[int] =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase : Any =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : Optional[int] =image_mean if image_mean is not None else self.image_mean __UpperCamelCase : Optional[int] =image_std if image_std is not None else self.image_std __UpperCamelCase : Tuple =make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase : Optional[Any] =[to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __UpperCamelCase : List[str] =[self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __UpperCamelCase : List[str] =[self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: __UpperCamelCase : List[str] =[self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: __UpperCamelCase : Any =[self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] __UpperCamelCase : List[str] =[to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __UpperCamelCase : Tuple ={'pixel_values': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
361
import math import tensorflow as tf from packaging import version def A ( a_ ) -> Optional[Any]: __UpperCamelCase : Dict =tf.convert_to_tensor(a_ ) __UpperCamelCase : str =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) )) return x * cdf def A ( a_ ) -> Union[str, Any]: __UpperCamelCase : str =tf.convert_to_tensor(a_ ) __UpperCamelCase : Union[str, Any] =tf.cast(math.pi ,x.dtype ) __UpperCamelCase : List[str] =tf.cast(0.044_715 ,x.dtype ) __UpperCamelCase : Optional[int] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(a_ ,3 )) )) return x * cdf def A ( a_ ) -> Any: __UpperCamelCase : str =tf.convert_to_tensor(a_ ) return x * tf.tanh(tf.math.softplus(a_ ) ) def A ( a_ ) -> Dict: __UpperCamelCase : int =tf.convert_to_tensor(a_ ) __UpperCamelCase : Optional[int] =tf.cast(0.044_715 ,x.dtype ) __UpperCamelCase : List[str] =tf.cast(0.7_978_845_608 ,x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def A ( a_ ) -> List[str]: __UpperCamelCase : List[Any] =tf.convert_to_tensor(a_ ) __UpperCamelCase : Optional[int] =tf.cast(1.702 ,x.dtype ) return x * tf.math.sigmoid(coeff * x ) def A ( a_ ) -> Tuple: return tf.clip_by_value(_gelu(a_ ) ,-10 ,10 ) def A ( a_ ,a_=-1 ) -> Any: __UpperCamelCase , __UpperCamelCase : List[Any] =tf.split(a_ ,2 ,axis=a_ ) return a * tf.math.sigmoid(a_ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def A ( a_ ) -> Tuple: return tf.keras.activations.gelu(a_ ,approximate=a_ ) A_ :int = tf.keras.activations.gelu A_ :Any = approximate_gelu_wrap else: A_ :str = _gelu A_ :Dict = _gelu_new A_ :str = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def A ( a_ ) -> Dict: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
245
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "Pix2StructImageProcessor" __UpperCamelCase = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Any , lowercase_ : Dict , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = False super().__init__(lowercase_ , lowercase_) def __call__( self : Dict , lowercase_ : Optional[int]=None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = 2048 , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''') # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ : Any = self.image_processor( lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , **lowercase_) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor( lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , header_text=lowercase_ , **lowercase_) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ : List[Any] = text_encoding.pop('''attention_mask''') if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ : Dict = text_encoding.pop('''input_ids''') else: SCREAMING_SNAKE_CASE_ : str = None if text_encoding is not None: encoding_image_processor.update(lowercase_) return encoding_image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[str]): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Any): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
91
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : List[str]=13 , lowercase_ : int=7 , lowercase_ : Any=True , lowercase_ : str=True , lowercase_ : List[Any]=True , lowercase_ : List[Any]=True , lowercase_ : Dict=99 , lowercase_ : Union[str, Any]=24 , lowercase_ : int=2 , lowercase_ : List[str]=6 , lowercase_ : Any=37 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : List[str]=16 , lowercase_ : Any=2 , lowercase_ : Any=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Optional[int]=None , lowercase_ : str=1000 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : Tuple = scope SCREAMING_SNAKE_CASE_ : Optional[int] = range_bbox def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : str = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : List[str] = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : List[str] = t SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = LiltModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , bbox=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : int = model(lowercase_ , bbox=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = LiltForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LiltForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str): '''simple docstring''' return True def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = LiltModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Dict = type self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[int] = LiltModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_torch @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''').to(lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.tensor([[1, 2]] , device=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(input_ids=lowercase_ , bbox=lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.Size([1, 2, 768]) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=lowercase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowercase_ , atol=1e-3))
91
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=7, lowerCAmelCase__=3, lowerCAmelCase__=30, lowerCAmelCase__=400, lowerCAmelCase__=True, lowerCAmelCase__=None, lowerCAmelCase__=0.9, lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__=[0.5, 0.5, 0.5], lowerCAmelCase__=[0.5, 0.5, 0.5], ) -> Union[str, Any]: snake_case_ = size if size is not None else {'shortest_edge': 30} snake_case_ = crop_size if crop_size is not None else {'height': 30, 'width': 30} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize_and_center_crop snake_case_ = size snake_case_ = crop_pct snake_case_ = crop_size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std def a_ ( self) -> Union[str, Any]: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = PoolFormerImageProcessor if is_vision_available() else None def a_ ( self) -> List[str]: snake_case_ = PoolFormerImageProcessingTester(self) @property def a_ ( self) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self) -> Optional[Any]: snake_case_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__, 'do_resize_and_center_crop')) self.assertTrue(hasattr(lowerCAmelCase__, 'size')) self.assertTrue(hasattr(lowerCAmelCase__, 'crop_pct')) self.assertTrue(hasattr(lowerCAmelCase__, 'do_normalize')) self.assertTrue(hasattr(lowerCAmelCase__, 'image_mean')) self.assertTrue(hasattr(lowerCAmelCase__, 'image_std')) def a_ ( self) -> Union[str, Any]: snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'shortest_edge': 30}) self.assertEqual(image_processor.crop_size, {'height': 30, 'width': 30}) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84}) def a_ ( self) -> int: pass def a_ ( self) -> Optional[Any]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, Image.Image) # Test not batched input snake_case_ = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case_ = image_processing(lowerCAmelCase__, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a_ ( self) -> Tuple: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, np.ndarray) # Test not batched input snake_case_ = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case_ = image_processing(lowerCAmelCase__, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a_ ( self) -> str: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, torch.Tensor) # Test not batched input snake_case_ = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case_ = image_processing(lowerCAmelCase__, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
312
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
1
class snake_case__ : def __init__( self ) -> Optional[Any]: __magic_name__ : Optional[Any] = {} def __magic_name__ ( self ) -> None: print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , """ -> """ , """ -> """.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex __magic_name__ : Dict = [to_vertex] def __magic_name__ ( self ) -> None: # visited array for storing already visited nodes __magic_name__ : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: # mark start vertex as visited __magic_name__ : Union[str, Any] = True print(lowerCAmelCase__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __magic_name__: Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
342
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
221
from maths.prime_factors import prime_factors def _A ( lowerCAmelCase_ : int ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCAmelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase_ ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowerCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
221
1
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase_ : """simple docstring""" def __init__( self : Any , _a : Optional[int] , _a : List[str]=99 , _a : Dict=13 , _a : List[str]=7 , _a : Any=9 , _a : List[str]=True , _a : str=True , _a : str=False , _a : Tuple=32 , _a : Any=5 , _a : int=4 , _a : Optional[Any]=37 , _a : Tuple=8 , _a : List[Any]=0.1 , _a : Any=0.002 , _a : Tuple=1 , _a : Union[str, Any]=0 , _a : List[str]=0 , _a : int=None , _a : Optional[int]=None , ) -> Union[str, Any]: __lowerCamelCase : str = parent __lowerCamelCase : Union[str, Any] = batch_size __lowerCamelCase : Optional[int] = encoder_seq_length __lowerCamelCase : Optional[int] = decoder_seq_length # For common tests __lowerCamelCase : Any = self.decoder_seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Dict = use_attention_mask __lowerCamelCase : List[Any] = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : Union[str, Any] = d_ff __lowerCamelCase : Optional[Any] = relative_attention_num_buckets __lowerCamelCase : List[Any] = dropout_rate __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : Dict = eos_token_id __lowerCamelCase : Any = pad_token_id __lowerCamelCase : Tuple = decoder_start_token_id __lowerCamelCase : List[str] = None __lowerCamelCase : Dict = decoder_layers def _lowercase ( self : Optional[int] ) -> List[str]: return TaConfig.from_pretrained('google/umt5-base' ) def _lowercase ( self : Tuple , _a : Optional[Any] , _a : List[Any] , _a : Any , _a : Tuple=None , _a : Optional[Any]=None , _a : Union[str, Any]=None , _a : Optional[Any]=None , _a : List[str]=None , ) -> int: if attention_mask is None: __lowerCamelCase : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase : Dict = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a ) if decoder_head_mask is None: __lowerCamelCase : List[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a ) if cross_attn_head_mask is None: __lowerCamelCase : Tuple = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowercase ( self : Dict ) -> str: __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase : Dict = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase : Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase : Dict = self.get_config() __lowerCamelCase : List[Any] = config.num_attention_heads __lowerCamelCase : Optional[Any] = self.prepare_inputs_dict(_a , _a , _a ) return config, input_dict def _lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCamelCase ,__lowerCamelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] ) -> List[Any]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowercase ( self : List[str] ) -> Optional[int]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowercase ( self : Union[str, Any] , _a : List[Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : Any , _a : Optional[int] , _a : Dict , ) -> Optional[int]: __lowerCamelCase : List[Any] = UMTaModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : Dict = model( input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , ) __lowerCamelCase : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a ) __lowerCamelCase : Optional[int] = result.last_hidden_state __lowerCamelCase : int = result.past_key_values __lowerCamelCase : str = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowercase ( self : Optional[Any] , _a : Dict , _a : List[Any] , _a : str , _a : int , _a : Optional[int] , _a : Dict , ) -> Any: __lowerCamelCase : Union[str, Any] = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass __lowerCamelCase : int = model(_a , use_cache=_a ) __lowerCamelCase : str = model(_a ) __lowerCamelCase : List[Any] = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) __lowerCamelCase ,__lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase : List[str] = model(_a )['last_hidden_state'] __lowerCamelCase : Optional[Any] = model(_a , past_key_values=_a )['last_hidden_state'] # select random slice __lowerCamelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def _lowercase ( self : List[Any] , _a : int , _a : Any , ) -> Union[str, Any]: __lowerCamelCase : str = UMTaModel(config=_a ).to(_a ).half().eval() __lowerCamelCase : Dict = model(**_a )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ =(UMTaForConditionalGeneration,) if is_torch_available() else () a_ =( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ =True a_ =False a_ =False a_ =True a_ =True # The small UMT5 model needs higher percentages for CPU/MP tests a_ =[0.8, 0.9] def _lowercase ( self : str ) -> str: __lowerCamelCase : Dict = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def _lowercase ( self : Dict ) -> List[str]: __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : str = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=_a , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def _lowercase ( self : List[Any] ) -> Any: __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def _lowercase ( self : int ) -> Any: __lowerCamelCase : Any = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Union[str, Any] = config_and_inputs[0] __lowerCamelCase : Optional[Any] = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) __lowerCamelCase : Dict = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_a ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), } for attn_name, (name, mask) in zip(_a , head_masking.items() ): __lowerCamelCase : Tuple = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase : str = torch.ones( config.num_decoder_layers , config.num_heads , device=_a ) __lowerCamelCase : Optional[Any] = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def _lowercase ( self : Tuple ) -> List[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def _lowercase ( self : str ) -> Dict: __lowerCamelCase : Tuple = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_a ).to(_a ) __lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_a , legacy=_a ) __lowerCamelCase : str = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] __lowerCamelCase : Optional[Any] = tokenizer(_a , return_tensors='pt' , padding=_a ).input_ids # fmt: off __lowerCamelCase : Optional[int] = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_a , _a ) __lowerCamelCase : List[Any] = model.generate(input_ids.to(_a ) ) __lowerCamelCase : Optional[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] __lowerCamelCase : List[str] = tokenizer.batch_decode(_a ) self.assertEqual(_a , _a )
208
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
1
from graphs.minimum_spanning_tree_kruskal import kruskal def __lowercase ( ) ->List[str]: """simple docstring""" lowercase : Optional[Any] = 9 lowercase : List[str] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase : str = kruskal(_UpperCamelCase, _UpperCamelCase ) lowercase : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_UpperCamelCase ) == sorted(_UpperCamelCase )
173
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->list[int]: """simple docstring""" lowercase : Dict = int(_UpperCamelCase ) # Initialize Result lowercase : Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(_UpperCamelCase ): # Find denominations while int(_UpperCamelCase ) >= int(_UpperCamelCase ): total_value -= int(_UpperCamelCase ) answer.append(_UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __a = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __a = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
173
1
from __future__ import annotations import math def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = u for i in range(1 , _UpperCAmelCase ): __a = temp * (u - i) return temp def __snake_case ( ): __a = int(input('''enter the numbers of values: ''' ) ) __a = [] for _ in range(_UpperCAmelCase ): y.append([] ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): y[i].append(_UpperCAmelCase ) __a = 0 print('''enter the values of parameters in a list: ''' ) __a = list(map(_UpperCAmelCase , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(_UpperCAmelCase ): __a = float(input() ) __a = int(input('''enter the value to interpolate: ''' ) ) __a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _UpperCAmelCase ): for j in range(n - i ): __a = y[j + 1][i - 1] - y[j][i - 1] __a = y[0][0] for i in range(1 , _UpperCAmelCase ): summ += (ucal(_UpperCAmelCase , _UpperCAmelCase ) * y[0][i]) / math.factorial(_UpperCAmelCase ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
49
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowercase ( _A , _A , _A ) -> int: SCREAMING_SNAKE_CASE : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : int = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } SCREAMING_SNAKE_CASE : List[Any] = F"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : List[str] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_A , exist_ok=_A ) SCREAMING_SNAKE_CASE : int = os.path.join(_A , """README.md""" ) print(F"Generating {path}" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(_A ) # make sure we are under the root of the project UpperCAmelCase__ : List[str] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase__ : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model_name.split("""-""") UpperCAmelCase__ : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
245
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets __A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" __A = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" __A = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def _snake_case ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="uniform_average" , _UpperCAmelCase=True ): lowercase__: Tuple = mean_squared_error( _UpperCAmelCase , _UpperCAmelCase , sample_weight=_UpperCAmelCase , multioutput=_UpperCAmelCase , squared=_UpperCAmelCase ) return {"mse": mse}
2
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
1
'''simple docstring''' import os from pathlib import Path def __a(): '''simple docstring''' from torch.utils.cpp_extension import load _lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / "kernels" / "deformable_detr" _lowerCAmelCase = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
158
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCAmelCase : List[str] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: return (preds == labels).mean() @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) UpperCAmelCase__ = field(metadata={"""help""": """Should contain the data files for the task."""} ) UpperCAmelCase__ = field( default=1_28, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase__ : Dict = processors[data_args.task_name]() lowerCamelCase__ : Any = processor.get_labels() lowerCamelCase__ : List[str] = len(__snake_case ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase__ : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase__ : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase__ : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase__ : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase__ : Any = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator lowerCamelCase__ : List[Any] = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase__ : List[str] = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase__ : int = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase__ : Dict = trainer.evaluate() lowerCamelCase__ : List[str] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(__snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __snake_case , __snake_case ) writer.write('%s = %s\n' % (key, value) ) results.update(__snake_case ) return results def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: main() if __name__ == "__main__": main()
361
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : List[str] = logging.getLogger() _UpperCAmelCase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> List[Any]: os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Tuple = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase__ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase__ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ) -> str: lowerCamelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'output' ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) lowerCamelCase__ : Dict = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase__ : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) lowerCamelCase__ : Dict = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: lowerCamelCase__ : Dict = json.load(UpperCAmelCase ) return result @require_torch_gpu def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Tuple = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
45
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__: lowerCAmelCase__ : int = None def snake_case__ ( self ) -> str: A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(__UpperCAmelCase ,'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCAmelCase ) A__ = self.feature_extraction_class.from_json_file(__UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def snake_case__ ( self ) -> Optional[int]: A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(__UpperCAmelCase )[0] check_json_file_has_correct_format(__UpperCAmelCase ) A__ = self.feature_extraction_class.from_pretrained(__UpperCAmelCase ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def snake_case__ ( self ) -> List[Any]: A__ = self.feature_extraction_class() self.assertIsNotNone(__UpperCAmelCase )
221
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase__( __A ): def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) requires_backends(self ,'decord' ) self.check_model_type(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ) -> int: A__ = {} if frame_sampling_rate is not None: A__ = frame_sampling_rate if num_frames is not None: A__ = num_frames A__ = {} if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=1 ) -> Union[str, Any]: if num_frames is None: A__ = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): A__ = BytesIO(requests.get(__UpperCAmelCase ).content ) A__ = VideoReader(__UpperCAmelCase ) videoreader.seek(0 ) A__ = 0 A__ = num_frames * frame_sampling_rate - 1 A__ = np.linspace(__UpperCAmelCase ,__UpperCAmelCase ,num=__UpperCAmelCase ,dtype=np.intaa ) A__ = videoreader.get_batch(__UpperCAmelCase ).asnumpy() A__ = list(__UpperCAmelCase ) A__ = self.image_processor(__UpperCAmelCase ,return_tensors=self.framework ) return model_inputs def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: A__ = self.model(**__UpperCAmelCase ) return model_outputs def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(__UpperCAmelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase ,__UpperCAmelCase )]
221
1
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): UpperCAmelCase : Any = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) UpperCAmelCase : Optional[int] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } UpperCAmelCase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : Union[str, Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } UpperCAmelCase : Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) UpperCAmelCase : Optional[int] = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : List[Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) UpperCAmelCase : int = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : Tuple = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' UpperCAmelCase : str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' UpperCAmelCase : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' UpperCAmelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' UpperCAmelCase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' UpperCAmelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' UpperCAmelCase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' UpperCAmelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' UpperCAmelCase : str = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' UpperCAmelCase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' UpperCAmelCase : int = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' UpperCAmelCase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' UpperCAmelCase : Dict = '''''' UpperCAmelCase : Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' UpperCAmelCase : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' UpperCAmelCase : Any = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowercase_ , lowercase_ ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" with pytest.raises(lowercase_ , match=re.escape(expected_error.format(path="root" ) ) ): a__ : Optional[int] =ReadMe.from_string(lowercase_ , lowercase_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" with pytest.raises(lowercase_ , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(lowercase_ , lowercase_ ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" ReadMe.from_string(lowercase_ , lowercase_ , suppress_parsing_errors=lowercase_ ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a__ : Union[str, Any] =Path(lowercase_ ) / "README.md" with open(lowercase_ , "w+" ) as readme_file: readme_file.write(lowercase_ ) a__ : List[Any] =ReadMe.from_readme(lowercase_ , lowercase_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a__ : Union[str, Any] =Path(lowercase_ ) / "README.md" with open(lowercase_ , "w+" ) as readme_file: readme_file.write(lowercase_ ) a__ : Tuple =expected_error.format(path=lowercase_ ) with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): a__ : Any =ReadMe.from_readme(lowercase_ , lowercase_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a__ : List[str] =Path(lowercase_ ) / "README.md" with open(lowercase_ , "w+" ) as readme_file: readme_file.write(lowercase_ ) a__ : Union[str, Any] =expected_error.format(path=lowercase_ ) with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): ReadMe.from_readme(lowercase_ , lowercase_ ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a__ : str =Path(lowercase_ ) / "README.md" with open(lowercase_ , "w+" ) as readme_file: readme_file.write(lowercase_ ) ReadMe.from_readme(lowercase_ , lowercase_ , suppress_parsing_errors=lowercase_ )
357
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" a__ : Tuple =set() a__ : Optional[Any] =[] def parse_line(SCREAMING_SNAKE_CASE : Optional[int] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : str =line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE ) > 0: a__ : Union[str, Any] ="\n".join(SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE ) buffer.clear() continue else: a__ : Optional[Any] =line.strip() buffer.append(SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE ): a__ : str =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Optional[int] =set() a__ : Any =[os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return values.split("," ) UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase : List[Any] = parser.parse_args() UpperCAmelCase : str = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase : Tuple = extract_warnings(args.output_dir, args.targets) UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
148
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE_: Dict =tf.cast(0.044_715 , x.dtype ) SCREAMING_SNAKE_CASE_: List[str] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowercase , 3 )) )) return x * cdf def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tf.convert_to_tensor(lowercase ) return x * tf.tanh(tf.math.softplus(lowercase ) ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =tf.cast(0.044_715 , x.dtype ) SCREAMING_SNAKE_CASE_: List[Any] =tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __magic_name__ ( lowercase ): return tf.clip_by_value(_gelu(lowercase ) , -10 , 10 ) def __magic_name__ ( lowercase , lowercase=-1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =tf.split(lowercase , 2 , axis=lowercase ) return a * tf.math.sigmoid(lowercase ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def __magic_name__ ( lowercase ): return tf.keras.activations.gelu(lowercase , approximate=lowercase ) _UpperCAmelCase = tf.keras.activations.gelu _UpperCAmelCase = approximate_gelu_wrap else: _UpperCAmelCase = _gelu _UpperCAmelCase = _gelu_new _UpperCAmelCase = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def __magic_name__ ( lowercase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
173
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Dict =canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE_: List[Any] =canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def __magic_name__ ( ): assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def __magic_name__ ( ): # laplace diagonals SCREAMING_SNAKE_CASE_: str =array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE_: Tuple =conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def __magic_name__ ( ): assert med.median_filter(lowercase , 3 ).any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =sp.make_sepia(lowercase , 20 ) assert sepia.all() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" ): SCREAMING_SNAKE_CASE_: Dict =bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): SCREAMING_SNAKE_CASE_: int =rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE_: Tuple =imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE_: Optional[Any] =0 SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE_: Optional[Any] =lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE_: Dict =np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE_: List[str] =lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
173
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline snake_case__ : Dict = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": snake_case__ : List[Any] = '''hopper-medium-v2''' snake_case__ : str = gym.make(env_name) snake_case__ : Tuple = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) snake_case__ : Union[str, Any] = env.reset() snake_case__ : Tuple = 0 snake_case__ : Optional[int] = 0 snake_case__ : Dict = 1000 snake_case__ : int = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy snake_case__ : Tuple = pipeline(obs, planning_horizon=32) # execute action in environment snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = env.step(denorm_actions) snake_case__ : Any = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) snake_case__ : int = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
274
'''simple docstring''' snake_case__ : str = '''Tobias Carryer''' from time import time class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ): # noqa: B008 '''simple docstring''' UpperCAmelCase_ : str = multiplier UpperCAmelCase_ : Dict = increment UpperCAmelCase_ : Tuple = modulo UpperCAmelCase_ : Dict = seed def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : Any = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
274
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowerCamelCase : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCamelCase : Tuple = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCamelCase : List[str] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ (self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def UpperCamelCase__ (self : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Optional[int]=None , UpperCamelCase : Tuple="uniform_average" , UpperCamelCase : Union[str, Any]=True ): '''simple docstring''' lowercase__ = mean_squared_error( UpperCamelCase , UpperCamelCase , sample_weight=UpperCamelCase , multioutput=UpperCamelCase , squared=UpperCamelCase ) return {"mse": mse}
2
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCamelCase : Tuple = logging.get_logger(__name__) class __magic_name__ : def __init__( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : str = question_encoder UpperCamelCase__ : Any = generator UpperCamelCase__ : Optional[Any] = self.question_encoder def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' if os.path.isfile(__lowerCamelCase ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) UpperCamelCase__ : Dict = os.path.join(__lowerCamelCase , '''question_encoder_tokenizer''' ) UpperCamelCase__ : Dict = os.path.join(__lowerCamelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__lowerCamelCase ) self.generator.save_pretrained(__lowerCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer UpperCamelCase__ : Optional[Any] = kwargs.pop('''config''' , __lowerCamelCase ) if config is None: UpperCamelCase__ : int = RagConfig.from_pretrained(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) UpperCamelCase__ : str = AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__lowerCamelCase , generator=__lowerCamelCase ) def __call__( self : str , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' return self.current_tokenizer(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self : int , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : Optional[int] ) -> int: '''simple docstring''' return self.generator.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' return self.generator.decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCamelCase__ : Tuple = self.question_encoder def UpperCAmelCase__ ( self : int ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = self.generator def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : Tuple = "longest" , lowerCamelCase__ : str = None , lowerCamelCase__ : str = True , **lowerCamelCase__ : Optional[int] , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __lowerCamelCase , ) if max_length is None: UpperCamelCase__ : Union[str, Any] = self.current_tokenizer.model_max_length UpperCamelCase__ : List[str] = self( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCamelCase__ : str = self.current_tokenizer.model_max_length UpperCamelCase__ : Optional[int] = self( text_target=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase__ : Optional[Any] = labels['''input_ids'''] return model_inputs
355
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __UpperCamelCase : List[Any] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" inspect_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" inspect_metric(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" UpperCamelCase__ : int = get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : List[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" UpperCamelCase__ : Optional[int] = get_dataset_infos(SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs UpperCamelCase__ : List[str] = expected_configs[0] assert expected_config in infos UpperCamelCase__ : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : Optional[Any] = get_dataset_infos(SCREAMING_SNAKE_CASE ) assert expected_config in infos UpperCamelCase__ : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_split_names(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
51
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase : List[Any] = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = True , ) -> Any: '''simple docstring''' a__ : int = [file for file in os.listdir(lowercase) if os.path.isfile(os.path.join(lowercase , lowercase))] if identifier is not None: a__ : int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase , lowercase): for n_ in n_identifier: a__ : List[str] = [file for file in files if n_ not in file] else: a__ : Union[str, Any] = [file for file in files if n_identifier not in file] a__ : Union[str, Any] = ignore_files or [] ignore_files.append('__init__.py') a__ : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase) if only_modules: a__ : Optional[Any] = file.split('.')[0] try: a__ : Any = getattr(lowercase , lowercase) a__ : Union[str, Any] = doctest.DocTestSuite(lowercase) a__ : Tuple = unittest.TextTestRunner().run(lowercase) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F'{module_identifier} is not a module.') else: a__ : List[Any] = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = Path('src/transformers') a__ : int = 'modeling' a__ : List[str] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase , identifier=lowercase , ignore_files=lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = Path('src/transformers') a__ : List[str] = 'tokenization' self.analyze_directory(lowercase , identifier=lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : List[str] = Path('src/transformers') a__ : List[str] = 'configuration' self.analyze_directory(lowercase , identifier=lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Dict = Path('src/transformers') a__ : Dict = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase , n_identifier=lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[int] = Path('docs/source') a__ : int = ['favicon.ico'] self.analyze_directory(lowercase , ignore_files=lowercase , only_modules=lowercase)
99
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = set() # Replace all the whitespace in our sentence __a = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCAmelCase__ ) == 26 def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = [False] * 26 for char in input_str: if char.islower(): __a = True elif char.isupper(): __a = True return all(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase ( ) -> None: from timeit import timeit __a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=lowerCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
45
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowercase__ : Tuple = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) lowercase__ : Dict = dataset.iloc[:, 1:2].values lowercase__ : Union[str, Any] = dataset.iloc[:, 2].values lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ : str = train_test_split(X, y, test_size=0.2, random_state=0) lowercase__ : Optional[Any] = PolynomialFeatures(degree=4) lowercase__ : List[Any] = poly_reg.fit_transform(X) lowercase__ : Any = LinearRegression() pol_reg.fit(X_poly, y) def __lowercase ( ): plt.scatter(_a , _a , color='''red''' ) plt.plot(_a , pol_reg.predict(poly_reg.fit_transform(_a ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
371
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A__ : Optional[Any] =logging.getLogger(__name__) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=lowerCAmelCase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=lowerCAmelCase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=lowerCAmelCase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=lowerCAmelCase , default="""data/dump""" , help="""The dump file prefix.""" ) _lowerCAmelCase = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": _lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` _lowerCAmelCase = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": _lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase = tokenizer.special_tokens_map["""cls_token"""] # `<s>` _lowerCAmelCase = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": _lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` _lowerCAmelCase = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: _lowerCAmelCase = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"{len(lowerCAmelCase )} examples to process." ) _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = 1_00_00 _lowerCAmelCase = time.time() for text in data: _lowerCAmelCase = f"{bos} {text.strip()} {sep}" _lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) rslt.append(lowerCAmelCase ) iter += 1 if iter % interval == 0: _lowerCAmelCase = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) _lowerCAmelCase = time.time() logger.info("""Finished binarization""" ) logger.info(f"{len(lowerCAmelCase )} examples processed." ) _lowerCAmelCase = f"{args.dump_file}.{args.tokenizer_name}.pickle" _lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): _lowerCAmelCase = [np.uintaa(lowerCAmelCase ) for d in rslt] else: _lowerCAmelCase = [np.intaa(lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(rslt_ , lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
70
"""simple docstring""" import sys from collections import defaultdict class lowerCamelCase__ : def __init__( self ): """simple docstring""" snake_case : Dict = [] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self.node_position[vertex] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Dict = pos def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case : Any = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case : Any = 2 * start + 1 else: snake_case : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case : Dict = heap[smallest_child], positions[smallest_child] snake_case , snake_case : Any = ( heap[start], positions[start], ) snake_case , snake_case : str = temp, tempa snake_case : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE ) self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = position[index] while index != 0: snake_case : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case : Tuple = heap[parent] snake_case : str = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE ) else: snake_case : Union[str, Any] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) break snake_case : Optional[Any] = parent else: snake_case : Optional[int] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , 0 ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = positions[0] snake_case : List[str] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return temp def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Tuple = Heap() snake_case : List[str] = [0] * len(lowercase__ ) snake_case : Optional[int] = [-1] * len(lowercase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex snake_case : List[Any] = [] for vertex in range(len(lowercase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowercase__ ) heap.node_position.append(lowercase__ ) snake_case : Optional[int] = [] snake_case : Union[str, Any] = 1 snake_case : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case : List[Any] = 0 snake_case : Tuple = distance heap.heapify(lowercase__ , lowercase__ ) for _ in range(1 , len(lowercase__ ) ): snake_case : Optional[Any] = heap.delete_minimum(lowercase__ , lowercase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowercase__ )] ): snake_case : str = distance heap.bottom_to_top( lowercase__ , heap.get_position(lowercase__ ) , lowercase__ , lowercase__ ) snake_case : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
148
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = MobileBertConfig.from_json_file(a__ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCamelCase = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint _UpperCamelCase = load_tf_weights_in_mobilebert(a__ , a__ , a__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
63
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''deta''' __A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Tuple , lowercase_ : int=None , lowercase_ : Union[str, Any]=900 , lowercase_ : Any=2048 , lowercase_ : Optional[int]=6 , lowercase_ : Optional[int]=2048 , lowercase_ : List[Any]=8 , lowercase_ : Union[str, Any]=6 , lowercase_ : Optional[Any]=1024 , lowercase_ : Dict=8 , lowercase_ : Any=0.0 , lowercase_ : str=True , lowercase_ : List[Any]="relu" , lowercase_ : Optional[int]=256 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : List[str]=1.0 , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : int="sine" , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : Any=4 , lowercase_ : Tuple=True , lowercase_ : List[Any]=300 , lowercase_ : Tuple=True , lowercase_ : Any=True , lowercase_ : str=1 , lowercase_ : List[str]=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Tuple=1 , lowercase_ : int=1 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=0.25 , **lowercase_ : Any , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"]) else: if isinstance(lowercase_ , lowercase_): _UpperCamelCase = backbone_config.pop("model_type") _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowercase_) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" return self.d_model def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
63
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : int = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = '''gpt_neo''' __lowerCamelCase : Dict = ['''past_key_values'''] __lowerCamelCase : str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : int , __lowerCAmelCase : Union[str, Any]=5_02_57 , __lowerCAmelCase : Tuple=20_48 , __lowerCAmelCase : Tuple=20_48 , __lowerCAmelCase : Union[str, Any]=24 , __lowerCAmelCase : List[Any]=[[["global", "local"], 12]] , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=2_56 , __lowerCAmelCase : str="gelu_new" , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : int=1e-5 , __lowerCAmelCase : List[Any]=0.0_2 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=5_02_56 , __lowerCAmelCase : Dict=5_02_56 , **__lowerCAmelCase : List[Any] , ) -> Dict: """simple docstring""" A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_layers A__ = num_heads A__ = intermediate_size A__ = window_size A__ = activation_function A__ = resid_dropout A__ = embed_dropout A__ = attention_dropout A__ = classifier_dropout A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache A__ = bos_token_id A__ = eos_token_id A__ = attention_types A__ = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @staticmethod def a_ ( __lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" A__ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCamelCase ( __a :Union[str, Any] , __a :List[str] , __a :List[str] , __a :List[Any] ) -> Optional[Any]: """simple docstring""" import torch A__ = input.size() A__ = len(__a ) A__ = shape[dimension] A__ = torch.arange(0 , __a , __a ) A__ = torch.div(sizedim - size , __a , rounding_mode="""floor""" ) + 1 A__ = torch.arange(__a ) + low_indices[:min_length][:, None] A__ = [slice(__a )] * rank A__ = indices A__ = input[s] A__ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__a ) def __lowerCamelCase ( __a :Optional[int] , __a :int ) -> Dict: """simple docstring""" import torch A__ = torch.arange(1 , __a ) A__ = torch.remainder(__a , __a ) A__ = remainders == 0 A__ = candidates[divisor_indices] A__ = torch.max(__a ) return largest_divisor, torch.div(__a , __a , rounding_mode="""floor""" ) class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" A__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction="""inputs""" ) A__ = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def a_ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.num_heads def a_ ( self : Tuple , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" A__ = super(__lowerCAmelCase , self ).generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() A__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ , A__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] A__ = common_inputs["""attention_mask"""] if self.use_past: A__ = ordered_inputs["""attention_mask"""].dtype A__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def a_ ( self : Dict ) -> int: """simple docstring""" return 13
274
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) A__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A__ = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Tuple , **__lowerCAmelCase : Dict ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Union[str, Any] , **__lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : List[str] , **__lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : str ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : str ) -> Any: """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Dict: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) A__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Optional[Any] ) -> Any: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = processor(text=__lowerCAmelCase ) A__ = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def a_ ( self : Tuple ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
274
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :List[str] = RoFormerTokenizer __lowerCAmelCase :Optional[Any] = RoFormerTokenizerFast __lowerCAmelCase :Dict = True __lowerCAmelCase :int = True def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> List[str]: """simple docstring""" return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> List[Any]: """simple docstring""" return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = """永和服装饰品有限公司,今天天气非常好""" a__ : str = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Tuple = self.get_tokenizer() a__ : Union[str, Any] = self.get_chinese_input_output_texts() a__ : Any = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , output_text.split() ) a__ : Dict = tokens + [tokenizer.unk_token] a__ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Tuple = self.get_rust_tokenizer() a__ : Union[str, Any] = self.get_chinese_input_output_texts() a__ : Union[str, Any] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , output_text.split() ) a__ : str = tokens + [tokenizer.unk_token] a__ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" pass
368
from __future__ import annotations def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : float , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0) != 1: raise ValueError("""You cannot supply more or less than 2 values""") elif stress < 0: raise ValueError("""Stress cannot be negative""") elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""") elif area < 0: raise ValueError("""Area cannot be negative""") elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
266
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ): __lowerCAmelCase = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=SCREAMING_SNAKE_CASE_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() def _a ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(SCREAMING_SNAKE_CASE_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
92
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __snake_case : pass
51
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __UpperCamelCase = True except (ImportError, AttributeError): __UpperCamelCase = object def lowercase (*SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: pass __UpperCamelCase = False __UpperCamelCase = logging.get_logger('''transformers-cli/serving''') def lowercase (SCREAMING_SNAKE_CASE_ : Namespace ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE_ , args.host , args.port , args.workers ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : dict class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] SCREAMING_SNAKE_CASE_ : Optional[List[int]] class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @staticmethod def __A ( lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=lowerCAmelCase__ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=lowerCAmelCase__ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=lowerCAmelCase__ , default=8_888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=lowerCAmelCase__ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=lowerCAmelCase__ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=lowerCAmelCase__ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=lowerCAmelCase__ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=lowerCAmelCase__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = pipeline SCREAMING_SNAKE_CASE = host SCREAMING_SNAKE_CASE = port SCREAMING_SNAKE_CASE = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(F'Serving model over {host}:{port}' ) SCREAMING_SNAKE_CASE = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), ] , timeout=600 , ) def __A ( self ) -> int: run(self._app , host=self.host , port=self.port , workers=self.workers ) def __A ( self ) -> str: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __A ( self , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Union[str, Any]: try: SCREAMING_SNAKE_CASE = self._pipeline.tokenizer.tokenize(lowerCAmelCase__ ) if return_ids: SCREAMING_SNAKE_CASE = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(lowerCAmelCase__ )} ) def __A ( self , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ) -> Tuple: try: SCREAMING_SNAKE_CASE = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return ServeDeTokenizeResult(model='' , text=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(lowerCAmelCase__ )} ) async def __A ( self , lowerCAmelCase__=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Any: # Check we don't have empty string if len(lowerCAmelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model SCREAMING_SNAKE_CASE = self._pipeline(lowerCAmelCase__ ) return ServeForwardResult(output=lowerCAmelCase__ ) except Exception as e: raise HTTPException(500 , {'error': str(lowerCAmelCase__ )} )
350
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase = '''true''' def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=82 , SCREAMING_SNAKE_CASE_ : List[Any]=16 ) -> Union[str, Any]: set_seed(42 ) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE_ : List[str] ): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE_ : Optional[int] ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def lowercase (SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Optional[Any]=82 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}' def lowercase (SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False ) -> Optional[int]: SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch['labels'] ) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def lowercase () -> Dict: SCREAMING_SNAKE_CASE = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 5_12 ) accelerator.state._reset_state() def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
38
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "open-llama" def __init__( self , A_=100000 , A_=4096 , A_=11008 , A_=32 , A_=32 , A_="silu" , A_=2048 , A_=0.02 , A_=1E-6 , A_=True , A_=0 , A_=1 , A_=2 , A_=False , A_=True , A_=0.1 , A_=0.1 , A_=True , A_=True , A_=None , **A_ , ) -> List[Any]: __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =rms_norm_eps __UpperCamelCase =use_cache __UpperCamelCase =kwargs.pop( 'use_memorry_efficient_attention' , A_ ) __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_dropout_prob __UpperCamelCase =use_stable_embedding __UpperCamelCase =shared_input_output_embedding __UpperCamelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ , ) def _a ( self ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) __UpperCamelCase =self.rope_scaling.get('type' , A_ ) __UpperCamelCase =self.rope_scaling.get('factor' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
62
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): lowerCAmelCase = dpr_record["""question"""] lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
155
0
def __UpperCamelCase ( _A , _A , _A , _A , _A , ): lowerCAmelCase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: lowerCAmelCase_ = 1 - (matter_density + radiation_density + dark_energy) lowerCAmelCase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCAmelCase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _A = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
362
_A = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def __UpperCamelCase ( _A , _A , _A ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase_ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(_A )}" ) raise ValueError(_A ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
167
0
'''simple docstring''' class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int , __a : Union[str, Any] ): # we need a list not a string, so do something to change the type _a = arr.split("," ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = [int(self.array[0] )] * len(self.array ) _a = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _a = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _a = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = input('please input some numbers:') lowerCAmelCase_ : List[Any] = SubArray(whole_array) lowerCAmelCase_ : List[str] = array.solve_sub_array() print(('the results is:', re))
63
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ : int = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self , UpperCAmelCase_ ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowerCamelCase : List[Any] = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : int = '''sshleifer/tiny-gpt2''' lowerCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : Dict = PyTorchBenchmark(lowercase_ ) lowerCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Tuple = '''sgugger/tiny-distilbert-classification''' lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , only_pretrain_model=lowercase_ , ) lowerCamelCase : List[Any] = PyTorchBenchmark(lowercase_ ) lowerCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , torchscript=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : Dict = PyTorchBenchmark(lowercase_ ) lowerCamelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , fpaa=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : List[Any] = PyTorchBenchmark(lowercase_ ) lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Union[str, Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase : Tuple = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` lowerCamelCase : Union[str, Any] = None lowerCamelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : List[str] = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : Any = '''sshleifer/tiny-gpt2''' lowerCamelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : Union[str, Any] = PyTorchBenchmark(lowercase_ ) lowerCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Tuple = '''sshleifer/tiny-gpt2''' lowerCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase_ , multi_process=lowercase_ , ) lowerCamelCase : int = PyTorchBenchmark(lowercase_ ) lowerCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase : List[str] = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : str = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Any = '''sshleifer/tinier_bart''' lowerCamelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : Dict = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : Any = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : int = '''sshleifer/tinier_bart''' lowerCamelCase : Dict = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase : Optional[int] = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , save_to_csv=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowercase_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowercase_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowercase_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowercase_ , 'env.csv' ) , multi_process=lowercase_ , ) lowerCamelCase : Dict = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , 'env.csv' ) ).exists() ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : int = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(UpperCAmelCase_ ): self.assertTrue(hasattr(lowercase_ , 'sequential' ) ) self.assertTrue(hasattr(lowercase_ , 'cumulative' ) ) self.assertTrue(hasattr(lowercase_ , 'current' ) ) self.assertTrue(hasattr(lowercase_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase_ , 'log.txt' ) , log_print=lowercase_ , trace_memory_line_by_line=lowercase_ , multi_process=lowercase_ , ) lowerCamelCase : Tuple = PyTorchBenchmark(lowercase_ ) lowerCamelCase : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_ , 'log.txt' ) ).exists() )
358
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : List[Any] = 1 for i in range(1, num + 1 ): fact *= i return fact def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = 0 while number > 0: lowerCamelCase : str = number % 10 sum_of_digits += last_digit lowerCamelCase : Tuple = number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCAmelCase ( a_ = 100 ): '''simple docstring''' lowerCamelCase : Optional[Any] = factorial(a_ ) lowerCamelCase : int = split_and_add(a_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
205
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class a ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = "realm" def __init__( self: Optional[int] , UpperCamelCase: List[Any]=3_05_22 , UpperCamelCase: Optional[int]=7_68 , UpperCamelCase: List[Any]=1_28 , UpperCamelCase: str=12 , UpperCamelCase: int=12 , UpperCamelCase: int=8 , UpperCamelCase: Any=30_72 , UpperCamelCase: Any="gelu_new" , UpperCamelCase: List[str]=0.1 , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: int=5_12 , UpperCamelCase: str=2 , UpperCamelCase: int=0.02 , UpperCamelCase: Optional[Any]=1e-1_2 , UpperCamelCase: str=2_56 , UpperCamelCase: Dict=10 , UpperCamelCase: List[Any]=1e-3 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: str=3_20 , UpperCamelCase: int=13_35_37_18 , UpperCamelCase: Any=50_00 , UpperCamelCase: Dict=1 , UpperCamelCase: Union[str, Any]=0 , UpperCamelCase: Any=2 , **UpperCamelCase: List[Any] , ): """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) # Common config A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = retriever_proj_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_candidates A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps # Reader config A__ = span_hidden_size A__ = max_span_width A__ = reader_layer_norm_eps A__ = reader_beam_size A__ = reader_seq_len # Retrieval config A__ = num_block_records A__ = searcher_beam_size
335
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any], _lowerCamelCase : int, _lowerCamelCase : List[Any]=7, _lowerCamelCase : int=3, _lowerCamelCase : Optional[Any]=18, _lowerCamelCase : Any=30, _lowerCamelCase : str=4_00, _lowerCamelCase : int=True, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str=True, ): '''simple docstring''' __A = size if size is not None else {'''height''': 18, '''width''': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = apply_ocr def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''apply_ocr''' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 18} ) __A = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) self.assertIsInstance(encoding.words, _lowerCamelCase ) self.assertIsInstance(encoding.boxes, _lowerCamelCase ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' # with apply_OCR = True __A = LayoutLMvaImageProcessor() from datasets import load_dataset __A = load_dataset('''hf-internal-testing/fixtures_docvqa''', split='''test''' ) __A = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __A = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, _lowerCamelCase ) self.assertListEqual(encoding.boxes, _lowerCamelCase ) # with apply_OCR = False __A = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) )
266
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DiTPipeline SCREAMING_SNAKE_CASE_ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } SCREAMING_SNAKE_CASE_ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = TransformeraDModel( sample_size=16, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=lowerCAmelCase__, activation_fn='gelu-approximate', num_embeds_ada_norm=1000, norm_type='ada_norm_zero', norm_elementwise_affine=lowerCAmelCase__, ) snake_case_ = AutoencoderKL() snake_case_ = DDIMScheduler() snake_case_ = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> str: if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 16, 16, 3)) snake_case_ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457]) snake_case_ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCAmelCase__, 1e-3) def a_ ( self) -> str: self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase__, expected_max_diff=1e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a_ ( self) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> int: snake_case_ = torch.manual_seed(0) snake_case_ = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256') pipe.to('cuda') snake_case_ = ['vase', 'umbrella', 'white shark', 'white wolf'] snake_case_ = pipe.get_label_ids(lowerCAmelCase__) snake_case_ = pipe(lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=40, output_type='np').images for word, image in zip(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy') assert np.abs((expected_image - image).max()) < 1e-2 def a_ ( self) -> int: snake_case_ = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to('cuda') snake_case_ = ['vase', 'umbrella'] snake_case_ = pipe.get_label_ids(lowerCAmelCase__) snake_case_ = torch.manual_seed(0) snake_case_ = pipe(lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=25, output_type='np').images for word, image in zip(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy') assert np.abs((expected_image - image).max()) < 1e-1
312
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
1
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCamelCase_ : Tuple = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCamelCase_ : List[str] = [0, 2_5, 5_0] lowerCamelCase_ : Dict = [2_5, 5_0, 7_5] lowerCamelCase_ : Tuple = fuzz.membership.trimf(X, abca) lowerCamelCase_ : str = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCamelCase_ : Tuple = np.ones(7_5) lowerCamelCase_ : Optional[int] = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowerCamelCase_ : Tuple = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCamelCase_ : str = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCamelCase_ : int = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCamelCase_ : int = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCamelCase_ : Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCamelCase_ : Optional[int] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCamelCase_ : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCamelCase_ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
81
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : int = 32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 , __magic_name__ : str = "bert-base-cased" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__magic_name__ ) UpperCamelCase :Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase :List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase :List[Any] = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__magic_name__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase :Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase :List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) UpperCamelCase :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase :Union[str, Any] = config["""lr"""] UpperCamelCase :List[str] = int(config["""num_epochs"""] ) UpperCamelCase :str = int(config["""seed"""] ) UpperCamelCase :Dict = int(config["""batch_size"""] ) UpperCamelCase :Union[str, Any] = args.model_name_or_path set_seed(__magic_name__ ) UpperCamelCase , UpperCamelCase :Dict = get_dataloaders(__magic_name__ , __magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) # Instantiate optimizer UpperCamelCase :Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__magic_name__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase :Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase :Any = 1 UpperCamelCase :Dict = (len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase :List[Any] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=0 , num_training_steps=__magic_name__ , ) else: UpperCamelCase :Any = DummyScheduler(__magic_name__ , total_num_steps=__magic_name__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase :int = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase :Tuple = 0 # Now we train the model UpperCamelCase :Any = evaluate.load("""glue""" , """mrpc""" ) UpperCamelCase :Tuple = 0 UpperCamelCase :List[Any] = {} for epoch in range(__magic_name__ , __magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): UpperCamelCase :List[str] = model(**__magic_name__ ) UpperCamelCase :Dict = outputs.loss UpperCamelCase :Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase :str = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase :Optional[int] = model(**__magic_name__ ) UpperCamelCase :List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase , UpperCamelCase :Optional[int] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__magic_name__ ) - 1: UpperCamelCase :Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) UpperCamelCase :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __magic_name__ ) UpperCamelCase :Dict = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCamelCase :str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__magic_name__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__magic_name__ , ) parser.add_argument( """--output_dir""" , type=__magic_name__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__magic_name__ , default=__magic_name__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__magic_name__ , default=3 , help="""Number of train epochs.""" , ) UpperCamelCase :str = parser.parse_args() UpperCamelCase :Any = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : int = '''ClapFeatureExtractor''' _SCREAMING_SNAKE_CASE : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.pop('sampling_rate' , _UpperCamelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowerCAmelCase__ = self.tokenizer(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if audios is not None: lowerCAmelCase__ = self.feature_extractor( _UpperCamelCase , sampling_rate=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and audios is not None: lowerCAmelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def UpperCamelCase__ ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
122
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : List[str] = RoCBertTokenizer _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = filter_non_english def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] lowerCAmelCase__ = {} lowerCAmelCase__ = {} for i, value in enumerate(_UpperCamelCase ): lowerCAmelCase__ = i lowerCAmelCase__ = i lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(_UpperCamelCase , _UpperCamelCase , ensure_ascii=_UpperCamelCase ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(_UpperCamelCase , _UpperCamelCase , ensure_ascii=_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase__ = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_UpperCamelCase , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_UpperCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_UpperCamelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase , strip_accents=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase , strip_accents=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase , strip_accents=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase , strip_accents=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = RoCBertBasicTokenizer(do_lower_case=_UpperCamelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCAmelCase__ = {} for i, token in enumerate(_UpperCamelCase ): lowerCAmelCase__ = i lowerCAmelCase__ = RoCBertWordpieceTokenizer(vocab=_UpperCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_UpperCamelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: lowerCAmelCase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_UpperCamelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase__ = tokenizer_r.encode_plus( _UpperCamelCase , return_attention_mask=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase , ) lowerCAmelCase__ = tokenizer_r.do_lower_case if hasattr(_UpperCamelCase , 'do_lower_case' ) else False lowerCAmelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = ['的', '人', '有'] lowerCAmelCase__ = ''.join(_UpperCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = True lowerCAmelCase__ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = tokenizer_p.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(_UpperCamelCase ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(_UpperCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = False lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_p.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(_UpperCamelCase ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(_UpperCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase__ = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(_UpperCamelCase ) ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase__ = tokenizer.encode('你好' , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode('你是谁' , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): lowerCAmelCase__ = '你好,你是谁' lowerCAmelCase__ = tokenizer.tokenize(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_tokens_to_shape_ids(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_tokens_to_pronunciation_ids(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.prepare_for_model( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
122
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : List[Any] = """convnextv2""" def __init__( self : int , _lowerCamelCase : str=3 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=4 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : List[str]=1E-12 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=2_24 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Optional[Any]=None , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : str = num_channels A_ : int = patch_size A_ : Union[str, Any] = num_stages A_ : Any = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes A_ : Any = [3, 3, 9, 3] if depths is None else depths A_ : Optional[int] = hidden_act A_ : Tuple = initializer_range A_ : int = layer_norm_eps A_ : List[Any] = drop_path_rate A_ : Union[str, Any] = image_size A_ : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] A_ , A_ : Tuple = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
167
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = IFImgaImgSuperResolutionPipeline __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) __UpperCAmelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def _lowercase ( self : Tuple ): return self._get_superresolution_dummy_components() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): __lowercase = torch.manual_seed(UpperCAmelCase__ ) else: __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __lowercase = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __lowercase = floats_tensor((1, 3, 1_6, 1_6), rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def _lowercase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowercase ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA" ) def _lowercase ( self : List[str] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowercase ( self : List[str] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowercase ( self : Optional[int] ): self._test_save_load_local() def _lowercase ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2, )
144
"""simple docstring""" import numpy # List of input, output pairs _a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _a = [2, 4, 1, 5] _a = len(train_data) _a = 0.009 def _A ( UpperCamelCase_ : str, UpperCamelCase_ : List[Any]="train") -> Optional[Any]: '''simple docstring''' return calculate_hypothesis_value(UpperCamelCase_, UpperCamelCase_) - output( UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : List[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = 0 for i in range(len(UpperCamelCase_) - 1): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[int]) -> Dict: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> int: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0]) elif data_set == "test": return _hypothesis_value(test_data[example_no][0]) return None def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Tuple=m) -> int: '''simple docstring''' __lowercase = 0 for i in range(UpperCamelCase_): if index == -1: summation_value += _error(UpperCamelCase_) else: summation_value += _error(UpperCamelCase_) * train_data[i][0][index] return summation_value def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = summation_of_cost_derivative(UpperCamelCase_, UpperCamelCase_) / m return cost_derivative_value def _A ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000_002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0, len(UpperCamelCase_)): __lowercase = get_cost_derivative(i - 1) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_, UpperCamelCase_, atol=UpperCamelCase_, rtol=UpperCamelCase_, ): break __lowercase = temp_parameter_vector print(("Number of iterations:", j)) def _A ( ) -> int: '''simple docstring''' for i in range(len(UpperCamelCase_)): print(("Actual output value:", output(UpperCamelCase_, "test"))) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_, "test"))) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
144
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 1_00 ): """simple docstring""" _lowerCAmelCase = set() _lowerCAmelCase = 0 _lowerCAmelCase = n + 1 # maximum limit for a in range(2 , lowerCAmelCase ): for b in range(2 , lowerCAmelCase ): _lowerCAmelCase = a**b # calculates the current power collect_powers.add(lowerCAmelCase ) # adds the result to the set return len(lowerCAmelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
70
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = ["""input_features"""] def __init__( self , lowerCAmelCase=80 , lowerCAmelCase=16_000 , lowerCAmelCase=160 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=0.0 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) _lowercase =n_fft _lowercase =hop_length _lowercase =chunk_length _lowercase =chunk_length * sampling_rate _lowercase =self.n_samples // hop_length _lowercase =sampling_rate _lowercase =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def A__ ( self , lowerCAmelCase ) -> np.ndarray: '''simple docstring''' _lowercase =spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _lowercase =log_spec[:, :-1] _lowercase =np.maximum(lowerCAmelCase , log_spec.max() - 8.0 ) _lowercase =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: _lowercase =np.array(lowerCAmelCase , np.intaa ) _lowercase =[] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): _lowercase =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _lowercase =padding_value normed_input_values.append(lowerCAmelCase ) else: _lowercase =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "max_length" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase =isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase =is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): _lowercase =np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[np.asarray([raw_speech] ).T] _lowercase =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _lowercase =self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _lowercase =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _lowercase =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _lowercase =[self._np_extract_fbank_features(lowerCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase ): _lowercase =[np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] else: _lowercase =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _lowercase =padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
205
0
def a_ ( __lowercase : int ) -> str: _snake_case = int(__lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(__lowercase ) _snake_case , _snake_case = divmod(__lowercase , 2 ) return binary_recursive(__lowercase ) + str(__lowercase ) def a_ ( __lowercase : str ) -> str: _snake_case = str(__lowercase ).strip() if not number: raise ValueError('No input value was provided' ) _snake_case = '-' if number.startswith('-' ) else '' _snake_case = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(__lowercase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
130
import baseaa def a_ ( __lowercase : str ) -> bytes: return baseaa.aaaencode(string.encode('utf-8' ) ) def a_ ( __lowercase : bytes ) -> str: return baseaa.aaadecode(__lowercase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
130
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple = DiTPipeline _lowerCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowerCamelCase : Tuple = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _lowerCamelCase : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowerCamelCase : Tuple = False def __A ( self : Any ): torch.manual_seed(0 ) A_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase , ) A_ = AutoencoderKL() A_ = DDIMScheduler() A_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Any=0 ): if str(UpperCAmelCase ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase ) else: A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __A ( self : Union[str, Any] ): A_ = "cpu" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = pipe(**UpperCAmelCase ).images A_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A_ = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) A_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def __A ( self : Optional[Any] ): self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __A ( self : Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ): A_ = torch.manual_seed(0 ) A_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) A_ = ["vase", "umbrella", "white shark", "white wolf"] A_ = pipe.get_label_ids(UpperCAmelCase ) A_ = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): A_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __A ( self : Tuple ): A_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) A_ = ["vase", "umbrella"] A_ = pipe.get_label_ids(UpperCAmelCase ) A_ = torch.manual_seed(0 ) A_ = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): A_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
312
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Tuple ): super().__init__() self.register_modules(unet=lowercase__ ,scheduler=lowercase__ ) @torch.no_grad() def __call__( self : Any ,lowercase__ : int = 1 ,lowercase__ : int = 1_0_0 ,lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowercase__ : Optional[float] = None ,lowercase__ : bool = True ,): if audio_length_in_s is None: __lowercase = self.unet.config.sample_size / self.unet.config.sample_rate __lowercase = audio_length_in_s * self.unet.config.sample_rate __lowercase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) __lowercase = int(lowercase__ ) if sample_size % down_scale_factor != 0: __lowercase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) __lowercase = int(lowercase__ ) __lowercase = next(iter(self.unet.parameters() ) ).dtype __lowercase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase__ ,lowercase__ ) and len(lowercase__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowercase__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase = randn_tensor(lowercase__ ,generator=lowercase__ ,device=self.device ,dtype=lowercase__ ) # set step values self.scheduler.set_timesteps(lowercase__ ,device=audio.device ) __lowercase = self.scheduler.timesteps.to(lowercase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowercase = self.unet(lowercase__ ,lowercase__ ).sample # 2. compute previous image: x_t -> t_t-1 __lowercase = self.scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample __lowercase = audio.clamp(-1 ,1 ).float().cpu().numpy() __lowercase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase__ )
52
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : """simple docstring""" def __init__( self : int ,lowercase__ : str ,lowercase__ : List[Any]=1_3 ,lowercase__ : Optional[int]=3_2 ,lowercase__ : Any=3 ,lowercase__ : int=4 ,lowercase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] ,lowercase__ : List[Any]=[2, 2, 3, 2] ,lowercase__ : List[Any]=True ,lowercase__ : Optional[Any]=True ,lowercase__ : int=3_7 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : Tuple=1_0 ,lowercase__ : int=0.0_2 ,lowercase__ : Any=["stage2", "stage3", "stage4"] ,lowercase__ : Optional[Any]=3 ,lowercase__ : Tuple=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = out_features __lowercase = num_labels __lowercase = scope __lowercase = num_stages def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ): return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_1_2 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=lowercase__ ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=4_0 ,auxiliary_channels=2_5_6 ,auxiliary_num_convs=1 ,auxiliary_concat_input=lowercase__ ,loss_ignore_index=2_5_5 ,num_labels=self.num_labels ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = UperNetForSemanticSegmentation(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Tuple = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = UperNetModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : Any ): def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[str] ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowercase__ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(lowercase__ ) __lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowercase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @unittest.skip(reason='''UperNet does not have tied weights''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = UperNetForSemanticSegmentation.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __lowercase = Image.open(A__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) )
52
1
class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" UpperCamelCase_ = data UpperCamelCase_ = previous UpperCamelCase_ = next_node def __str__( self ): """simple docstring""" return f'''{self.data}''' def lowerCamelCase_ ( self ): """simple docstring""" return self.data def lowerCamelCase_ ( self ): """simple docstring""" return self.next def lowerCamelCase_ ( self ): """simple docstring""" return self.previous class lowercase_ : def __init__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = head def __iter__( self ): """simple docstring""" return self def lowerCamelCase_ ( self ): """simple docstring""" if not self.current: raise StopIteration else: UpperCamelCase_ = self.current.get_data() UpperCamelCase_ = self.current.get_next() return value class lowercase_ : def __init__( self ): """simple docstring""" UpperCamelCase_ = None # First node in list UpperCamelCase_ = None # Last node in list def __str__( self ): """simple docstring""" UpperCamelCase_ = self.head UpperCamelCase_ = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_ = current.get_next() return " ".join(str(__UpperCamelCase ) for node in nodes ) def __contains__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.head while current: if current.get_data() == value: return True UpperCamelCase_ = current.get_next() return False def __iter__( self ): """simple docstring""" return LinkedListIterator(self.head ) def lowerCamelCase_ ( self ): """simple docstring""" if self.head: return self.head.get_data() return None def lowerCamelCase_ ( self ): """simple docstring""" if self.tail: return self.tail.get_data() return None def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.head is None: UpperCamelCase_ = node UpperCamelCase_ = node else: self.insert_before_node(self.head , __UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.head is None: self.set_head(__UpperCamelCase ) else: self.insert_after_node(self.tail , __UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = Node(__UpperCamelCase ) if self.head is None: self.set_head(__UpperCamelCase ) else: self.set_tail(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = node UpperCamelCase_ = node.previous if node.get_previous() is None: UpperCamelCase_ = node_to_insert else: UpperCamelCase_ = node_to_insert UpperCamelCase_ = node_to_insert def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = node UpperCamelCase_ = node.next if node.get_next() is None: UpperCamelCase_ = node_to_insert else: UpperCamelCase_ = node_to_insert UpperCamelCase_ = node_to_insert def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = 1 UpperCamelCase_ = Node(__UpperCamelCase ) UpperCamelCase_ = self.head while node: if current_position == position: self.insert_before_node(__UpperCamelCase , __UpperCamelCase ) return current_position += 1 UpperCamelCase_ = node.next self.insert_after_node(self.tail , __UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.head while node: if node.get_data() == item: return node UpperCamelCase_ = node.get_next() raise Exception("""Node not found""" ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if (node := self.get_node(__UpperCamelCase )) is not None: if node == self.head: UpperCamelCase_ = self.head.get_next() if node == self.tail: UpperCamelCase_ = self.tail.get_previous() self.remove_node_pointers(__UpperCamelCase ) @staticmethod def lowerCamelCase_ ( __UpperCamelCase ): """simple docstring""" if node.get_next(): UpperCamelCase_ = node.previous if node.get_previous(): UpperCamelCase_ = node.next UpperCamelCase_ = None UpperCamelCase_ = None def lowerCamelCase_ ( self ): """simple docstring""" return self.head is None def lowerCamelCase__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
122
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def lowerCamelCase__ ( a__ : Accelerator , a__ : int = 16 ) -> Tuple: UpperCamelCase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(a__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( a__ , batched=a__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(a__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( a__ , padding="""longest""" , max_length=a__ , pad_to_multiple_of=a__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) UpperCamelCase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( a__ : str , a__ : Tuple ) -> Any: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , a__ ) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=a__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config["""lr"""] UpperCamelCase_ = int(config["""num_epochs"""] ) UpperCamelCase_ = int(config["""seed"""] ) UpperCamelCase_ = int(config["""batch_size"""] ) UpperCamelCase_ = evaluate.load("""glue""" , """mrpc""" ) set_seed(a__ ) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(a__ , a__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(a__ ): UpperCamelCase_ = model(**a__ ) UpperCamelCase_ = output.loss accelerator.backward(a__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ = model(**a__ ) UpperCamelCase_ = outputs.logits.argmax(dim=-1 ) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=a__ , references=a__ , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , a__ ) def lowerCamelCase__ ( ) -> str: UpperCamelCase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=a__ , default=a__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=a__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(a__ , a__ ) if __name__ == "__main__": main()
122
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a__ ( __snake_case , __snake_case ): A__ : Any = '''resnet''' A__ : List[Any] = ['''basic''', '''bottleneck'''] def __init__( self , UpperCAmelCase=3 , UpperCAmelCase=6_4 , UpperCAmelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase=[3, 4, 6, 3] , UpperCAmelCase="bottleneck" , UpperCAmelCase="relu" , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**_snake_case ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) __a = num_channels __a = embedding_size __a = hidden_sizes __a = depths __a = layer_type __a = hidden_act __a = downsample_in_first_stage __a = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(_snake_case ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names ) class a__ ( __snake_case ): A__ : str = version.parse('1.11' ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return 1e-3
357
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class a__ ( __snake_case ): A__ : torch.FloatTensor A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None class a__ ( __snake_case , __snake_case ): A__ : Optional[Any] = 2 @register_to_config def __init__( self , UpperCAmelCase = 0.02 , UpperCAmelCase = 1_0_0 , UpperCAmelCase = 1.007 , UpperCAmelCase = 8_0 , UpperCAmelCase = 0.05 , UpperCAmelCase = 5_0 , ) -> Optional[Any]: # standard deviation of the initial noise distribution __a = sigma_max # setable values __a = None __a = None __a = None # sigma(t_i) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> torch.FloatTensor: return sample def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> int: __a = num_inference_steps __a = np.arange(0 , self.num_inference_steps )[::-1].copy() __a = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) __a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __a = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: __a = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __a = 0 # sample eps ~ N(0, S_noise^2 * I) __a = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) __a = sigma + gamma * sigma __a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[KarrasVeOutput, Tuple]: __a = sample_hat + sigma_hat * model_output __a = (sample_hat - pred_original_sample) / sigma_hat __a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[KarrasVeOutput, Tuple]: __a = sample_prev + sigma_prev * model_output __a = (sample_prev - pred_original_sample) / sigma_prev __a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: raise NotImplementedError()
197
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor _UpperCAmelCase :Optional[torch.FloatTensor] = None def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any]=0.999 , lowerCamelCase__ : List[str]="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCamelCase_ : Tuple =[] for i in range(lowerCamelCase__ ): lowerCamelCase_ : Tuple =i / num_diffusion_timesteps lowerCamelCase_ : Dict =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ) , lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : int , snake_case__ : int = 1000 , snake_case__ : str = "fixed_small_log" , snake_case__ : bool = True , snake_case__ : Optional[float] = 1.0 , snake_case__ : str = "epsilon" , snake_case__ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) lowerCamelCase_ : str =betas_for_alpha_bar(snake_case__ ) lowerCamelCase_ : Tuple =1.0 - self.betas lowerCamelCase_ : Union[str, Any] =torch.cumprod(self.alphas , dim=0 ) lowerCamelCase_ : List[str] =torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCamelCase_ : str =1.0 # setable values lowerCamelCase_ : Optional[Any] =None lowerCamelCase_ : Union[str, Any] =torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) lowerCamelCase_ : Union[str, Any] =variance_type def UpperCAmelCase__ ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): return sample def UpperCAmelCase__ ( self : Any , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): lowerCamelCase_ : str =num_inference_steps lowerCamelCase_ : Any =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCamelCase_ : int =(np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCamelCase_ : Optional[Any] =torch.from_numpy(snake_case__ ).to(snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict=None , snake_case__ : str=None , snake_case__ : int=None ): if prev_timestep is None: lowerCamelCase_ : Union[str, Any] =t - 1 lowerCamelCase_ : Union[str, Any] =self.alphas_cumprod[t] lowerCamelCase_ : Optional[int] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase_ : Tuple =1 - alpha_prod_t lowerCamelCase_ : List[str] =1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase_ : int =self.betas[t] else: lowerCamelCase_ : Optional[Any] =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase_ : Dict =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCamelCase_ : List[Any] =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCamelCase_ : List[str] =torch.log(torch.clamp(snake_case__ , min=1E-20 ) ) lowerCamelCase_ : Any =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCamelCase_ : Any =variance.log() lowerCamelCase_ : Dict =beta.log() lowerCamelCase_ : Union[str, Any] =(predicted_variance + 1) / 2 lowerCamelCase_ : str =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None , snake_case__ : List[Any]=None , snake_case__ : bool = True , ): lowerCamelCase_ : List[str] =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: lowerCamelCase_ : List[Any] =None # 1. compute alphas, betas if prev_timestep is None: lowerCamelCase_ : Tuple =t - 1 lowerCamelCase_ : Any =self.alphas_cumprod[t] lowerCamelCase_ : Union[str, Any] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase_ : Dict =1 - alpha_prod_t lowerCamelCase_ : Optional[Any] =1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase_ : Optional[int] =self.betas[t] lowerCamelCase_ : Optional[int] =self.alphas[t] else: lowerCamelCase_ : Tuple =1 - alpha_prod_t / alpha_prod_t_prev lowerCamelCase_ : Optional[int] =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ : Any =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase_ : Dict =model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase_ : Tuple =torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : List[str] =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCamelCase_ : Dict =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : Dict =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase_ : Union[str, Any] =0 if t > 0: lowerCamelCase_ : List[str] =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) lowerCamelCase_ : Optional[Any] =self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": lowerCamelCase_ : Any =variance elif self.variance_type == "learned_range": lowerCamelCase_ : List[Any] =(0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) lowerCamelCase_ : List[Any] =variance * variance_noise lowerCamelCase_ : List[str] =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCamelCase_ : List[Any] =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCamelCase_ : List[Any] =timesteps.to(original_samples.device ) lowerCamelCase_ : Tuple =alphas_cumprod[timesteps] ** 0.5 lowerCamelCase_ : List[str] =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase_ : Optional[Any] =sqrt_alpha_prod.unsqueeze(-1 ) lowerCamelCase_ : Dict =(1 - alphas_cumprod[timesteps]) ** 0.5 lowerCamelCase_ : Tuple =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase_ : List[Any] =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCamelCase_ : List[str] =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
144
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( snake_case__ ): _UpperCAmelCase :BigBirdConfig _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True def UpperCAmelCase__ ( self : Dict ): super().setup() lowerCamelCase_ : List[str] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : Dict , *snake_case__ : Optional[int] , **snake_case__ : Any ): lowerCamelCase_ : int =super().__call__(*snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[str] = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> List[str]: def cross_entropy(lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int=None ): lowerCamelCase_ : List[str] =logits.shape[-1] lowerCamelCase_ : List[str] =(labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("f4" ) lowerCamelCase_ : str =jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCamelCase_ : Tuple =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase_ : str =reduction(lowerCamelCase__ ) return loss lowerCamelCase_ : int =partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Any =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : _UpperCAmelCase :str = "google/bigbird-roberta-base" _UpperCAmelCase :int = 3000 _UpperCAmelCase :int = 10500 _UpperCAmelCase :int = 128 _UpperCAmelCase :int = 3 _UpperCAmelCase :int = 1 _UpperCAmelCase :int = 5 # tx_args _UpperCAmelCase :float = 3e-5 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :int = 20000 _UpperCAmelCase :float = 0.00_95 _UpperCAmelCase :str = "bigbird-roberta-natural-questions" _UpperCAmelCase :str = "training-expt" _UpperCAmelCase :str = "data/nq-training.jsonl" _UpperCAmelCase :str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : Union[str, Any] ): os.makedirs(self.base_dir , exist_ok=snake_case__ ) lowerCamelCase_ : Tuple =os.path.join(self.base_dir , self.save_dir ) lowerCamelCase_ : Optional[Any] =self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : _UpperCAmelCase :int _UpperCAmelCase :int = 4096 # no dynamic padding on TPUs def __call__( self : List[str] , snake_case__ : List[str] ): lowerCamelCase_ : Optional[int] =self.collate_fn(snake_case__ ) lowerCamelCase_ : List[str] =jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : str , snake_case__ : Dict ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.fetch_inputs(features["input_ids"] ) lowerCamelCase_ : Dict ={ "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : List[Any] , snake_case__ : list ): lowerCamelCase_ : Any =[self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : int , snake_case__ : list ): lowerCamelCase_ : List[Any] =[1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ) -> Optional[int]: if seed is not None: lowerCamelCase_ : Union[str, Any] =dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCamelCase_ : Any =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Tuple ) -> int: def loss_fn(lowerCamelCase__ : Optional[int] ): lowerCamelCase_ : List[Any] =model_inputs.pop("start_labels" ) lowerCamelCase_ : Dict =model_inputs.pop("end_labels" ) lowerCamelCase_ : Any =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Tuple =state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =jax.random.split(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =jax.value_and_grad(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Tuple =grad_fn(state.params ) lowerCamelCase_ : List[Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase_ : int =jax.lax.pmean(lowerCamelCase__ , "batch" ) lowerCamelCase_ : List[Any] =state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : List[str] , **lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Dict =model_inputs.pop("start_labels" ) lowerCamelCase_ : List[Any] =model_inputs.pop("end_labels" ) lowerCamelCase_ : Union[str, Any] =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Tuple =state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =outputs lowerCamelCase_ : int =state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : str =jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowercase__ ( train_state.TrainState ): _UpperCAmelCase :Callable = struct.field(pytree_node=snake_case__ ) @dataclass class lowercase__ : _UpperCAmelCase :Args _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :wandb _UpperCAmelCase :Callable = None def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : str=None ): lowerCamelCase_ : int =model.params lowerCamelCase_ : Optional[Any] =TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =restore_checkpoint(snake_case__ , snake_case__ ) lowerCamelCase_ : Tuple ={ "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase_ , lowerCamelCase_ : Tuple =build_tx(**snake_case__ ) lowerCamelCase_ : Union[str, Any] =train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) lowerCamelCase_ : int =args lowerCamelCase_ : Union[str, Any] =data_collator lowerCamelCase_ : Dict =lr lowerCamelCase_ : Optional[Any] =params lowerCamelCase_ : Dict =jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : Dict , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : List[str] ): lowerCamelCase_ : str =self.args lowerCamelCase_ : List[Any] =len(snake_case__ ) // args.batch_size lowerCamelCase_ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase_ : Dict =jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase_ : int =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : List[Any] =get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) lowerCamelCase_ : Dict =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ): lowerCamelCase_ : str =self.data_collator(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase_ : Tuple =jax_utils.unreplicate(state.step ) lowerCamelCase_ : Optional[Any] =running_loss.item() / i lowerCamelCase_ : Any =self.scheduler_fn(state_step - 1 ) lowerCamelCase_ : Optional[Any] =self.evaluate(snake_case__ , snake_case__ ) lowerCamelCase_ : str ={ "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : Dict , snake_case__ : Union[str, Any] ): lowerCamelCase_ : List[Any] =get_batched_dataset(snake_case__ , self.args.batch_size ) lowerCamelCase_ : List[str] =len(snake_case__ ) // self.args.batch_size lowerCamelCase_ : Tuple =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): lowerCamelCase_ : Optional[Any] =self.data_collator(snake_case__ ) lowerCamelCase_ : List[str] =self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : str , snake_case__ : Optional[int] , snake_case__ : Any ): lowerCamelCase_ : List[Any] =jax_utils.unreplicate(snake_case__ ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> List[Any]: print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(lowerCamelCase__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Any =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Optional[Any] =from_bytes(state.opt_state , f.read() ) lowerCamelCase_ : List[Any] =joblib.load(os.path.join(lowerCamelCase__ , "args.joblib" ) ) lowerCamelCase_ : int =joblib.load(os.path.join(lowerCamelCase__ , "data_collator.joblib" ) ) with open(os.path.join(lowerCamelCase__ , "training_state.json" ) , "r" ) as f: lowerCamelCase_ : Optional[Any] =json.load(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ) -> str: lowerCamelCase_ : Dict =num_train_steps - warmup_steps lowerCamelCase_ : Optional[Any] =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : List[Any] =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : Dict =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) -> List[str]: def weight_decay_mask(lowerCamelCase__ : str ): lowerCamelCase_ : Union[str, Any] =traverse_util.flatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Any ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Dict =scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
144
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''vit_msn''' def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-06 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =qkv_bias
341
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase ) -> bool: _lowerCAmelCase =str(__UpperCamelCase ) return n == n[::-1] def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str: _lowerCAmelCase =0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int = 13 , SCREAMING_SNAKE_CASE : int = 64 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 128 , SCREAMING_SNAKE_CASE : List[str]=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE : int = 7 , SCREAMING_SNAKE_CASE : int = 4 , SCREAMING_SNAKE_CASE : int = 37 , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 10 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 128 , SCREAMING_SNAKE_CASE : List[int] = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , ): lowercase__ : Tuple = parent lowercase__ : int = batch_size lowercase__ : List[str] = image_size lowercase__ : Tuple = patch_size lowercase__ : Tuple = num_channels lowercase__ : Optional[Any] = is_training lowercase__ : Optional[int] = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = encoder_stride lowercase__ : List[Any] = num_attention_outputs lowercase__ : List[Any] = embed_dim lowercase__ : Dict = embed_dim + 1 lowercase__ : Any = resolution lowercase__ : Dict = depths lowercase__ : Union[str, Any] = hidden_sizes lowercase__ : str = dim lowercase__ : List[str] = mlp_expansion_ratio def snake_case ( self : Dict ): lowercase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Optional[Any] = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Any = 1 lowercase__ : str = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) lowercase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Any = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self : str ): lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[int] = config_and_inputs lowercase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowercase_ = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : Dict ): lowercase__ : List[str] = TFEfficientFormerModelTester(self ) lowercase__ : Optional[int] = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case ( self : Dict ): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case ( self : Optional[int] ): pass def snake_case ( self : List[str] ): lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Union[str, Any] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : List[str] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) if hasattr(self.model_tester , "encoder_seq_length" ): lowercase__ : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowercase__ : List[Any] = seq_length * self.model_tester.chunk_length else: lowercase__ : Optional[int] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowercase__ : int = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=False ): lowercase__ : Optional[Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self : str ): lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case ( self : List[Any] ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Dict ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[str] = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = True lowercase__ : Optional[int] = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowercase__ : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowercase__ : List[Any] = True lowercase__ : Tuple = False lowercase__ : List[Any] = True lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) lowercase__ : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) lowercase__ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case ( self : List[str] ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowercase__ : Dict = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.assertTrue(outputs_dict is not None ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Any ): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case ( self : Any ): lowercase__ : List[Any] = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass lowercase__ : str = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Dict = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : str = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def snake_case ( self : int ): lowercase__ : int = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass lowercase__ : List[str] = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Any = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
130
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Union[str, Any] = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ ) if hidden_sizes == 192: lowercase__ : Dict = timm.create_model("levit_192" , pretrained=lowerCamelCase__ ) if hidden_sizes == 256: lowercase__ : Optional[Any] = timm.create_model("levit_256" , pretrained=lowerCamelCase__ ) if hidden_sizes == 384: lowercase__ : List[str] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ ) from_model.eval() lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval() lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = from_model.state_dict() lowercase__ : Union[str, Any] = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase__ ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(lowerCamelCase__ ) lowercase__ : Optional[Any] = our_model(lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one." lowercase__ : Optional[Any] = name print(lowerCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): """simple docstring""" lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : str = 1_000 lowercase__ : Any = (1, num_labels) lowercase__ : Optional[Any] = "huggingface/label-files" lowercase__ : Optional[Any] = num_labels lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ ) lowercase__ : List[str] = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } lowercase__ : int = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
1
import sys a_ : int = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ (_UpperCAmelCase = N): SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(_UpperCAmelCase) - 12): SCREAMING_SNAKE_CASE = 1 for j in range(13): product *= int(n[i + j]) if product > largest_product: SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
351
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0) SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = floats_list((3, 1000)) SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np') SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = 'This is a test string' SCREAMING_SNAKE_CASE = processor(text=a) SCREAMING_SNAKE_CASE = tokenizer(a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(a) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a) self.assertListEqual(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
327
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A__ ( __snake_case ): _UpperCAmelCase :Any = 'data2vec-audio' def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=16 , A_=19 , A_=5 , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_="sum" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=False , A_=3 , A_=2 , A_=3 , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase : str = hidden_size UpperCamelCase : Optional[Any] = feat_extract_activation UpperCamelCase : Optional[Any] = list(A_ ) UpperCamelCase : Optional[int] = list(A_ ) UpperCamelCase : Optional[Any] = list(A_ ) UpperCamelCase : Optional[Any] = conv_bias UpperCamelCase : int = num_conv_pos_embeddings UpperCamelCase : List[Any] = num_conv_pos_embedding_groups UpperCamelCase : int = conv_pos_kernel_size UpperCamelCase : Any = len(self.conv_dim ) UpperCamelCase : int = num_hidden_layers UpperCamelCase : int = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : int = num_attention_heads UpperCamelCase : Any = hidden_dropout UpperCamelCase : Dict = attention_dropout UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Optional[Any] = feat_proj_dropout UpperCamelCase : List[str] = final_dropout UpperCamelCase : Union[str, Any] = layerdrop UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : List[Any] = initializer_range UpperCamelCase : str = vocab_size UpperCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase : Tuple = mask_time_prob UpperCamelCase : Dict = mask_time_length UpperCamelCase : Dict = mask_time_min_masks UpperCamelCase : int = mask_feature_prob UpperCamelCase : Tuple = mask_feature_length UpperCamelCase : Tuple = mask_feature_min_masks # ctc loss UpperCamelCase : Union[str, Any] = ctc_loss_reduction UpperCamelCase : Tuple = ctc_zero_infinity # adapter UpperCamelCase : Any = add_adapter UpperCamelCase : List[Any] = adapter_kernel_size UpperCamelCase : Optional[int] = adapter_stride UpperCamelCase : int = num_adapter_layers UpperCamelCase : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase : Any = list(A_ ) UpperCamelCase : Tuple = list(A_ ) UpperCamelCase : Optional[int] = list(A_ ) UpperCamelCase : Union[str, Any] = xvector_output_dim @property def __UpperCamelCase( self ): '''simple docstring''' return math.prod(self.conv_stride )
52
from math import sqrt def A_ ( _lowerCAmelCase ) -> bool: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase : List[Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase : List[Any] = False for divisor in range(2 , int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase : Union[str, Any] = False break # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'status' must been from type bool" return status def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase : int = list(range(2 , n + 1 ) ) UpperCamelCase : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase : Tuple = 0 # filters actual prime numbers. UpperCamelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase : Tuple = 2 UpperCamelCase : str = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Any = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Dict = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _lowerCAmelCase ) -> List[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _lowerCAmelCase ) -> Any: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" UpperCamelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase : Dict = get_prime_numbers(_lowerCAmelCase ) UpperCamelCase : Tuple = len(_lowerCAmelCase ) # run variable for while-loops. UpperCamelCase : Optional[int] = 0 UpperCamelCase : int = None # exit variable. for break up the loops UpperCamelCase : Union[str, Any] = True while i < len_pn and loop: UpperCamelCase : Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Tuple = 0 while numbera != 0: UpperCamelCase : Tuple = numbera % numbera UpperCamelCase : Any = numbera UpperCamelCase : Union[str, Any] = rest # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Optional[int] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase : List[Any] = prime_factorization(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: UpperCamelCase : Optional[Any] = [] UpperCamelCase : int = [] UpperCamelCase : List[Any] = max(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) UpperCamelCase : Tuple = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase , _lowerCAmelCase ) ): ans *= n else: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase : Any = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" UpperCamelCase : int = 0 UpperCamelCase : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase : str = p_number_a + 1 # jump to the next number UpperCamelCase : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _lowerCAmelCase ) -> List[str]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase : Dict = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _lowerCAmelCase ) -> int: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase : int = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase : List[str] = gcd(abs(_lowerCAmelCase ) , abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _lowerCAmelCase ) -> Dict: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase : Dict = 0 UpperCamelCase : Dict = 1 UpperCamelCase : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase : Any = ans ans += fiba UpperCamelCase : str = tmp return ans
52
1
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets a__ : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' a__ : Dict = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' a__ : Any = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase_ ( datasets.Metric): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]="uniform_average" , UpperCAmelCase__ : Optional[Any]=True ) -> Any: __SCREAMING_SNAKE_CASE = mean_squared_error( UpperCAmelCase__ , UpperCAmelCase__ , sample_weight=UpperCAmelCase__ , multioutput=UpperCAmelCase__ , squared=UpperCAmelCase__ ) return {"mse": mse}
370
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = R"\w+[.]\d+" __SCREAMING_SNAKE_CASE = re.findall(lowerCAmelCase_ , lowerCAmelCase_ ) for pat in pats: __SCREAMING_SNAKE_CASE = key.replace(lowerCAmelCase_ , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=42 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE = flax_model.init_weights(PRNGKey(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE = rename_key(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE = jnp.asarray(lowerCAmelCase_ ) return unflatten_dict(lowerCAmelCase_ )
195
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Any = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class A ( __snake_case ): __magic_name__ = '''mvp''' __magic_name__ = ['''past_key_values'''] __magic_name__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , SCREAMING_SNAKE_CASE=50267 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=100 , SCREAMING_SNAKE_CASE=800 , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Tuple = vocab_size A : Tuple = max_position_embeddings A : Union[str, Any] = d_model A : Optional[Any] = encoder_ffn_dim A : Optional[Any] = encoder_layers A : List[str] = encoder_attention_heads A : Any = decoder_ffn_dim A : List[Any] = decoder_layers A : Optional[Any] = decoder_attention_heads A : Optional[int] = dropout A : Optional[Any] = attention_dropout A : List[str] = activation_dropout A : Union[str, Any] = activation_function A : Dict = init_std A : Optional[int] = encoder_layerdrop A : int = decoder_layerdrop A : Optional[int] = classifier_dropout A : List[str] = use_cache A : Tuple = encoder_layers A : Any = scale_embedding # scale factor will be sqrt(d_model) if True A : Union[str, Any] = use_prompt A : Optional[Any] = prompt_length A : Tuple = prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , SCREAMING_SNAKE_CASE ): A : Tuple = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' )
3
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> str: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowercase = precision lowercase = ceil(precision / 1_4 ) lowercase = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() lowercase = 1 lowercase = 1_3_5_9_1_4_0_9 lowercase = Decimal(lowerCAmelCase__ ) for k in range(1 , lowerCAmelCase__ ): lowercase = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase : List[Any] =5_0 print(F"""The first {n} digits of pi is: {pi(n)}""")
197
0
def a__ ( UpperCAmelCase : int ) -> None: UpperCAmelCase : Optional[Any] = generate_pascal_triangle(UpperCAmelCase ) for row_idx in range(UpperCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def a__ ( UpperCAmelCase : int ) -> list[list[int]]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) UpperCAmelCase : list[list[int]] = [] for current_row_idx in range(UpperCAmelCase ): UpperCAmelCase : List[str] = populate_current_row(UpperCAmelCase , UpperCAmelCase ) triangle.append(UpperCAmelCase ) return triangle def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int ) -> list[int]: UpperCAmelCase : int = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase : List[Any] = 1, 1 for current_col_idx in range(1 , UpperCAmelCase ): calculate_current_element( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return current_row def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : list[int] , UpperCAmelCase : int , UpperCAmelCase : int , ) -> None: UpperCAmelCase : List[str] = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase : Tuple = above_to_left_elt + above_to_right_elt def a__ ( UpperCAmelCase : int ) -> list[list[int]]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) UpperCAmelCase : list[list[int]] = [[1]] for row_index in range(1 , UpperCAmelCase ): UpperCAmelCase : List[Any] = [0] + result[-1] + [0] UpperCAmelCase : Optional[int] = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase : List[Any] = sum(divmod(UpperCAmelCase , 2 ) ) UpperCAmelCase : Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase : int = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase : str = row_first_half + row_second_half result.append(UpperCAmelCase ) return result def a__ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase : Callable , UpperCAmelCase : int ) -> None: UpperCAmelCase : Optional[int] = f'''{func.__name__}({value})''' UpperCAmelCase : Tuple = timeit(f'''__main__.{call}''' , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCAmelCase , UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
370
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( UpperCAmelCase : int ) -> Dict: # A local function to see if a dot lands in the circle. def is_in_circle(UpperCAmelCase : float , UpperCAmelCase : float ) -> bool: UpperCAmelCase : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[str] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : int = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def a__ ( UpperCAmelCase : int , UpperCAmelCase : Callable[[float], float] , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(UpperCAmelCase , UpperCAmelCase ) ) for _ in range(UpperCAmelCase ) ) * (max_value - min_value) def a__ ( UpperCAmelCase : int , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 1.0 ) -> None: def identity_function(UpperCAmelCase : float ) -> float: return x UpperCAmelCase : int = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) UpperCAmelCase : Tuple = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def a__ ( UpperCAmelCase : int ) -> None: def function_to_integrate(UpperCAmelCase : float ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Optional[int] = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
99
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "vit_msn" def __init__(self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-0_6 , UpperCAmelCase=224 , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=True , **UpperCAmelCase , ) -> int: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
341
'''simple docstring''' from math import factorial, radians def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ): _snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _snake_case = radians(_SCREAMING_SNAKE_CASE ) _snake_case = angle_in_radians _snake_case = 3 _snake_case = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) _snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__('doctest').testmod()
341
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __a :List[Any] = random.Random() def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=1.0 ,__UpperCamelCase : str=None ,__UpperCamelCase : Union[str, Any]=None ): """simple docstring""" if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : str=7 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : Tuple=2000 , UpperCAmelCase : Optional[Any]=24 , UpperCAmelCase : Union[str, Any]=24 , UpperCAmelCase : str=0.0 , UpperCAmelCase : str=16000 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , ): A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = feature_size A_ = num_mel_bins A_ = padding_value A_ = sampling_rate A_ = return_attention_mask A_ = do_normalize def __A ( self : List[str] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self : str , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=False ): def _flatten(UpperCAmelCase : int ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self : Dict ): A_ = SpeechaTextFeatureExtractionTester(self ) def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ): self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size A_ = feature_extractor(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features A_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) # Test batched A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ = np.asarray(UpperCAmelCase ) A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) def __A ( self : Dict ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 16, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): A_ = feature_extractor( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self : Any ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 16, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): A_ = feature_extractor( UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self : Any ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="max_length" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self : Union[str, Any] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="longest" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="longest" , max_length=16 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self : Optional[int] ): import torch A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = np.random.rand(100 , 32 ).astype(np.floataa ) A_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self : Optional[Any] , UpperCAmelCase : int ): from datasets import load_dataset A_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A_ = ds.sort("id" ).select(range(UpperCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self : str ): # fmt: off A_ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on A_ = self._load_datasamples(1 ) A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = feature_extractor(UpperCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase , atol=1E-4 ) )
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ (snake_case_ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :int = KandinskyInpaintPipeline __lowerCAmelCase :List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __lowerCAmelCase :str = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __lowerCAmelCase :str = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCAmelCase :Optional[Any] = False @property def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return 1_0_0 @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) a__ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) a__ : Union[str, Any] = MultilingualCLIP(_A ) a__ : Tuple = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" torch.manual_seed(0 ) a__ : Tuple = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__ : Dict = UNetaDConditionModel(**_A ) return model @property def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a__ : str = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : List[str] = self.dummy_text_encoder a__ : List[str] = self.dummy_tokenizer a__ : Any = self.dummy_unet a__ : Optional[Any] = self.dummy_movq a__ : str = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_A , ) a__ : Dict = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=0 ) -> Any: """simple docstring""" a__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) a__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image a__ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) a__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ : Any = Image.fromarray(np.uinta(_A ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask a__ : Optional[int] = np.ones((6_4, 6_4) , dtype=np.floataa ) a__ : List[Any] = 0 if str(_A ).startswith("""mps""" ): a__ : List[Any] = torch.manual_seed(_A ) else: a__ : int = torch.Generator(device=_A ).manual_seed(_A ) a__ : Optional[Any] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Union[str, Any] = 'cpu' a__ : List[str] = self.get_dummy_components() a__ : List[Any] = self.pipeline_class(**_A ) a__ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) a__ : Optional[Any] = pipe(**self.get_dummy_inputs(_A ) ) a__ : Union[str, Any] = output.images a__ : Any = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] a__ : List[str] = image[0, -3:, -3:, -1] a__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) a__ : Dict = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) a__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) a__ : Dict = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) a__ : List[str] = 0 a__ : List[Any] = 'a hat' a__ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) a__ : Optional[Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) a__ : List[str] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) a__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) a__ : Union[str, Any] = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() a__ : List[str] = pipeline( _A , image=_A , mask_image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="""np""" , ) a__ : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
170
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
0
import math import sys def lowerCamelCase ( a_ ) -> int: if number != int(lowercase__ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowerCAmelCase_ = [-1] * (number + 1) lowerCAmelCase_ = 0 for i in range(1 , number + 1 ): lowerCAmelCase_ = sys.maxsize lowerCAmelCase_ = int(math.sqrt(lowercase__ ) ) for j in range(1 , root + 1 ): lowerCAmelCase_ = 1 + answers[i - (j**2)] lowerCAmelCase_ = min(lowercase__ , lowercase__ ) lowerCAmelCase_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
351
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
205
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = r'\w+[.]\d+' lowercase = re.findall(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for pat in pats: lowercase = key.replace(__SCREAMING_SNAKE_CASE , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=42 ): # Step 1: Convert pytorch tensor to numpy lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase = flax_model.init_weights(PRNGKey(__SCREAMING_SNAKE_CASE ) ) lowercase = flatten_dict(__SCREAMING_SNAKE_CASE ) lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters lowercase , lowercase = rename_key_and_reshape_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase = jnp.asarray(__SCREAMING_SNAKE_CASE ) return unflatten_dict(__SCREAMING_SNAKE_CASE )
195
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _a ( _lowercase : str , _lowercase : Any=False ): '''simple docstring''' __UpperCAmelCase : List[Any] = OmegaConf.load(_lowercase ) if display: print(yaml.dump(OmegaConf.to_container(_lowercase ) ) ) return config def _a ( _lowercase : int , _lowercase : Any=None , _lowercase : Any=None ): '''simple docstring''' if conf_path is None: __UpperCAmelCase : Union[str, Any] = '''./model_checkpoints/vqgan_only.yaml''' __UpperCAmelCase : Union[str, Any] = load_config(_lowercase , display=_lowercase ) __UpperCAmelCase : Optional[Any] = VQModel(**config.model.params ) if ckpt_path is None: __UpperCAmelCase : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __UpperCAmelCase : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) if ".ckpt" in ckpt_path: __UpperCAmelCase : Optional[int] = sd['''state_dict'''] model.load_state_dict(_lowercase , strict=_lowercase ) model.to(_lowercase ) del sd return model def _a ( _lowercase : Dict , _lowercase : Tuple ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = model.encode(_lowercase ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) __UpperCAmelCase : List[str] = model.decode(_lowercase ) return xrec def _a ( _lowercase : List[Any] , _lowercase : str=False ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = string.rsplit('''.''' , 1 ) if reload: __UpperCAmelCase : Optional[Any] = importlib.import_module(_lowercase ) importlib.reload(_lowercase ) return getattr(importlib.import_module(_lowercase , package=_lowercase ) , cls ) def _a ( _lowercase : Dict ): '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def _a ( _lowercase : Optional[Any] , _lowercase : int , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=True ): '''simple docstring''' __UpperCAmelCase : List[str] = instantiate_from_config(_lowercase ) if sd is not None: model.load_state_dict(_lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _a ( _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Tuple , _lowercase : List[Any] ): '''simple docstring''' if ckpt: __UpperCAmelCase : Optional[int] = torch.load(_lowercase , map_location='''cpu''' ) __UpperCAmelCase : List[Any] = pl_sd['''global_step'''] print(F'loaded model from global step {global_step}.' ) else: __UpperCAmelCase : Optional[Any] = {'''state_dict''': None} __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[Any] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_lowercase , eval_mode=_lowercase )['''model'''] return model, global_step
240
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_lowercase ) # Let's go __UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(_lowercase , '''func''' ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Any = args.func(_lowercase ) service.run() if __name__ == "__main__": main()
240
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( __UpperCAmelCase ): def __init__( self , A_ , A_ = None , A_ = None , A_ = True , A_ = None , A_ = False , A_ = None , A_ = True , A_ = "arrow" , **A_ , ) -> List[Any]: """simple docstring""" super().__init__( split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , **A_ , ) UpperCamelCase = load_from_cache_file UpperCamelCase = file_format UpperCamelCase = Spark( df=A_ , features=A_ , cache_dir=A_ , working_dir=A_ , **A_ , ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=A_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
222
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase : List[str] = """src/transformers""" lowercase : Optional[int] = """docs/source/en/tasks""" def A_ ( A__ , A__ , A__ ) -> Tuple: with open(A__ , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ : Any = f.readlines() # Find the start prompt. a__ : str = 0 while not lines[start_index].startswith(A__ ): start_index += 1 start_index += 1 a__ : int = start_index while not lines[end_index].startswith(A__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) lowercase : Optional[Any] = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase : Optional[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def A_ ( A__ ) -> Optional[int]: a__ : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] a__ : int = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A__ , set() ) a__ : Optional[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def A_ ( A__ , A__=False ) -> Optional[int]: a__ , a__ , a__ , a__ : Dict = _find_text_in_file( filename=os.path.join(A__ , A__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) a__ : List[Any] = get_model_list_for_task(A__ ) if current_list != new_list: if overwrite: with open(os.path.join(A__ , A__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
99
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowercase : int = {"UserAgent": UserAgent().random} def UpperCAmelCase_ (_lowerCAmelCase : Any ): __UpperCamelCase : Optional[Any] = script.contents[0] __UpperCamelCase : Optional[Any] = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Any = f'''https://www.instagram.com/{username}/''' __UpperCamelCase : List[str] = self.get_json() def __lowerCamelCase ( self ) -> dict: '''simple docstring''' __UpperCamelCase : Tuple = requests.get(self.url , headers=__UpperCamelCase ).text __UpperCamelCase : List[Any] = BeautifulSoup(__UpperCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: '''simple docstring''' return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ) -> str: '''simple docstring''' return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ) -> bool: '''simple docstring''' return self.user_data["is_private"] def UpperCAmelCase_ (_lowerCAmelCase : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions __UpperCamelCase : Union[str, Any] = InstagramUser(_lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowercase : Dict = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
171
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase : Dict = (720, 1280) # Height, Width lowercase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase : Tuple = 1 / 100 lowercase : Optional[int] = "" lowercase : Any = "" lowercase : Union[str, Any] = "" lowercase : str = 250 def UpperCAmelCase_ (): __UpperCamelCase , __UpperCamelCase : Dict = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) for index in range(_lowerCAmelCase ): __UpperCamelCase : Optional[int] = random.sample(range(len(_lowerCAmelCase ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = update_image_and_anno( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , filter_scale=_lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase : List[str] = random_chars(32 ) __UpperCamelCase : int = path.split(os.sep )[-1].rsplit("." , 1 )[0] __UpperCamelCase : Dict = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCamelCase : str = [] for anno in new_annos: __UpperCamelCase : List[str] = anno[3] - anno[1] __UpperCamelCase : Union[str, Any] = anno[4] - anno[2] __UpperCamelCase : List[str] = anno[1] + width / 2 __UpperCamelCase : str = anno[2] + height / 2 __UpperCamelCase : List[str] = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowerCAmelCase ) with open(F'''{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str ): __UpperCamelCase : int = [] __UpperCamelCase : Dict = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): __UpperCamelCase : Any = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: __UpperCamelCase : Any = in_file.readlines() __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , F'''{label_name}.jpg''' ) __UpperCamelCase : Dict = [] for obj_list in obj_lists: __UpperCamelCase : Optional[int] = obj_list.rstrip("\n" ).split(" " ) __UpperCamelCase : int = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase : Any = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase : Optional[int] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list[int] , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : float = 0.0 , ): __UpperCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Any = int(scale_x * output_size[1] ) __UpperCamelCase : str = int(scale_y * output_size[0] ) __UpperCamelCase : str = [] __UpperCamelCase : Optional[int] = [] for i, index in enumerate(_lowerCAmelCase ): __UpperCamelCase : Any = all_img_list[index] path_list.append(_lowerCAmelCase ) __UpperCamelCase : Dict = all_annos[index] __UpperCamelCase : Any = cva.imread(_lowerCAmelCase ) if i == 0: # top-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, divid_point_y) ) __UpperCamelCase : Optional[int] = img for bbox in img_annos: __UpperCamelCase : List[str] = bbox[1] * scale_x __UpperCamelCase : Dict = bbox[2] * scale_y __UpperCamelCase : Optional[Any] = bbox[3] * scale_x __UpperCamelCase : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase : Optional[Any] = cva.resize(_lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase : Dict = img for bbox in img_annos: __UpperCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : str = bbox[2] * scale_y __UpperCamelCase : Optional[int] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : List[Any] = bbox[1] * scale_x __UpperCamelCase : str = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Dict = bbox[3] * scale_x __UpperCamelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase : List[Any] = cva.resize( _lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase : Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ (_lowerCAmelCase : int ): assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
171
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _a = logging.get_logger(__name__) class A_ ( snake_case__ ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : int ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
322
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
1
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [10, 20, 30, 40, 50, 60] lowercase__ : int= [2, 4, 6, 8, 10, 12] lowercase__ : Union[str, Any]= 100 self.assertEqual(kp.calc_profit(snake_case__ , snake_case__ , snake_case__ ) , 210 ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "max_weight must greater than zero." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "Weight can not be negative." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "Profit can not be negative." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , "max_weight must greater than zero." ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertRaisesRegex( snake_case__ , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
366
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger a : Any = get_logger(__name__) a : Any = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' for processor in self: lowercase__ : Optional[Any]= inspect.signature(processor.__call__ ).parameters if len(snake_case__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) lowercase__ : Union[str, Any]= processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) else: lowercase__ : Dict= processor(snake_case__ , snake_case__ , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowercase__ : Any= temperature def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= scores / self.temperature return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowercase__ : int= top_p lowercase__ : Optional[int]= filter_value lowercase__ : Tuple= min_tokens_to_keep def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Dict= lax.top_k(snake_case__ , scores.shape[-1] ) lowercase__ : Optional[int]= jnp.full_like(snake_case__ , self.filter_value ) lowercase__ : Union[str, Any]= jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 ) lowercase__ : str= cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase__ : str= jnp.roll(snake_case__ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case__ ) # min tokens to keep lowercase__ : Optional[int]= score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ ) lowercase__ : str= jnp.where(snake_case__ , snake_case__ , snake_case__ ) lowercase__ : str= jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1] return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowercase__ : List[Any]= max(snake_case__ , snake_case__ ) lowercase__ : Dict= filter_value def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Optional[Any]= scores.shape lowercase__ : int= jnp.full(batch_size * vocab_size , self.filter_value ) lowercase__ : Dict= min(self.top_k , scores.shape[-1] ) # Safety check lowercase__, lowercase__ : List[Any]= lax.top_k(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase__ : str= topk_scores.flatten() lowercase__ : Any= topk_indices.flatten() + shift lowercase__ : Optional[Any]= next_scores_flat.at[topk_indices_flat].set(snake_case__ ) lowercase__ : str= next_scores_flat.reshape(snake_case__ , snake_case__ ) return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : Any= bos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : int= 1 - jnp.bool_(cur_len - 1 ) lowercase__ : int= jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Tuple= max_length lowercase__ : str= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : Any= 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase__ : Optional[int]= jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowercase__ : List[str]= min_length lowercase__ : Dict= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied lowercase__ : Tuple= 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase__ : Dict= jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= list(snake_case__ ) lowercase__ : List[Any]= begin_index def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= 1 - jnp.bool_(cur_len - self.begin_index ) lowercase__ : str= jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= list(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : int= dict(snake_case__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase__ : List[Any]= jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase__ : List[Any]= force_token_array.at[index].set(snake_case__ ) lowercase__ : int= jnp.intaa(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' def _force_token(snake_case__ ): lowercase__ : Dict= scores.shape[0] lowercase__ : Any= self.force_token_array[generation_idx] lowercase__ : List[Any]= jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" ) lowercase__ : List[Any]= jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase__ : List[str]= lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) ) return new_scores lowercase__ : Dict= lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= generate_config.eos_token_id lowercase__ : Optional[int]= generate_config.no_timestamps_token_id lowercase__ : Dict= generate_config.no_timestamps_token_id + 1 lowercase__ : List[Any]= decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case__ , "max_initial_timestamp_index" ): lowercase__ : int= generate_config.max_initial_timestamp_index else: lowercase__ : Dict= model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase__ : str= model_config.vocab_size def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps lowercase__ : int= scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(snake_case__ , snake_case__ ): lowercase__ : Union[str, Any]= jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ ) lowercase__ : Tuple= jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , ) lowercase__ : int= jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , ) return jnp.where( snake_case__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , ) lowercase__ : List[str]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) lowercase__ : str= jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ ) lowercase__ : List[Any]= jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , ) lowercase__ : Any= self.timestamp_begin + self.max_initial_timestamp_index lowercase__ : str= jnp.where( snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase__ : str= jax.nn.log_softmax(snake_case__ , axis=-1 ) def handle_cumulative_probs(snake_case__ , snake_case__ ): lowercase__ : Dict= jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase__ : Union[str, Any]= jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , ) lowercase__ : Optional[int]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) return scores
150
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : Optional[int] , *__a : Optional[Any] , **__a : Dict ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
def __lowerCamelCase ( __a :float , __a :int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return number - int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
351
import os import re import shutil import sys import tempfile import unittest import black A : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. A : Optional[int] = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) A__ = self.transformer_dir shutil.copy( os.path.join(__lowerCAmelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a_ ( self : str ) -> Optional[int]: """simple docstring""" A__ = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a_ ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=None ) -> Dict: """simple docstring""" A__ = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: A__ = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result A__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ = black.format_str(__lowerCAmelCase , mode=__lowerCAmelCase ) A__ = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__lowerCAmelCase ) with open(__lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , __lowerCAmelCase ) def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" A__ = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Tuple ) -> Any: """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __lowerCAmelCase ) , ) # Copy consistency with a really long name A__ = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , f'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , __lowerCAmelCase , __lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __lowerCAmelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , __lowerCAmelCase ) , ) def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] A__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) A__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) A__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) A__ , A__ = check_copies.convert_to_localized_md( __lowerCAmelCase , __lowerCAmelCase , localized_readme["""format_model_list"""] ) self.assertFalse(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) A__ , A__ = check_copies.convert_to_localized_md( __lowerCAmelCase , __lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__lowerCAmelCase ) A__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) A__ = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) A__ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) A__ , A__ = check_copies.convert_to_localized_md( __lowerCAmelCase , __lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
276
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray] UpperCAmelCase__ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
240
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer snake_case : Dict = logging.get_logger(__name__) snake_case : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case : List[Any] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } snake_case : int = { '''distilbert-base-uncased''': 5_12, '''distilbert-base-uncased-distilled-squad''': 5_12, '''distilbert-base-cased''': 5_12, '''distilbert-base-cased-distilled-squad''': 5_12, '''distilbert-base-german-cased''': 5_12, '''distilbert-base-multilingual-cased''': 5_12, } snake_case : Union[str, Any] = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : Optional[int] = DistilBertTokenizer def __init__( self :Dict ,__snake_case :Dict=None ,__snake_case :Optional[Any]=None ,__snake_case :Optional[Any]=True ,__snake_case :List[Any]="[UNK]" ,__snake_case :str="[SEP]" ,__snake_case :List[Any]="[PAD]" ,__snake_case :Tuple="[CLS]" ,__snake_case :Optional[int]="[MASK]" ,__snake_case :Dict=True ,__snake_case :Dict=None ,**__snake_case :List[Any] ,) -> Optional[int]: super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__snake_case ) != do_lower_case or normalizer_state.get('strip_accents' ,__snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__snake_case ) != tokenize_chinese_chars ): a__ = getattr(__snake_case ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**__snake_case ) a__ = do_lower_case def lowerCamelCase__( self :Any ,__snake_case :List[str] ,__snake_case :int=None ) -> Dict: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :List[str] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: a__ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
240
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __A : Tuple = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __A : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __A : Union[str, Any] = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __A : Dict = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __A : Union[str, Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __A : Dict = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
49
from math import pi, sqrt def __UpperCamelCase ( _A : float ) ->float: """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_7_1.5: raise OverflowError("""math range error""" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCamelCase ( ) ->None: """simple docstring""" assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A : List[Any] = 1.0 while num: __A : str = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
49
1
"""simple docstring""" def a__ ( lowerCAmelCase , lowerCAmelCase ) -> list: UpperCAmelCase__ : int = len(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = [] for i in range(len(lowerCAmelCase ) - pat_len + 1 ): UpperCAmelCase__ : Optional[Any] = True for j in range(lowerCAmelCase ): if s[i + j] != pattern[j]: UpperCAmelCase__ : Any = False break if match_found: position.append(lowerCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
171
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__(self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : List[Any] = size if size is not None else {"""height""": 384, """width""": 384} UpperCAmelCase__ : Optional[int] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : Dict = size UpperCAmelCase__ : Optional[Any] = resample UpperCAmelCase__ : Optional[Any] = do_rescale UpperCAmelCase__ : List[str] = rescale_factor UpperCAmelCase__ : List[Any] = do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ : Optional[int] = do_convert_rgb def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase__ : Dict = (size["""height"""], size["""width"""]) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ : Optional[int] = size if size is not None else self.size UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Any = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ : Dict = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ : Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[str] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCAmelCase__ : Union[str, Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCAmelCase__ : List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCAmelCase__ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=_lowerCamelCase ) return encoded_outputs
171
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCamelCase__ = get_logger(__name__) lowerCamelCase__ = R''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(lowercase_) def __call__( self : Union[str, Any] , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(lowercase_) def __call__( self : Optional[int] , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(lowercase_) def __call__( self : Union[str, Any] , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int , **lowercase_ : List[Any]) -> jnp.ndarray: """simple docstring""" for processor in self: _UpperCamelCase = inspect.signature(processor.__call__).parameters if len(lowercase_) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys())} for ' f'{processor.__class__} are passed to the logits processor.') _UpperCamelCase = processor(lowercase_ , lowercase_ , lowercase_ , **lowercase_) else: _UpperCamelCase = processor(lowercase_ , lowercase_ , lowercase_) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : float) -> Any: """simple docstring""" if not isinstance(lowercase_ , lowercase_) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}') _UpperCamelCase = temperature def __call__( self : Tuple , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = scores / self.temperature return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : float , lowercase_ : float = -float("Inf") , lowercase_ : int = 1) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}') if not isinstance(lowercase_ , lowercase_) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}') _UpperCamelCase = top_p _UpperCamelCase = filter_value _UpperCamelCase = min_tokens_to_keep def __call__( self : Optional[Any] , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase , _UpperCamelCase = lax.top_k(lowercase_ , scores.shape[-1]) _UpperCamelCase = jnp.full_like(lowercase_ , self.filter_value) _UpperCamelCase = jax.nn.softmax(lowercase_ , axis=-1).cumsum(axis=-1) _UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well _UpperCamelCase = jnp.roll(lowercase_ , 1) score_mask |= score_mask.at[:, 0].set(lowercase_) # min tokens to keep _UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(lowercase_) _UpperCamelCase = jnp.where(lowercase_ , lowercase_ , lowercase_) _UpperCamelCase = jax.lax.sort_key_val(lowercase_ , lowercase_)[-1] return next_scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : int , lowercase_ : float = -float("Inf") , lowercase_ : int = 1) -> List[str]: """simple docstring""" if not isinstance(lowercase_ , lowercase_) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}') _UpperCamelCase = max(lowercase_ , lowercase_) _UpperCamelCase = filter_value def __call__( self : str , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase , _UpperCamelCase = scores.shape _UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value) _UpperCamelCase = min(self.top_k , scores.shape[-1]) # Safety check _UpperCamelCase , _UpperCamelCase = lax.top_k(lowercase_ , lowercase_) _UpperCamelCase = jnp.broadcast_to((jnp.arange(lowercase_) * vocab_size)[:, None] , (batch_size, topk)).flatten() _UpperCamelCase = topk_scores.flatten() _UpperCamelCase = topk_indices.flatten() + shift _UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(lowercase_) _UpperCamelCase = next_scores_flat.reshape(lowercase_ , lowercase_) return next_scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int) -> Dict: """simple docstring""" _UpperCamelCase = bos_token_id def __call__( self : int , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = jnp.full(scores.shape , -float("inf")) _UpperCamelCase = 1 - jnp.bool_(cur_len - 1) _UpperCamelCase = jnp.where(lowercase_ , new_scores.at[:, self.bos_token_id].set(0) , lowercase_) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = max_length _UpperCamelCase = eos_token_id def __call__( self : Tuple , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = jnp.full(scores.shape , -float("inf")) _UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1) _UpperCamelCase = jnp.where(lowercase_ , new_scores.at[:, self.eos_token_id].set(0) , lowercase_) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : int) -> List[Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}') if not isinstance(lowercase_ , lowercase_) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}') _UpperCamelCase = min_length _UpperCamelCase = eos_token_id def __call__( self : str , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) _UpperCamelCase = jnp.where(lowercase_ , scores.at[:, self.eos_token_id].set(-float("inf")) , lowercase_) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = list(lowercase_) _UpperCamelCase = begin_index def __call__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int) -> List[str]: """simple docstring""" _UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index) _UpperCamelCase = jnp.where(lowercase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf")) , lowercase_) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : list) -> Any: """simple docstring""" _UpperCamelCase = list(lowercase_) def __call__( self : Union[str, Any] , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float("inf")) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any]) -> int: """simple docstring""" _UpperCamelCase = dict(lowercase_) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _UpperCamelCase = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: _UpperCamelCase = force_token_array.at[index].set(lowercase_) _UpperCamelCase = jnp.intaa(lowercase_) def __call__( self : Dict , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : int) -> jnp.ndarray: """simple docstring""" def _force_token(lowercase_ : int): _UpperCamelCase = scores.shape[0] _UpperCamelCase = self.force_token_array[generation_idx] _UpperCamelCase = jnp.ones_like(lowercase_ , dtype=scores.dtype) * -float("inf") _UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype) _UpperCamelCase = lax.dynamic_update_slice(lowercase_ , lowercase_ , (0, current_token)) return new_scores _UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowercase_) , lambda: scores , ) , ) return scores class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = generate_config.eos_token_id _UpperCamelCase = generate_config.no_timestamps_token_id _UpperCamelCase = generate_config.no_timestamps_token_id + 1 _UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowercase_ , "max_initial_timestamp_index"): _UpperCamelCase = generate_config.max_initial_timestamp_index else: _UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: _UpperCamelCase = model_config.vocab_size def __call__( self : Tuple , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float("inf")) def handle_pairs(lowercase_ : Optional[int] , lowercase_ : Union[str, Any]): _UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , lowercase_ , lowercase_) _UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowercase_ , ) _UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , lowercase_ , lowercase_) _UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowercase_ , lowercase_ , ) return jnp.where( lowercase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf")) , scores_k.at[: self.eos_token_id].set(-float("inf")) , ) , lowercase_ , ) _UpperCamelCase = jax.vmap(lowercase_)(lowercase_ , lowercase_) _UpperCamelCase = jnp.where(cur_len == self.begin_index , lowercase_ , lowercase_) _UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowercase_ , ) _UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index _UpperCamelCase = jnp.where( lowercase_ , scores.at[:, last_allowed + 1 :].set(-float("inf")) , lowercase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp _UpperCamelCase = jax.nn.log_softmax(lowercase_ , axis=-1) def handle_cumulative_probs(lowercase_ : List[Any] , lowercase_ : List[str]): _UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) _UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf")) , lowercase_ , ) _UpperCamelCase = jax.vmap(lowercase_)(lowercase_ , lowercase_) return scores
356
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") _UpperCamelCase = AutoTokenizer.from_pretrained("google/mt5-small") _UpperCamelCase = tokenizer("Hello there" , return_tensors="np").input_ids _UpperCamelCase = tokenizer("Hi I am" , return_tensors="np").input_ids _UpperCamelCase = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id) _UpperCamelCase = model(lowercase_ , decoder_input_ids=lowercase_).logits _UpperCamelCase = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1])).mean() _UpperCamelCase = -(labels.shape[-1] * loss.item()) _UpperCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
63
0
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ) -> Dict: """simple docstring""" A : Tuple = parent A : Dict = batch_size A : Optional[int] = seq_length A : Any = is_training A : int = use_attention_mask A : Optional[int] = use_token_type_ids A : Tuple = use_labels A : Optional[Any] = vocab_size A : Any = hidden_size A : List[Any] = num_hidden_layers A : Optional[Any] = num_attention_heads A : List[Any] = intermediate_size A : Any = hidden_act A : Any = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Union[str, Any] = max_position_embeddings A : str = type_vocab_size A : Optional[int] = type_sequence_label_size A : Dict = initializer_range A : List[str] = num_choices def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : List[Any] = None if self.use_attention_mask: A : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A : Dict = None if self.use_token_type_ids: A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Union[str, Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : str = self.prepare_config_and_inputs() A, A, A, A : Tuple = config_and_inputs A : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class A ( __snake_case , unittest.TestCase ): __magic_name__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = FlaxAlbertModelTester(self ) @slow def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: A : int = model_class_name.from_pretrained('''albert-base-v2''' ) A : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) A : Any = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A : int = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )[0] A : Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Tuple = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
3
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase__ ( _UpperCamelCase : Any="ro" , _UpperCamelCase : Optional[Any]="en" , _UpperCamelCase : Any="wmt16" , _UpperCamelCase : Tuple=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) snake_case = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) snake_case = datasets.load_dataset(_UpperCamelCase , _UpperCamelCase ) if save_dir is None: snake_case = f"""{dataset}-{pair}""" snake_case = Path(_UpperCamelCase ) save_dir.mkdir(exist_ok=_UpperCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets snake_case = 'val' if split == 'validation' else split snake_case = save_dir.joinpath(f"""{fn}.source""" ) snake_case = save_dir.joinpath(f"""{fn}.target""" ) snake_case = src_path.open('w+' ) snake_case = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
150
0
'''simple docstring''' from math import factorial, pi def _A ( _lowerCAmelCase , _lowerCAmelCase = 30 ): """simple docstring""" if not isinstance(_lowerCAmelCase , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) __lowercase =float(_lowerCAmelCase ) __lowercase =theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_lowerCAmelCase ) ) def _A ( _lowerCAmelCase , _lowerCAmelCase = 30 ): """simple docstring""" if not isinstance(_lowerCAmelCase , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) __lowercase =float(_lowerCAmelCase ) __lowercase =theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
48
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any]): '''simple docstring''' __lowercase =[] __lowercase =0 __lowercase =0 def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.head == self.tail def __lowerCamelCase ( self : str , _lowerCAmelCase : Any): '''simple docstring''' self.data.append(_lowerCAmelCase) __lowercase =self.tail + 1 def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.data[self.head] __lowercase =self.head + 1 return ret def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.tail - self.head def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' print(self.data) print('**************') print(self.data[self.head : self.tail]) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any): '''simple docstring''' __lowercase =data __lowercase =None __lowercase =None __lowercase =1 def __lowerCamelCase ( self : Any): '''simple docstring''' return self.data def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.left def __lowerCamelCase ( self : Tuple): '''simple docstring''' return self.right def __lowerCamelCase ( self : Dict): '''simple docstring''' return self.height def __lowerCamelCase ( self : int , _lowerCAmelCase : Any): '''simple docstring''' __lowercase =data def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : MyNode | None): '''simple docstring''' __lowercase =node def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : MyNode | None): '''simple docstring''' __lowercase =node def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : int): '''simple docstring''' __lowercase =height def _A ( _lowerCAmelCase ): """simple docstring""" if node is None: return 0 return node.get_height() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if a > b: return a return b def _A ( _lowerCAmelCase ): """simple docstring""" print('left rotation node:' , node.get_data() ) __lowercase =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCAmelCase ) __lowercase =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) __lowercase =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def _A ( _lowerCAmelCase ): """simple docstring""" print('right rotation node:' , node.get_data() ) __lowercase =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCAmelCase ) __lowercase =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) __lowercase =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCAmelCase ) ) return right_rotation(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCAmelCase ) ) return left_rotation(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if node is None: return MyNode(_lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __lowercase =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __lowercase =right_rotation(_lowerCAmelCase ) else: __lowercase =lr_rotation(_lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __lowercase =node.get_right() assert right_child is not None if data < right_child.get_data(): __lowercase =rl_rotation(_lowerCAmelCase ) else: __lowercase =left_rotation(_lowerCAmelCase ) __lowercase =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) return node def _A ( _lowerCAmelCase ): """simple docstring""" while True: __lowercase =root.get_right() if right_child is None: break __lowercase =right_child return root.get_data() def _A ( _lowerCAmelCase ): """simple docstring""" while True: __lowercase =root.get_left() if left_child is None: break __lowercase =left_child return root.get_data() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =root.get_left() __lowercase =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __lowercase =get_left_most(_lowerCAmelCase ) root.set_data(_lowerCAmelCase ) root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) elif left_child is not None: __lowercase =left_child elif right_child is not None: __lowercase =right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) if get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __lowercase =left_rotation(_lowerCAmelCase ) else: __lowercase =rl_rotation(_lowerCAmelCase ) elif get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __lowercase =right_rotation(_lowerCAmelCase ) else: __lowercase =lr_rotation(_lowerCAmelCase ) __lowercase =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCAmelCase ) return root class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple): '''simple docstring''' __lowercase =None def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return get_height(self.root) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Any): '''simple docstring''' print('insert:' + str(_lowerCAmelCase)) __lowercase =insert_node(self.root , _lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Any): '''simple docstring''' print('delete:' + str(_lowerCAmelCase)) if self.root is None: print('Tree is empty!') return __lowercase =del_node(self.root , _lowerCAmelCase) def __str__( self : int , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __lowercase ='' __lowercase =MyQueue() q.push(self.root) __lowercase =self.get_height() if layer == 0: return output __lowercase =0 while not q.is_empty(): __lowercase =q.pop() __lowercase =' ' * int(math.pow(2 , layer - 1)) output += space if node is None: output += "*" q.push(_lowerCAmelCase) q.push(_lowerCAmelCase) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space __lowercase =cnt + 1 for i in range(1_0_0): if cnt == math.pow(2 , _lowerCAmelCase) - 1: __lowercase =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _A ( ): """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase = AVLtree() lowerCamelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
48
1
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : List[str]=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Optional[Any]=3_6 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Tuple=3_7 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Dict=5_1_2 , UpperCamelCase_ : Dict=1_6 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Tuple=6 , UpperCamelCase_ : List[Any]=6 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : str=1_0_0_0 , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Optional[int] = use_input_mask lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Dict = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[str] = coordinate_size lowerCAmelCase : Any = shape_size lowerCAmelCase : Tuple = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : List[str] = scope lowerCAmelCase : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase : Dict = text_seq_length lowerCAmelCase : Tuple = (image_size // patch_size) ** 2 + 1 lowerCAmelCase : Tuple = self.text_seq_length + self.image_seq_length def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowerCAmelCase : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase : List[str] = bbox[i, j, 3] lowerCAmelCase : str = bbox[i, j, 1] lowerCAmelCase : Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase : int = bbox[i, j, 2] lowerCAmelCase : Union[str, Any] = bbox[i, j, 0] lowerCAmelCase : List[str] = tmp_coordinate lowerCAmelCase : Dict = tf.constant(UpperCamelCase_ ) lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = None if self.use_input_mask: lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[Any] = TFLayoutLMvaModel(config=UpperCamelCase_ ) # text + image lowerCAmelCase : List[Any] = model(UpperCamelCase_ , pixel_values=UpperCamelCase_ , training=UpperCamelCase_ ) lowerCAmelCase : str = model( UpperCamelCase_ , bbox=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , training=UpperCamelCase_ , ) lowerCAmelCase : Dict = model(UpperCamelCase_ , bbox=UpperCamelCase_ , pixel_values=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase : int = model({'''pixel_values''': pixel_values} , training=UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : str = TFLayoutLMvaForSequenceClassification(config=UpperCamelCase_ ) lowerCAmelCase : Dict = model( UpperCamelCase_ , bbox=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Tuple = TFLayoutLMvaForTokenClassification(config=UpperCamelCase_ ) lowerCAmelCase : List[Any] = model( UpperCamelCase_ , bbox=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : int = TFLayoutLMvaForQuestionAnswering(config=UpperCamelCase_ ) lowerCAmelCase : Tuple = model( UpperCamelCase_ , bbox=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , training=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ((lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase)) : Optional[Any] = config_and_inputs lowerCAmelCase : List[str] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __UpperCamelCase = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): return True def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=False ): lowerCAmelCase : List[Any] = copy.deepcopy(UpperCamelCase_ ) if model_class in get_values(UpperCamelCase_ ): lowerCAmelCase : List[str] = { k: tf.tile(tf.expand_dims(UpperCamelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCamelCase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase_ ): lowerCAmelCase : List[Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase_ ): lowerCAmelCase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowerCAmelCase : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase_ ): lowerCAmelCase : List[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase_ ): lowerCAmelCase : Optional[Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = TFLayoutLMvaModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : Any ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(UpperCamelCase_ ) if getattr(UpperCamelCase_ , '''hf_compute_loss''' , UpperCamelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label lowerCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCamelCase_ )[0] ] lowerCAmelCase : int = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCAmelCase : List[str] = prepared_for_class.pop('''input_ids''' ) lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , **UpperCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: lowerCAmelCase : List[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCAmelCase : List[str] = -1_0_0 lowerCAmelCase : Tuple = tf.convert_to_tensor(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , **UpperCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase_ , return_labels=UpperCamelCase_ ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase_ , return_labels=UpperCamelCase_ ) # Get keys that were added with the _prepare_for_class function lowerCAmelCase : List[str] = prepared_for_class.keys() - inputs_dict.keys() lowerCAmelCase : Dict = inspect.signature(model.call ).parameters lowerCAmelCase : Optional[int] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCAmelCase : List[str] = {0: '''input_ids'''} for label_key in label_keys: lowerCAmelCase : str = signature_names.index(UpperCamelCase_ ) lowerCAmelCase : Any = label_key lowerCAmelCase : Union[str, Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCAmelCase : List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCAmelCase : Any = prepared_for_class[value] lowerCAmelCase : Optional[Any] = tuple(UpperCamelCase_ ) # Send to model lowerCAmelCase : Dict = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowerCamelCase__ ( self : Union[str, Any] ): ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : List[Any] = type self.model_tester.create_and_check_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : str ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Tuple = TFLayoutLMvaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( ): lowerCAmelCase : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Tuple ): return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase_ ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : Any = prepare_img() lowerCAmelCase : Optional[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ).pixel_values lowerCAmelCase : List[Any] = tf.constant([[1, 2]] ) lowerCAmelCase : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , pixel_values=UpperCamelCase_ , training=UpperCamelCase_ ) # verify the logits lowerCAmelCase : Any = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase_ ) lowerCAmelCase : Tuple = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) A__: Dict = None A__: Tuple = { '''7B''': 1_1008, '''13B''': 1_3824, '''30B''': 1_7920, '''65B''': 2_2016, '''70B''': 2_8672, } A__: Any = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int]=1 ,_UpperCAmelCase : List[str]=256 ) -> Dict: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ) -> List[str]: with open(_UpperCAmelCase ,"""r""" ) as f: return json.load(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ) -> Tuple: with open(_UpperCAmelCase ,"""w""" ) as f: json.dump(_UpperCAmelCase ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any]=True ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase ,exist_ok=_UpperCAmelCase ) _a : Union[str, Any] =os.path.join(_UpperCAmelCase ,"""tmp""" ) os.makedirs(_UpperCAmelCase ,exist_ok=_UpperCAmelCase ) _a : int =read_json(os.path.join(_UpperCAmelCase ,"""params.json""" ) ) _a : int =NUM_SHARDS[model_size] _a : Dict =params["""n_layers"""] _a : Union[str, Any] =params["""n_heads"""] _a : List[str] =n_heads // num_shards _a : int =params["""dim"""] _a : Union[str, Any] =dim // n_heads _a : int =1_0_0_0_0.0 _a : str =1.0 / (base ** (torch.arange(0 ,_UpperCAmelCase ,2 ).float() / dims_per_head)) if "n_kv_heads" in params: _a : str =params["""n_kv_heads"""] # for GQA / MQA _a : Optional[Any] =n_heads_per_shard // num_key_value_heads _a : Optional[int] =dim // num_key_value_heads else: # compatibility with other checkpoints _a : str =n_heads _a : Any =n_heads_per_shard _a : str =dim # permute for sliced rotary def permute(_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int]=n_heads ,_UpperCAmelCase : Optional[int]=dim ,_UpperCAmelCase : List[str]=dim ): return w.view(_UpperCAmelCase ,dima // n_heads // 2 ,2 ,_UpperCAmelCase ).transpose(1 ,2 ).reshape(_UpperCAmelCase ,_UpperCAmelCase ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _a : Any =torch.load(os.path.join(_UpperCAmelCase ,"""consolidated.00.pth""" ) ,map_location="""cpu""" ) else: # Sharded _a : List[Any] =[ torch.load(os.path.join(_UpperCAmelCase ,F"consolidated.{i:02d}.pth" ) ,map_location="""cpu""" ) for i in range(_UpperCAmelCase ) ] _a : Any =0 _a : Optional[int] ={"""weight_map""": {}} for layer_i in range(_UpperCAmelCase ): _a : List[str] =F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _a : List[str] ={ F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _a : Tuple ={ F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } _a : str =permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] ,dim=0 ,).reshape(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Tuple =permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] ,dim=0 ,).reshape(_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] ,dim=0 ,).reshape(_UpperCAmelCase ,_UpperCAmelCase ) _a : List[str] =torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(_UpperCAmelCase )] ,dim=1 ) _a : Union[str, Any] =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(_UpperCAmelCase )] ,dim=0 ) _a : Tuple =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(_UpperCAmelCase )] ,dim=1 ) _a : Union[str, Any] =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(_UpperCAmelCase )] ,dim=0 ) _a : str =inv_freq for k, v in state_dict.items(): _a : Any =filename param_count += v.numel() torch.save(_UpperCAmelCase ,os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Union[str, Any] =F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _a : List[str] ={ """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _a : int ={ """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_UpperCAmelCase )] ,dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_UpperCAmelCase )] ,dim=0 ), } for k, v in state_dict.items(): _a : Dict =filename param_count += v.numel() torch.save(_UpperCAmelCase ,os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ) # Write configs _a : Tuple ={"""total_size""": param_count * 2} write_json(_UpperCAmelCase ,os.path.join(_UpperCAmelCase ,"""pytorch_model.bin.index.json""" ) ) _a : Optional[Any] =params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _a : int =params["""multiple_of"""] if """multiple_of""" in params else 256 _a : List[Any] =LlamaConfig( hidden_size=_UpperCAmelCase ,intermediate_size=compute_intermediate_size(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ,num_attention_heads=params["""n_heads"""] ,num_hidden_layers=params["""n_layers"""] ,rms_norm_eps=params["""norm_eps"""] ,num_key_value_heads=_UpperCAmelCase ,) config.save_pretrained(_UpperCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _a : Any =LlamaForCausalLM.from_pretrained(_UpperCAmelCase ,torch_dtype=torch.floataa ,low_cpu_mem_usage=_UpperCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_UpperCAmelCase ,safe_serialization=_UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> Optional[Any]: # Initialize the tokenizer based on the `spm` model _a : List[str] =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) _a : List[Any] =tokenizer_class(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : List[str] =argparse.ArgumentParser() parser.add_argument( """--input_dir""" ,help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" ,) parser.add_argument( """--model_size""" ,choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] ,) parser.add_argument( """--output_dir""" ,help="""Location to write HF model and tokenizer""" ,) parser.add_argument("""--safe_serialization""" ,type=_UpperCAmelCase ,help="""Whether or not to save using `safetensors`.""" ) _a : Optional[Any] =parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,) _a : List[Any] =os.path.join(args.input_dir ,"""tokenizer.model""" ) write_tokenizer(args.output_dir ,_UpperCAmelCase ) if __name__ == "__main__": main()
276
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """char""" UpperCAmelCase : Optional[Any] = """bpe""" UpperCAmelCase : Optional[Any] = """wp""" __lowercase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = ["""image_processor""", """char_tokenizer"""] UpperCAmelCase : Optional[Any] = """ViTImageProcessor""" UpperCAmelCase : List[Any] = """MgpstrTokenizer""" def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : str): a : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) a : List[str] = kwargs.pop("feature_extractor") a : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") a : Union[str, Any] = tokenizer a : int = AutoTokenizer.from_pretrained("gpt2") a : str = AutoTokenizer.from_pretrained("bert-base-uncased") super().__init__(__UpperCAmelCase , __UpperCAmelCase) def __call__( self : str , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : int): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: a : List[str] = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a : Optional[Any] = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif images is None: return encodings else: a : Any = encodings["input_ids"] return inputs def __snake_case ( self : List[Any] , __UpperCAmelCase : List[str]): a , a , a : Tuple = sequences a : Optional[int] = char_preds.size(0) a , a : Dict = self._decode_helper(__UpperCAmelCase , "char") a , a : Dict = self._decode_helper(__UpperCAmelCase , "bpe") a , a : Union[str, Any] = self._decode_helper(__UpperCAmelCase , "wp") a : Any = [] a : Union[str, Any] = [] for i in range(__UpperCAmelCase): a : Any = [char_scores[i], bpe_scores[i], wp_scores[i]] a : Optional[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] a : List[str] = scores.index(max(__UpperCAmelCase)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) a : Dict = {} a : List[str] = final_strs a : str = final_scores a : int = char_strs a : int = bpe_strs a : Tuple = wp_strs return out def __snake_case ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str]): if format == DecodeType.CHARACTER: a : int = self.char_decode a : int = 1 a : Dict = "[s]" elif format == DecodeType.BPE: a : List[str] = self.bpe_decode a : List[str] = 2 a : int = "#" elif format == DecodeType.WORDPIECE: a : Union[str, Any] = self.wp_decode a : List[str] = 102 a : int = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''') a , a : str = [], [] a : Optional[int] = pred_logits.size(0) a : List[str] = pred_logits.size(1) a , a : Tuple = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase) a : List[str] = preds_index.view(-1 , __UpperCAmelCase)[:, 1:] a : Any = decoder(__UpperCAmelCase) a , a : Union[str, Any] = torch.nn.functional.softmax(__UpperCAmelCase , dim=2).max(dim=2) a : Union[str, Any] = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase): a : str = preds_str[index].find(__UpperCAmelCase) a : Optional[Any] = preds_str[index][:pred_eos] a : Optional[int] = preds_index[index].cpu().tolist() a : Optional[int] = pred_index.index(__UpperCAmelCase) if eos_token in pred_index else -1 a : List[str] = preds_max_prob[index][: pred_eos_index + 1] a : int = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase) conf_scores.append(__UpperCAmelCase) return dec_strs, conf_scores def __snake_case ( self : Optional[int] , __UpperCAmelCase : Any): a : Dict = [seq.replace(" " , "") for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase)] return decode_strs def __snake_case ( self : Optional[int] , __UpperCAmelCase : List[str]): return self.bpe_tokenizer.batch_decode(__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int): a : Any = [seq.replace(" " , "") for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase)] return decode_strs
226
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' def get_matched_characters(A_ , A_ ) -> str: a : Optional[int] = [] a : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a : int = int(max(0 , i - limit ) ) a : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(A_ ) a : int = F'''{_stra[0:_stra.index(A_ )]} {_stra[_stra.index(A_ ) + 1:]}''' return "".join(A_ ) # matching characters a : Tuple = get_matched_characters(A_ , A_ ) a : str = get_matched_characters(A_ , A_ ) a : List[str] = len(A_ ) # transposition a : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(A_ , A_ ) if ca != ca] ) // 2 ) if not match_count: a : Tuple = 0.0 else: a : List[str] = ( 1 / 3 * ( match_count / len(A_ ) + match_count / len(A_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a : Union[str, Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
226
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case :Tuple = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[str] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[Any] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __snake_case :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
49
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __snake_case :Dict = '''bart''' __snake_case :Tuple = True @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __a = qar_model.eval() else: __a , __a = (None, None) if MODEL_TYPE == "bart": __a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __a = sas_model.eval() else: __a , __a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = faiss.StandardGpuResources() __a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __a = faiss.IndexFlatIP(128 ) __a = faiss.index_cpu_to_gpu(_UpperCAmelCase , 1 , _UpperCAmelCase ) wikiaab_gpu_index_flat.add(_UpperCAmelCase ) # TODO fix for larger GPU else: __a , __a = (None, None) __a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): __a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __a = elia['''train_eli5'''] __a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCAmelCase ) return (elia_train, eli5_train_q_index) __snake_case ,__snake_case ,__snake_case :List[str] = load_indexes() __snake_case ,__snake_case ,__snake_case ,__snake_case :Dict = load_models() __snake_case ,__snake_case :Tuple = load_train_data() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=10 ): __a = embed_questions_for_retrieval([question] , _UpperCAmelCase , _UpperCAmelCase ) __a , __a = eli5_train_q_index.search(_UpperCAmelCase , _UpperCAmelCase ) __a = [elia_train[int(_UpperCAmelCase )] for i in I[0]] return nn_examples def __snake_case ( _UpperCAmelCase , _UpperCAmelCase="wiki40b" , _UpperCAmelCase="dense" , _UpperCAmelCase=10 ): if source == "none": __a , __a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a = query_qa_dense_index( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __a , __a = query_es_index( _UpperCAmelCase , _UpperCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCAmelCase , ) __a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __a = '''question: {} context: {}'''.format(_UpperCAmelCase , _UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0.8 ): with torch.no_grad(): __a = qa_sas_generate( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , num_answers=1 , num_beams=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase , do_sample=_UpperCAmelCase , temp=_UpperCAmelCase , top_p=_UpperCAmelCase , top_k=_UpperCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __snake_case :Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __snake_case :int = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __snake_case :int = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __snake_case :Union[str, Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __snake_case :int = st.sidebar.checkbox('''Demo options''') if demo_options: __snake_case :str = st.sidebar.selectbox( '''''', action_list, index=3, ) __snake_case :Tuple = action_list.index(action_st) __snake_case :Optional[int] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __snake_case :Dict = show_type == '''Show full text of passages''' else: __snake_case :Dict = 3 __snake_case :str = True __snake_case :Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __snake_case :List[str] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __snake_case :Dict = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __snake_case :Optional[int] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __snake_case :Optional[int] = '''wiki40b''' __snake_case :Dict = '''dense''' __snake_case :Dict = '''beam''' __snake_case :int = 2 __snake_case :str = 64 __snake_case :Tuple = 256 __snake_case :int = None __snake_case :List[Any] = None __snake_case :int = st.sidebar.checkbox('''Generation options''') if generate_options: __snake_case :Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __snake_case :Tuple = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __snake_case :Dict = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __snake_case :Dict = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __snake_case :List[str] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __snake_case :Tuple = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) __snake_case :Any = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) __snake_case :Any = None # start main text __snake_case :Dict = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __snake_case :int = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __snake_case :Optional[int] = st.text_input('''Enter your question here:''', '''''') else: __snake_case :Optional[int] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __snake_case ,__snake_case :int = make_support(question, source=wiki_source, method='''dense''', n_results=10) __snake_case ,__snake_case :Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __snake_case :Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __snake_case :Union[str, Any] = support_list[:10] __snake_case :Optional[int] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __snake_case ,__snake_case :Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __snake_case ,__snake_case :Optional[int] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __snake_case :Dict = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __snake_case :int = res[1].strip() if sec_titles == "": __snake_case :List[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: __snake_case :Optional[int] = sec_titles.split(''' & ''') __snake_case :str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __snake_case :str = find_nearest_training(question) __snake_case :str = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __snake_case :Optional[Any] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __snake_case :Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roformer''' def __init__( self : str , _UpperCAmelCase : str=50000 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[Any]=1536 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : int=1e-12 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Tuple=True , **_UpperCAmelCase : str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = rotary_value UpperCAmelCase_ = use_cache class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
241
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : Dict , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Any , *_UpperCAmelCase : str , **_UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : str , *_UpperCAmelCase : int , **_UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Dict , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : str ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : Any , **_UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : int ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : int , *_UpperCAmelCase : Dict , **_UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] )
241
1
from ....utils import logging _snake_case = logging.get_logger(__name__) class _snake_case ( lowerCamelCase_ ): def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: Any=None , __lowerCamelCase: Optional[int]=20_48 ) -> List[Any]: __UpperCAmelCase : List[Any] = config.__dict__ __UpperCAmelCase : Optional[Any] = modal_hidden_size if num_labels: __UpperCAmelCase : Tuple = num_labels
157
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> bool: if num < 0: return False _a = num _a = 0 while num > 0: _a = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
63
0
'''simple docstring''' import csv import tweepy # Twitter API credentials A__ : Optional[Any] = '''''' A__ : Optional[int] = '''''' A__ : List[str] = '''''' A__ : Union[str, Any] = '''''' def a_ ( _UpperCAmelCase : str ) -> None: # authorize twitter, initialize tweepy __snake_case : Dict = tweepy.OAuthHandler(_UpperCAmelCase ,_UpperCAmelCase ) auth.set_access_token(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : List[Any] = tweepy.API(_UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets __snake_case : Optional[int] = [] # make initial request for most recent tweets (200 is the maximum allowed count) __snake_case : Tuple = api.user_timeline(screen_name=_UpperCAmelCase ,count=2_00 ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # save the id of the oldest tweet less one __snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCAmelCase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates __snake_case : str = api.user_timeline( screen_name=_UpperCAmelCase ,count=2_00 ,max_id=_UpperCAmelCase ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # update the id of the oldest tweet less one __snake_case : Union[str, Any] = alltweets[-1].id - 1 print(f'''...{len(_UpperCAmelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv __snake_case : Any = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,'w' ) as f: __snake_case : int = csv.writer(_UpperCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
0
'''simple docstring''' def a_ ( _UpperCAmelCase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __snake_case : Optional[Any] = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): __snake_case : Optional[Any] = int(sequence[i] ,2 ) return sequence def a_ ( _UpperCAmelCase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : Dict = gray_code_sequence_string(bit_count - 1 ) __snake_case : Any = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : str = '0' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : Any = '1' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE__ : Optional[int] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } SCREAMING_SNAKE_CASE__ : List[Any] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def A ( ) -> Union[str, Any]: lowerCamelCase : Any = ( list(range(ord("!" ) ,ord("~" ) + 1 ) ) + list(range(ord("¡" ) ,ord("¬" ) + 1 ) ) + list(range(ord("®" ) ,ord("ÿ" ) + 1 ) ) ) lowerCamelCase : str = bs[:] lowerCamelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 lowerCamelCase : Any = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) def A ( _SCREAMING_SNAKE_CASE ) -> List[str]: lowerCamelCase : Tuple = set() lowerCamelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase : Optional[int] = char return pairs class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = VOCAB_FILES_NAMES lowerCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> List[str]: lowerCamelCase : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token lowerCamelCase : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token lowerCamelCase : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token lowerCamelCase : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token lowerCamelCase : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding="utf-8" ) as vocab_handle: lowerCamelCase : int = json.load(UpperCamelCase__ ) lowerCamelCase : List[Any] = {v: k for k, v in self.encoder.items()} lowerCamelCase : List[str] = errors # how to handle errors in decoding lowerCamelCase : List[Any] = bytes_to_unicode() lowerCamelCase : int = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding="utf-8" ) as merges_handle: lowerCamelCase : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase : Tuple = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase : Tuple = {} lowerCamelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _lowercase ( self ) -> List[str]: return len(self.encoder ) def _lowercase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , UpperCamelCase__ ) -> str: if token in self.cache: return self.cache[token] lowerCamelCase : Any = tuple(UpperCamelCase__ ) lowerCamelCase : List[str] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: lowerCamelCase : List[Any] = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase : Any = bigram lowerCamelCase : int = [] lowerCamelCase : Optional[Any] = 0 while i < len(UpperCamelCase__ ): try: lowerCamelCase : Optional[Any] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase : List[str] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase : Optional[int] = tuple(UpperCamelCase__ ) lowerCamelCase : str = new_word if len(UpperCamelCase__ ) == 1: break else: lowerCamelCase : List[str] = get_pairs(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = " ".join(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = word return word def _lowercase ( self , UpperCamelCase__ ) -> str: lowerCamelCase : Tuple = [] for token in re.findall(self.pat , UpperCamelCase__ ): lowerCamelCase : str = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(" " ) ) return bpe_tokens def _lowercase ( self , UpperCamelCase__ ) -> Union[str, Any]: return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def _lowercase ( self , UpperCamelCase__ ) -> Tuple: return self.decoder.get(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : str = "".join(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + "\n" ) lowerCamelCase : Optional[int] = 0 with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCamelCase : Any = token_index writer.write(" ".join(UpperCamelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase : List[Any] = [self.cls_token_id] lowerCamelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : Optional[Any] = [self.sep_token_id] lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): lowerCamelCase : Tuple = " " + text return (text, kwargs)
48
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> int: lowerCamelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
48
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : int = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : Dict = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : Union[str, Any] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' @staticmethod @abstractmethod def snake_case__ ( a_ : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self : int ): '''simple docstring''' raise NotImplementedError()
226
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase__ : '''simple docstring''' UpperCamelCase = None def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(a_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(a_ ) __UpperCAmelCase : Any = self.feature_extraction_class.from_json_file(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[str] = feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(a_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = self.feature_extraction_class() self.assertIsNotNone(a_ )
226
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]: a__: int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: for i in range(config.num_hidden_layers ): a__: Optional[Any] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__: Dict = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' ) a__: Union[str, Any] = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__: Dict = in_proj_weight[ : config.hidden_size, : ] a__: Tuple = in_proj_bias[: config.hidden_size] a__: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__: Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__: List[str] = in_proj_weight[ -config.hidden_size :, : ] a__: List[Any] = in_proj_bias[-config.hidden_size :] def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: List[str] = dct.pop(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = val @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: List[Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_SCREAMING_SNAKE_CASE ) a__: List[str] = False a__: Any = False a__: Dict = False a__: Optional[int] = False if "vqa" in checkpoint_url: a__: str = True a__: int = 3129 a__: Dict = 'huggingface/label-files' a__: List[str] = 'vqa2-id2label.json' a__: Optional[int] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) a__: Any = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a__: str = idalabel a__: Union[str, Any] = {v: k for k, v in idalabel.items()} a__: Tuple = ViltForQuestionAnswering(_SCREAMING_SNAKE_CASE ) elif "nlvr" in checkpoint_url: a__: Optional[int] = True a__: str = 2 a__: Any = {0: 'False', 1: 'True'} a__: List[Any] = {v: k for k, v in config.idalabel.items()} a__: int = 3 a__: str = ViltForImagesAndTextClassification(_SCREAMING_SNAKE_CASE ) elif "irtr" in checkpoint_url: a__: Optional[int] = True a__: int = ViltForImageAndTextRetrieval(_SCREAMING_SNAKE_CASE ) elif "mlm_itm" in checkpoint_url: a__: List[str] = True a__: Tuple = ViltForMaskedLM(_SCREAMING_SNAKE_CASE ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys a__: List[str] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] a__: Optional[int] = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if mlm_model or irtr_model: a__: Any = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load state dict into HuggingFace model model.eval() if mlm_model: a__ , a__: List[Any] = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Define processor a__: Optional[Any] = ViltImageProcessor(size=384 ) a__: Union[str, Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) a__: int = ViltProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Forward pass on example inputs (image + text) if nlvr_model: a__: Dict = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw ) a__: List[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw ) a__: Dict = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) a__: Any = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' ) a__: Dict = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' ) a__: Dict = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: a__: Any = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw ) if mlm_model: a__: Optional[Any] = 'a bunch of [MASK] laying on a [MASK].' else: a__: List[Any] = 'How many cats are there?' a__: Dict = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' ) a__: Dict = model(**_SCREAMING_SNAKE_CASE ) # Verify outputs if mlm_model: a__: Dict = torch.Size([1, 11, 30522] ) a__: Tuple = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) # verify masked token prediction equals "cats" a__: Dict = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: a__: str = torch.Size([1, 3129] ) a__: Optional[int] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) # verify vqa prediction equals "2" a__: List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: a__: List[Any] = torch.Size([1, 2] ) a__: Optional[Any] = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
203
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase__ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase__ = concatenate_datasets lowercase__ = DownloadConfig lowercase__ = DownloadManager lowercase__ = DownloadMode lowercase__ = DownloadConfig lowercase__ = DownloadMode lowercase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
203
1