code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) UpperCAmelCase__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : Union[str, Any] , _snake_case : Any , _snake_case : Dict=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = 2 UpperCAmelCase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ) UpperCAmelCase_ = floats_tensor(control_image.shape , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_snake_case)).convert('''RGB''').resize((64, 64)) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase ( self : Any): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : Any): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : str = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : str = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase ( self : str): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) def init_weights(_snake_case : Optional[int]): if isinstance(_snake_case , torch.nn.Convad): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case) torch.manual_seed(0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case) torch.manual_seed(0) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = MultiControlNetModel([controlneta, controlneta]) UpperCAmelCase_ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : int , _snake_case : Union[str, Any] , _snake_case : str=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = 2 UpperCAmelCase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ), ] UpperCAmelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_snake_case)).convert('''RGB''').resize((64, 64)) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) UpperCAmelCase_ = 1_0.0 UpperCAmelCase_ = 4 UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case)[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2)[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7])[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : int): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def lowerCamelCase ( self : int): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case) except NotImplementedError: pass @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''') UpperCAmelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_snake_case , controlnet=_snake_case) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = '''evil space-punk bird''' UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''').resize((512, 512)) UpperCAmelCase_ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''').resize((512, 512)) UpperCAmelCase_ = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''') assert np.abs(expected_image - image).max() < 9e-2
51
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : List[Any] = BertJapaneseTokenizer __a : Any = False __a : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' __lowercase , __lowercase = self.get_input_output_texts(lowerCAmelCase__ ) __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return text, ids def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(lowerCAmelCase__ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''rb''' ) as handle: __lowercase = pickle.load(lowerCAmelCase__ ) __lowercase = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' try: __lowercase = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(lowerCAmelCase__ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''rb''' ) as handle: __lowercase = pickle.load(lowerCAmelCase__ ) __lowercase = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(lowerCAmelCase__ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''rb''' ) as handle: __lowercase = pickle.load(lowerCAmelCase__ ) __lowercase = tokenizer_new.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = JumanppTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = JumanppTokenizer(normalize_text=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = JumanppTokenizer(trim_whitespace=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __lowercase = {} for i, token in enumerate(lowerCAmelCase__ ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) __lowercase = tokenizer.subword_tokenizer __lowercase = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) __lowercase = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) __lowercase = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : Union[str, Any] = BertJapaneseTokenizer __a : Tuple = False def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().setUp() __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) __lowercase = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( lowerCAmelCase__ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = {} for i, token in enumerate(lowerCAmelCase__ ): __lowercase = i __lowercase = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) __lowercase = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' __lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) __lowercase = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
210
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case_ = """main""" # Default branch name snake_case_ = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) snake_case_ = """aaaaaaa""" # This commit does not exist, so we should 404. snake_case_ = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes snake_case_ = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def _lowerCAmelCase ( ): print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def _lowerCAmelCase ( ): print('Bonjour!' ) yield print('Au revoir!' ) class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class A_ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[str] ) -> Any: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :int ) -> Optional[Any]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :Tuple ) -> Optional[int]: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def UpperCAmelCase__ ( self :List[Any] ) -> Dict: self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) self.assertEqual(find_labels(lowercase_ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase_ ) , ['start_positions', 'end_positions'] ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" pass self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) @require_tf def UpperCAmelCase__ ( self :str ) -> Tuple: self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) self.assertEqual(find_labels(lowercase_ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase_ ) , ['start_positions', 'end_positions'] ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" pass self.assertEqual(find_labels(lowercase_ ) , ['labels'] ) @require_flax def UpperCAmelCase__ ( self :int ) -> Dict: # Flax models don't have labels self.assertEqual(find_labels(lowercase_ ) , [] ) self.assertEqual(find_labels(lowercase_ ) , [] ) self.assertEqual(find_labels(lowercase_ ) , [] ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" pass self.assertEqual(find_labels(lowercase_ ) , [] )
181
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case_ = 3 def _lowerCAmelCase ( lowercase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase = random.randrange(3 , lowercase_ ) if pow(lowercase_ , 2 , lowercase_ ) == 1: continue if pow(lowercase_ , lowercase_ , lowercase_ ) == 1: continue return g def _lowerCAmelCase ( lowercase_ ): print('Generating prime p...' ) UpperCAmelCase = rabin_miller.generate_large_prime(lowercase_ ) # select large prime number. UpperCAmelCase = primitive_root(lowercase_ ) # one primitive root on modulo p. UpperCAmelCase = random.randrange(3 , lowercase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase = cryptomath.find_mod_inverse(pow(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) UpperCAmelCase = (key_size, e_a, e_a, p) UpperCAmelCase = (key_size, d) return public_key, private_key def _lowerCAmelCase ( lowercase_ , lowercase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase = generate_key(lowercase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def _lowerCAmelCase ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
181
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =XLNetTokenizer UpperCAmelCase_ =XLNetTokenizerFast UpperCAmelCase_ =True UpperCAmelCase_ =True def _UpperCamelCase ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ = XLNetTokenizer(_A , keep_accents=_A ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = '''<s>''' SCREAMING_SNAKE_CASE_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_A ) , 1006 ) def _UpperCamelCase ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = XLNetTokenizer(_A , keep_accents=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = XLNetTokenizer(_A , do_lower_case=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = XLNetTokenizer(_A , do_lower_case=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _UpperCamelCase ( self ) -> List[Any]: # fmt: off SCREAMING_SNAKE_CASE_ = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
299
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCAmelCase : Any = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[Any] = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: assert isinstance(__lowercase ,__lowercase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: _lowerCAmelCase : Tuple = f"The input value of [n={number}] has to be > 0" raise ValueError(__lowercase ) else: _lowerCAmelCase : Union[str, Any] = sylvester(number - 1 ) _lowerCAmelCase : List[str] = num - 1 _lowerCAmelCase : Any = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester\'s sequence: {sylvester(8)}""")
44
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : Tuple ) -> Tuple: """simple docstring""" return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def lowercase__ ( __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[str] , __lowercase : List[str]="attention" ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __UpperCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __UpperCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __UpperCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __UpperCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase__ ( __lowercase : Tuple , __lowercase : Dict , __lowercase : int , __lowercase : List[Any]=False ) -> Optional[Any]: """simple docstring""" if split_mlp_wi: __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __UpperCamelCase = (wi_a, wi_a) else: __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Optional[int] ) -> str: """simple docstring""" return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def lowercase__ ( __lowercase : dict , *, __lowercase : int , __lowercase : bool , __lowercase : bool = False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = traverse_util.flatten_dict(variables['target'] ) __UpperCamelCase = {'/'.join(__lowercase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCamelCase = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , __lowercase ) __UpperCamelCase = collections.OrderedDict() # Shared embeddings. __UpperCamelCase = old['token_embedder/embedding'] # Encoder. for i in range(__lowercase ): # Block i, layer 0 (Self Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'encoder' , 'pre_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'encoder' , 'attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 1 (MLP). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'encoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase = tax_mlp_lookup(__lowercase , __lowercase , 'encoder' , __lowercase ) __UpperCamelCase = layer_norm if split_mlp_wi: __UpperCamelCase = wi[0].T __UpperCamelCase = wi[1].T else: __UpperCamelCase = wi.T __UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , __lowercase , 'encoder' ).T __UpperCamelCase = old['encoder/encoder_norm/scale'] if not scalable_attention: __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , 0 , 'encoder' ).T __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(__lowercase ): # Block i, layer 0 (Self Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_self_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'decoder' , 'self_attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 1 (Cross Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_cross_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'decoder' , 'encoder_decoder_attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 2 (MLP). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase = tax_mlp_lookup(__lowercase , __lowercase , 'decoder' , __lowercase ) __UpperCamelCase = layer_norm if split_mlp_wi: __UpperCamelCase = wi[0].T __UpperCamelCase = wi[1].T else: __UpperCamelCase = wi.T __UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCamelCase = tax_relpos_bias_lookup(__lowercase , __lowercase , 'decoder' ).T __UpperCamelCase = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCamelCase = old['decoder/logits_dense/kernel'].T return new def lowercase__ ( __lowercase : Optional[Any] , __lowercase : bool ) -> int: """simple docstring""" __UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCamelCase = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCamelCase = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __UpperCamelCase = state_dict['shared.weight'] return state_dict def lowercase__ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : str , __lowercase : int , __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = checkpoints.load_tax_checkpoint(__lowercase ) __UpperCamelCase = convert_tax_to_pytorch( __lowercase , num_layers=config.num_layers , is_encoder_only=__lowercase , scalable_attention=__lowercase ) __UpperCamelCase = make_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase , strict=__lowercase ) def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : bool = False , __lowercase : bool = False , ) -> Optional[int]: """simple docstring""" __UpperCamelCase = MTaConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCamelCase = UMTaEncoderModel(__lowercase ) else: __UpperCamelCase = UMTaForConditionalGeneration(__lowercase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowercase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowercase ) print('Done' ) if __name__ == "__main__": a__ : List[Any] =argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ : List[str] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
53
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : Optional[int] = [] for part_id in partition_order: lowercase_ : int = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(__SCREAMING_SNAKE_CASE ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): """simple docstring""" lowercase_ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowercase_ : Optional[int] = spark.range(100 ).repartition(1 ) lowercase_ : List[Any] = Spark(__SCREAMING_SNAKE_CASE ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): """simple docstring""" lowercase_ : str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowercase_ : Optional[Any] = spark.range(10 ).repartition(2 ) lowercase_ : List[Any] = [1, 0] lowercase_ : Optional[int] = _generate_iterable_examples(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Reverse the partitions. lowercase_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase_ , lowercase_ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): """simple docstring""" lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowercase_ : str = spark.range(10 ).repartition(1 ) lowercase_ : List[str] = SparkExamplesIterable(__SCREAMING_SNAKE_CASE ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__SCREAMING_SNAKE_CASE ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): """simple docstring""" lowercase_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowercase_ : Any = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: lowercase_ : Optional[int] = lambda __SCREAMING_SNAKE_CASE : x.reverse() lowercase_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__SCREAMING_SNAKE_CASE , [2, 1, 0] ) lowercase_ : Any = SparkExamplesIterable(__SCREAMING_SNAKE_CASE ).shuffle_data_sources(__SCREAMING_SNAKE_CASE ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): """simple docstring""" lowercase_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowercase_ : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase_ : str = SparkExamplesIterable(__SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__SCREAMING_SNAKE_CASE , [0, 2] ) for i, (row_id, row_dict) in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase_ : List[Any] = SparkExamplesIterable(__SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__SCREAMING_SNAKE_CASE , [1, 3] ) for i, (row_id, row_dict) in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): """simple docstring""" lowercase_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowercase_ : int = spark.range(100 ).repartition(1 ) lowercase_ : Union[str, Any] = Spark(__SCREAMING_SNAKE_CASE ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
264
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : str = "▁" _lowercase : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Dict = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _lowercase : Optional[Any] = { "facebook/xglm-564M": 2_0_4_8, } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase_ : Optional[Any] = 7 lowercase_ : List[Any] = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase_ : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase_ : Dict = len(self.sp_model ) lowercase_ : int = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : Optional[Any] = None lowercase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Optional[Any] = {} lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase_ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ): """simple docstring""" lowercase_ : Any = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : str = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
264
1
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase ( lowerCAmelCase__ ): @require_torch def a_ ( self) -> Tuple: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched snake_case_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' snake_case_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' snake_case_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache snake_case_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase__) BertModel.from_pretrained(lowerCAmelCase__) BertTokenizer.from_pretrained(lowerCAmelCase__) pipeline(task='fill-mask', model=lowerCAmelCase__) # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed snake_case_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case_ = '1' snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def a_ ( self) -> Tuple: # python one-liner segments # this must be loaded before socket.socket is monkey-patched snake_case_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' snake_case_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' snake_case_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache snake_case_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase__) BertModel.from_pretrained(lowerCAmelCase__) BertTokenizer.from_pretrained(lowerCAmelCase__) pipeline(task='fill-mask', model=lowerCAmelCase__) # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed snake_case_ = self.get_env() snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def a_ ( self) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched snake_case_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' snake_case_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' snake_case_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, '-c', '\n'.join([load, run])] # should succeed snake_case_ = self.get_env() snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # next emulate no network snake_case_ = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case_ = '1' snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def a_ ( self) -> Optional[int]: snake_case_ = '\nfrom transformers import pipeline\n ' snake_case_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' snake_case_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' snake_case_ = self.get_env() snake_case_ = '1' snake_case_ = [sys.executable, '-c', '\n'.join([load, mock, run])] snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 1, result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode', result.stderr.decode().replace('\n', ''), ) @require_torch def a_ ( self) -> List[str]: snake_case_ = '\nfrom transformers import AutoModel\n ' snake_case_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network snake_case_ = [sys.executable, '-c', '\n'.join([load, run])] # should succeed snake_case_ = self.get_env() snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case_ = '1' snake_case_ = subprocess.run(lowerCAmelCase__, env=lowerCAmelCase__, check=lowerCAmelCase__, capture_output=lowerCAmelCase__) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode())
69
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = ['image_processor'] lowerCamelCase : str = 'SamImageProcessor' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.image_processor __lowerCamelCase : str = -10 __lowerCamelCase : List[str] = self.image_processor.size['longest_edge'] def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: __lowerCamelCase : Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless __lowerCamelCase : List[Any] = encoding_image_processor['original_sizes'] if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks if Torch or TF tensor __lowerCamelCase : Dict = original_sizes.numpy() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="pt" , ) -> Optional[int]: if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: __lowerCamelCase : List[Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCamelCase , __lowerCamelCase : Tuple = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: __lowerCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": __lowerCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : str = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCamelCase : Dict = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Tuple = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCamelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCamelCase : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : List[str] = max([point.shape[0] for point in input_points] ) __lowerCamelCase : Union[str, Any] = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: __lowerCamelCase : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowerCamelCase : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = processed_input_points return input_points, input_labels def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> np.ndarray: __lowerCamelCase , __lowerCamelCase : Tuple = original_size __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: __lowerCamelCase : Optional[int] = coords.reshape(-1 , 2 , 2 ) __lowerCamelCase : List[Any] = coords[..., 0] * (new_w / old_w) __lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCamelCase : Tuple = coords.reshape(-1 , 4 ) return coords def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Optional[Any]: if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks for TF or Torch tensor __lowerCamelCase : List[str] = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input points must be a list of list of floating points.' ) __lowerCamelCase : str = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: __lowerCamelCase : Optional[Any] = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : Union[str, Any] = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input labels must be a list of list integers.' ) __lowerCamelCase : Any = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: __lowerCamelCase : Dict = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : int = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) __lowerCamelCase : List[Any] = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: __lowerCamelCase : Tuple = None return input_points, input_labels, input_boxes @property def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
185
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( UpperCamelCase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
159
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase : Optional[Any] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) _lowerCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Tuple = image_processor(_UpperCAmelCase , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : int = processor(text=_UpperCAmelCase ) _lowerCAmelCase : Dict = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Any = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Tuple = """lower newer""" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : str = processor.batch_decode(_UpperCAmelCase ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Dict = """lower newer""" _lowerCAmelCase : Optional[int] = self.prepare_image_inputs() _lowerCAmelCase : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
159
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
181
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def lowercase_ ( self : List[str] ): '''simple docstring''' debug_launcher(test_ops.main )
181
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
0
'''simple docstring''' import os def __snake_case( ) -> Optional[Any]: with open(os.path.dirname(_lowerCAmelCase ) + """/p022_names.txt""" ) as file: snake_case__ : int = str(file.readlines()[0] ) snake_case__ : Tuple = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 0 for i, name in enumerate(_lowerCAmelCase ): for letter in name: name_score += ord(_lowerCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case__ : List[Any] = 0 return total_score if __name__ == "__main__": print(solution())
35
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: int = KandinskyVaaImgaImgPipeline _lowercase: List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase: Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase: Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase: List[str] = False @property def lowercase__ ( self : str ) -> List[str]: return 32 @property def lowercase__ ( self : Optional[int] ) -> List[Any]: return 32 @property def lowercase__ ( self : Tuple ) -> str: return self.time_input_dim @property def lowercase__ ( self : Any ) -> Optional[int]: return self.time_input_dim * 4 @property def lowercase__ ( self : int ) -> Optional[Any]: return 1_00 @property def lowercase__ ( self : int ) -> Dict: torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**__snake_case ) return model @property def lowercase__ ( self : Union[str, Any] ) -> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Dict ) -> str: torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[int] ) -> Optional[int]: _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**__snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : int , __snake_case : List[str] , __snake_case : List[Any]=0 ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : str ) -> Tuple: _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) _lowerCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(__snake_case ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Any ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = """A red cartoon frog, 4k""" _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) _lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
70
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : int ) -> List[Any]: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = tmp_path / """cache""" UpperCamelCase :Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase :Union[str, Any] = JsonDatasetReader(__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ ).read() _check_json_dataset(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" UpperCamelCase :Optional[Any] = tmp_path / """cache""" UpperCamelCase :Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase :List[str] = features.copy() if features else default_expected_features UpperCamelCase :Union[str, Any] = ( Features({feature: Value(__magic_name__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase :Dict = JsonDatasetReader(__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ ).read() _check_json_dataset(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase :Dict = tmp_path / """cache""" UpperCamelCase :Union[str, Any] = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} UpperCamelCase :Dict = features.copy() if features else default_expected_features UpperCamelCase :int = ( Features({feature: Value(__magic_name__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase :List[str] = JsonDatasetReader(__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ ).read() assert isinstance(__magic_name__ , __magic_name__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :List[Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} UpperCamelCase :Optional[int] = features.copy() UpperCamelCase :Optional[Any] = ( Features({feature: Value(__magic_name__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase :str = tmp_path / """cache""" UpperCamelCase :Tuple = JsonDatasetReader(__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ ).read() assert isinstance(__magic_name__ , __magic_name__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : str ) -> str: """simple docstring""" UpperCamelCase :List[Any] = tmp_path / """cache""" UpperCamelCase :Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase :Optional[Any] = JsonDatasetReader(__magic_name__ , cache_dir=__magic_name__ , split=__magic_name__ ).read() _check_json_dataset(__magic_name__ , __magic_name__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" if issubclass(__magic_name__ , __magic_name__ ): UpperCamelCase :int = jsonl_path elif issubclass(__magic_name__ , __magic_name__ ): UpperCamelCase :Any = [jsonl_path] UpperCamelCase :Any = tmp_path / """cache""" UpperCamelCase :Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase :Optional[int] = JsonDatasetReader(__magic_name__ , cache_dir=__magic_name__ ).read() _check_json_dataset(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any]=("train",) ) -> Optional[Any]: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) for split in splits: UpperCamelCase :int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCamelCase :Any = tmp_path / """cache""" UpperCamelCase :Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase :Optional[int] = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ ).read() _check_json_datasetdict(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : str ) -> int: """simple docstring""" UpperCamelCase :str = tmp_path / """cache""" UpperCamelCase :Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase :int = features.copy() if features else default_expected_features UpperCamelCase :List[Any] = ( Features({feature: Value(__magic_name__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase :Optional[int] = JsonDatasetReader({"""train""": jsonl_path} , features=__magic_name__ , cache_dir=__magic_name__ ).read() _check_json_datasetdict(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> str: """simple docstring""" if split: UpperCamelCase :Optional[int] = {split: jsonl_path} else: UpperCamelCase :Tuple = """train""" UpperCamelCase :Dict = {"""train""": jsonl_path, """test""": jsonl_path} UpperCamelCase :Union[str, Any] = tmp_path / """cache""" UpperCamelCase :Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase :List[Any] = JsonDatasetReader(__magic_name__ , cache_dir=__magic_name__ ).read() _check_json_datasetdict(__magic_name__ , __magic_name__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" return json.load(__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" return [json.loads(__magic_name__ ) for line in buffer] class _SCREAMING_SNAKE_CASE : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _A ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase ).write() buffer.seek(0 ) UpperCamelCase :List[str] = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _A ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase ).write() buffer.seek(0 ) UpperCamelCase :Optional[Any] = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase :Tuple = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _A ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[str] ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase :Any = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCamelCase ) == 10 def _A ( self : str , __lowerCamelCase : str ): with pytest.raises(__lowerCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _A ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : str ): UpperCamelCase :str = tmp_path_factory.mktemp("""data""" ) / F"""test.json.{extension}""" UpperCamelCase :Tuple = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , compression=__lowerCamelCase ).write() with fsspec.open(__lowerCamelCase , """rb""" , compression="""infer""" ) as f: UpperCamelCase :Optional[Any] = f.read() with fsspec.open(__lowerCamelCase , """rb""" , compression="""infer""" ) as f: UpperCamelCase :str = f.read() assert exported_content == original_content
62
from __future__ import annotations from collections import deque class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowerCamelCase : list[str] ): UpperCamelCase :list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__lowerCamelCase ) self.set_fail_transitions() def _A ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _A ( self : int , __lowerCamelCase : str ): UpperCamelCase :List[str] = 0 for character in keyword: UpperCamelCase :List[Any] = self.find_next_state(__lowerCamelCase , __lowerCamelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCamelCase :Optional[int] = len(self.adlist ) - 1 else: UpperCamelCase :Union[str, Any] = next_state self.adlist[current_state]["output"].append(__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :deque = deque() for node in self.adlist[0]["next_states"]: q.append(__lowerCamelCase ) UpperCamelCase :Tuple = 0 while q: UpperCamelCase :Union[str, Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__lowerCamelCase ) UpperCamelCase :Optional[int] = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__lowerCamelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): UpperCamelCase :List[Any] = self.adlist[state]["""fail_state"""] UpperCamelCase :List[str] = self.find_next_state( __lowerCamelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: UpperCamelCase :Any = 0 UpperCamelCase :Tuple = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _A ( self : Union[str, Any] , __lowerCamelCase : str ): UpperCamelCase :dict = {} # returns a dict with keywords and list of its occurrences UpperCamelCase :Union[str, Any] = 0 for i in range(len(__lowerCamelCase ) ): while ( self.find_next_state(__lowerCamelCase , string[i] ) is None and current_state != 0 ): UpperCamelCase :List[Any] = self.adlist[current_state]["""fail_state"""] UpperCamelCase :Optional[Any] = self.find_next_state(__lowerCamelCase , string[i] ) if next_state is None: UpperCamelCase :Dict = 0 else: UpperCamelCase :List[str] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCamelCase :Optional[int] = [] result[key].append(i - len(__lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
62
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : str ): snake_case_ : int = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() snake_case_ : List[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ : Any = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } snake_case_ : str = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : List[Any] = os.path.join(self.tmpdirname , lowercase_ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) # load decoder from hub snake_case_ : int = '''hf-internal-testing/ngram-beam-search-decoder''' def _snake_case ( self : Any , **lowercase_ : Optional[Any] ): snake_case_ : List[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(lowercase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self : str , **lowercase_ : Dict ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self : Union[str, Any] , **lowercase_ : int ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowercase_ ) def _snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Optional[int] ): snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Dict = self.get_feature_extractor() snake_case_ : int = self.get_decoder() snake_case_ : str = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : int = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowercase_ ) def _snake_case ( self : int ): snake_case_ : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case_ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _snake_case ( self : Dict ): snake_case_ : Any = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(lowercase_ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=lowercase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _snake_case ( self : int ): snake_case_ : int = self.get_feature_extractor() snake_case_ : str = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_decoder() snake_case_ : Tuple = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) snake_case_ : str = floats_list((3, 1000) ) snake_case_ : List[str] = feature_extractor(lowercase_ , return_tensors='''np''' ) snake_case_ : int = processor(lowercase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self : Optional[int] ): snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : str = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_decoder() snake_case_ : int = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) snake_case_ : Union[str, Any] = '''This is a test string''' snake_case_ : Dict = processor(text=lowercase_ ) snake_case_ : Tuple = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : List[str] , lowercase_ : Any=(2, 10, 16) , lowercase_ : str=77 ): np.random.seed(lowercase_ ) return np.random.rand(*lowercase_ ) def _snake_case ( self : Optional[Any] ): snake_case_ : Optional[int] = self.get_feature_extractor() snake_case_ : str = self.get_tokenizer() snake_case_ : int = self.get_decoder() snake_case_ : str = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) snake_case_ : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) snake_case_ : Optional[Any] = processor.decode(lowercase_ ) snake_case_ : Union[str, Any] = decoder.decode_beams(lowercase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _snake_case ( self : Optional[Any] , lowercase_ : Union[str, Any] ): snake_case_ : Any = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : List[str] = self.get_decoder() snake_case_ : str = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) snake_case_ : Any = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case_ : str = processor.batch_decode(lowercase_ ) else: with get_context(lowercase_ ).Pool() as pool: snake_case_ : Any = processor.batch_decode(lowercase_ , lowercase_ ) snake_case_ : int = list(lowercase_ ) with get_context('''fork''' ).Pool() as p: snake_case_ : Union[str, Any] = decoder.decode_beams_batch(lowercase_ , lowercase_ ) snake_case_, snake_case_, snake_case_ : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowercase_ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(lowercase_ , decoded_processor.logit_score ) self.assertListEqual(lowercase_ , decoded_processor.lm_score ) def _snake_case ( self : List[str] ): snake_case_ : Any = self.get_feature_extractor() snake_case_ : Any = self.get_tokenizer() snake_case_ : str = self.get_decoder() snake_case_ : Any = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) snake_case_ : Optional[Any] = self._get_dummy_logits() snake_case_ : str = 15 snake_case_ : Tuple = -20.0 snake_case_ : Dict = -4.0 snake_case_ : Optional[Any] = processor.batch_decode( lowercase_ , beam_width=lowercase_ , beam_prune_logp=lowercase_ , token_min_logp=lowercase_ , ) snake_case_ : Union[str, Any] = decoded_processor_out.text snake_case_ : str = list(lowercase_ ) with get_context('''fork''' ).Pool() as pool: snake_case_ : str = decoder.decode_beams_batch( lowercase_ , lowercase_ , beam_width=lowercase_ , beam_prune_logp=lowercase_ , token_min_logp=lowercase_ , ) snake_case_ : List[str] = [d[0][0] for d in decoded_decoder_out] snake_case_ : Dict = [d[0][2] for d in decoded_decoder_out] snake_case_ : int = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , lowercase_ ) self.assertTrue(np.array_equal(lowercase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , lowercase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowercase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , lowercase_ , atol=1E-3 ) ) def _snake_case ( self : List[Any] ): snake_case_ : Optional[int] = self.get_feature_extractor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Optional[Any] = self.get_decoder() snake_case_ : Dict = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) snake_case_ : str = self._get_dummy_logits() snake_case_ : Optional[int] = 2.0 snake_case_ : str = 5.0 snake_case_ : Tuple = -20.0 snake_case_ : Tuple = True snake_case_ : List[Any] = processor.batch_decode( lowercase_ , alpha=lowercase_ , beta=lowercase_ , unk_score_offset=lowercase_ , lm_score_boundary=lowercase_ , ) snake_case_ : Any = decoded_processor_out.text snake_case_ : Union[str, Any] = list(lowercase_ ) decoder.reset_params( alpha=lowercase_ , beta=lowercase_ , unk_score_offset=lowercase_ , lm_score_boundary=lowercase_ , ) with get_context('''fork''' ).Pool() as pool: snake_case_ : Dict = decoder.decode_beams_batch( lowercase_ , lowercase_ , ) snake_case_ : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , lowercase_ ) snake_case_ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowercase_ ) def _snake_case ( self : Dict ): snake_case_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] snake_case_ : Tuple = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() snake_case_ : List[Any] = os.listdir(lowercase_ ) snake_case_ : int = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self : Union[str, Any] ): snake_case_ : int = snapshot_download('''hf-internal-testing/processor_with_lm''' ) snake_case_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(lowercase_ ) snake_case_ : str = processor.decoder.model_container[processor.decoder._model_key] snake_case_ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() snake_case_ : Optional[Any] = os.listdir(lowercase_ ) snake_case_ : List[str] = os.listdir(lowercase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self : str ): snake_case_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case_ : Any = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case_ : List[Any] = floats_list((3, 1000) ) snake_case_ : List[Any] = processor_wavaveca(lowercase_ , return_tensors='''np''' ) snake_case_ : str = processor_auto(lowercase_ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) snake_case_ : int = self._get_dummy_logits() snake_case_ : List[str] = processor_wavaveca.batch_decode(lowercase_ ) snake_case_ : int = processor_auto.batch_decode(lowercase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _snake_case ( self : Union[str, Any] ): snake_case_ : str = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : List[Any] = self.get_decoder() snake_case_ : Tuple = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def _snake_case ( lowercase_ : Tuple , lowercase_ : str ): snake_case_ : int = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : str ): snake_case_ : int = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case_ : Dict = self._get_dummy_logits()[0] snake_case_ : int = processor.decode(lowercase_ , output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def _snake_case ( self : Optional[int] ): snake_case_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case_ : Optional[Any] = self._get_dummy_logits() snake_case_ : int = processor.batch_decode(lowercase_ , output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(lowercase_ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _snake_case ( self : int ): import torch snake_case_ : List[Any] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=lowercase_ ) snake_case_ : Any = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) snake_case_ : Dict = iter(lowercase_ ) snake_case_ : List[Any] = next(lowercase_ ) snake_case_ : int = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) snake_case_ : str = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case_ : Tuple = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): snake_case_ : Optional[int] = model(lowercase_ ).logits.cpu().numpy() snake_case_ : List[str] = processor.decode(logits[0] , output_word_offsets=lowercase_ ) snake_case_ : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case_ : Optional[int] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] snake_case_ : Union[str, Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(lowercase_ , '''word''' ) ) , lowercase_ ) self.assertEqual(''' '''.join(self.get_from_offsets(lowercase_ , '''word''' ) ) , output.text ) # output times snake_case_ : Tuple = torch.tensor(self.get_from_offsets(lowercase_ , '''start_time''' ) ) snake_case_ : Dict = torch.tensor(self.get_from_offsets(lowercase_ , '''end_time''' ) ) # fmt: off snake_case_ : Tuple = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) snake_case_ : int = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=0.01 ) )
264
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __lowercase ( _a="" ): snake_case_ : List[str] = tempfile.mkdtemp() return os.path.join(_a , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : str ): snake_case_ : int = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Optional[int] = AgentAudio(lowercase_ ) snake_case_ : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_ ) ) # Ensure that the file contains the same value as the original tensor snake_case_, snake_case_ : int = sf.read(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_ ) , atol=1E-4 ) ) def _snake_case ( self : Optional[int] ): snake_case_ : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : List[str] = get_new_path(suffix='''.wav''' ) sf.write(lowercase_ , lowercase_ , 16000 ) snake_case_ : Tuple = AgentAudio(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowercase_ ) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Tuple ): snake_case_ : List[Any] = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ : str = AgentImage(lowercase_ ) snake_case_ : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def _snake_case ( self : str ): snake_case_ : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : Optional[int] = Image.open(lowercase_ ) snake_case_ : Tuple = AgentImage(lowercase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def _snake_case ( self : str ): snake_case_ : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : Dict = Image.open(lowercase_ ) snake_case_ : List[str] = AgentImage(lowercase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): snake_case_ : Tuple = '''Hey!''' snake_case_ : Optional[Any] = AgentText(lowercase_ ) self.assertEqual(lowercase_ , agent_type.to_string() ) self.assertEqual(lowercase_ , agent_type.to_raw() ) self.assertEqual(lowercase_ , lowercase_ )
264
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = BartphoTokenizer a_ = False a_ = True def _lowercase ( self : int ): super().setUp() snake_case__ : Union[str, Any] = ["▁This", "▁is", "▁a", "▁t", "est"] snake_case__ : Optional[Any] = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : str = {"unk_token": "<unk>"} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) snake_case__ : Optional[Any] = BartphoTokenizer(__A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple , **__A : Any ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__A ) def _lowercase ( self : Tuple , __A : Optional[int] ): snake_case__ : Dict = "This is a là test" snake_case__ : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = BartphoTokenizer(__A , self.monolingual_vocab_file , **self.special_tokens_map ) snake_case__ : List[str] = "This is a là test" snake_case__ : int = "▁This ▁is ▁a ▁l à ▁t est".split() snake_case__ : Union[str, Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) snake_case__ : Dict = tokens + [tokenizer.unk_token] snake_case__ : Optional[int] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A )
286
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float , snake_case_ : float ): return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case_ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) snake_case_ = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case_ = model(_lowerCAmelCase )["last_hidden_state"] snake_case_ = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. snake_case_ = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
159
from math import pi def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
159
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def a__( self : Dict )-> List[Any]: """simple docstring""" try: UpperCAmelCase = tempfile.mktemp() with open(lowerCAmelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , lowerCAmelCase ) UpperCAmelCase = AlbertTokenizer.from_pretrained(lowerCAmelCase ) finally: os.remove(lowerCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , lowerCAmelCase ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def a__( self : Tuple )-> List[Any]: """simple docstring""" UpperCAmelCase = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class UpperCamelCase__( unittest.TestCase ): __magic_name__ : List[str] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def a__( cls : str )-> Any: """simple docstring""" UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def a__( cls : Dict )-> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def a__( self : List[str] )-> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizer(lowerCAmelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase , repo_id='''test-tokenizer''' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def a__( self : Any )-> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizer(lowerCAmelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCAmelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = CustomTokenizer(lowerCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizerFast.from_pretrained(lowerCAmelCase ) bert_tokenizer.save_pretrained(lowerCAmelCase ) UpperCAmelCase = CustomTokenizerFast.from_pretrained(lowerCAmelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) UpperCAmelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=lowerCAmelCase , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def a__( self : Dict )-> str: """simple docstring""" UpperCAmelCase = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = Trie() UpperCAmelCase = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCAmelCase , ['''AB''', '''C'''] )
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[str] = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , UpperCAmelCase=0 , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = projection_dim def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) _UpperCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFDPRContextEncoder(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFDPRQuestionEncoder(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFDPRReader(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFDPRModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def UpperCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRContextEncoder.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRContextEncoder.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRReader.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _UpperCAmelCase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _UpperCAmelCase = model(UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
39
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] =logging.get_logger(__name__) __snake_case : Union[str, Any] ={ 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""markuplm""" def __init__(self ,__lowerCamelCase=3_05_22 ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_12 ,__lowerCamelCase=2 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-12 ,__lowerCamelCase=0 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase=2_56 ,__lowerCamelCase=10_24 ,__lowerCamelCase=2_16 ,__lowerCamelCase=10_01 ,__lowerCamelCase=32 ,__lowerCamelCase=50 ,__lowerCamelCase="absolute" ,__lowerCamelCase=True ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ,) lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : Dict = classifier_dropout # additional properties lowerCAmelCase__ : int = max_depth lowerCAmelCase__ : List[Any] = max_xpath_tag_unit_embeddings lowerCAmelCase__ : Optional[Any] = max_xpath_subs_unit_embeddings lowerCAmelCase__ : Tuple = tag_pad_id lowerCAmelCase__ : Any = subs_pad_id lowerCAmelCase__ : Dict = xpath_unit_hidden_size
365
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=7 ,__lowerCamelCase=3 ,__lowerCamelCase=18 ,__lowerCamelCase=30 ,__lowerCamelCase=4_00 ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase=False ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=[0.5, 0.5, 0.5] ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : List[Any] = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Union[str, Any] = do_resize lowerCAmelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} lowerCAmelCase__ : List[str] = do_thumbnail lowerCAmelCase__ : str = do_align_axis lowerCAmelCase__ : Optional[Any] = do_pad lowerCAmelCase__ : Tuple = do_normalize lowerCAmelCase__ : List[Any] = image_mean lowerCAmelCase__ : List[str] = image_std def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =DonutImageProcessor if is_vision_available() else None def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = DonutImageProcessingTester(self ) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : int = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Dict = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
94
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_00 ): __UpperCamelCase =2**power __UpperCamelCase =str(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =list(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE__ ) return sum_of_num if __name__ == "__main__": _A = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) _A = solution(power) print('Sum of the digits is: ', result)
62
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _A = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _A = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bytestream.read(rows * cols * num_images ) __UpperCamelCase =numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) __UpperCamelCase =data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.one_hot on tensors.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =labels_dense.shape[0] __UpperCamelCase =numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes __UpperCamelCase =numpy.zeros((num_labels, num_classes) ) __UpperCamelCase =1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : str=10 ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bytestream.read(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( A_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCamelCase =dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __UpperCamelCase =10000 __UpperCamelCase =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __UpperCamelCase =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCamelCase =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCamelCase =images.astype(numpy.floataa ) __UpperCamelCase =numpy.multiply(A_ , 1.0 / 255.0 ) __UpperCamelCase =images __UpperCamelCase =labels __UpperCamelCase =0 __UpperCamelCase =0 @property def _a ( self ) -> Tuple: return self._images @property def _a ( self ) -> Union[str, Any]: return self._labels @property def _a ( self ) -> Optional[Any]: return self._num_examples @property def _a ( self ) -> List[str]: return self._epochs_completed def _a ( self , A_ , A_=False , A_=True ) -> Optional[Any]: if fake_data: __UpperCamelCase =[1] * 784 __UpperCamelCase =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) __UpperCamelCase =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCamelCase =numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __UpperCamelCase =self.images[perma] __UpperCamelCase =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCamelCase =self._num_examples - start __UpperCamelCase =self._images[start : self._num_examples] __UpperCamelCase =self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCamelCase =numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __UpperCamelCase =self.images[perm] __UpperCamelCase =self.labels[perm] # Start next epoch __UpperCamelCase =0 __UpperCamelCase =batch_size - rest_num_examples __UpperCamelCase =self._index_in_epoch __UpperCamelCase =self._images[start:end] __UpperCamelCase =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCamelCase =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , 'Please write your own downloading logic.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: __UpperCamelCase =f.size() print('Successfully downloaded' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'bytes.' ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : str=50_00 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : str=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =fake() __UpperCamelCase =fake() __UpperCamelCase =fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check __UpperCamelCase =DEFAULT_SOURCE_URL __UpperCamelCase ='train-images-idx3-ubyte.gz' __UpperCamelCase ='train-labels-idx1-ubyte.gz' __UpperCamelCase ='t10k-images-idx3-ubyte.gz' __UpperCamelCase ='t10k-labels-idx1-ubyte.gz' __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_images(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_images(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =( 'Validation size should be between 0 and ' F'{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =train_images[:validation_size] __UpperCamelCase =train_labels[:validation_size] __UpperCamelCase =train_images[validation_size:] __UpperCamelCase =train_labels[validation_size:] __UpperCamelCase ={'dtype': dtype, 'reshape': reshape, 'seed': seed} __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
62
1
'''simple docstring''' import numpy as np def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return 1 / (1 + np.exp(-vector )) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
270
'''simple docstring''' from random import randint, random def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 5 , ): _snake_case = [[-1] * number_of_cells] # Create a highway without any car _snake_case = 0 _snake_case = max(_SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: _snake_case = ( randint(0 , _SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 0 _snake_case = highway_now[car_index + 1 :] for cell in range(len(_SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_SCREAMING_SNAKE_CASE , -1 ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty _snake_case = [-1] * number_of_cells for car_index in range(_SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case = min(highway_now[car_index] + 1 , _SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car _snake_case = get_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident _snake_case = min(next_highway[car_index] , _SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down _snake_case = max(next_highway[car_index] - 1 , 0 ) return next_highway def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(highway[0] ) for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = update(highway[i] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = [-1] * number_of_cells for car_index in range(_SCREAMING_SNAKE_CASE ): _snake_case = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case = (car_index + speed) % number_of_cells # Commit the change of position _snake_case = speed highway.append(_SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
270
1
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
286
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = CustomTokenizer pass
286
1
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : int="" , lowerCAmelCase_ : Optional[int]="train" ) -> Tuple: '''simple docstring''' assert os.path.isdir(SCREAMING_SNAKE_CASE_ ) A__ : Optional[int] =[] A__ : str =os.listdir(SCREAMING_SNAKE_CASE_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue A__ : List[Any] =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ): continue self.documents.append(SCREAMING_SNAKE_CASE_ ) def __len__( self : str ) -> List[Any]: '''simple docstring''' return len(self.documents ) def __getitem__( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.documents[idx] A__ : Tuple =document_path.split("""/""" )[-1] with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as source: A__ : List[str] =source.read() A__ : str =process_story(SCREAMING_SNAKE_CASE_ ) return document_name, story_lines, summary_lines def __lowerCamelCase ( __snake_case : int ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] =list(filter(lambda __snake_case : len(snake_case__ ) != 0, [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it A__ : Any =[_add_missing_period(snake_case__ ) for line in nonempty_lines] # gather article lines A__ : List[str] =[] A__ : Union[str, Any] =deque(snake_case__ ) while True: try: A__ : Tuple =lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(snake_case__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines A__ : List[str] =list(filter(lambda __snake_case : not t.startswith("""@highlight""" ), snake_case__ ) ) return story_lines, summary_lines def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ : Dict =['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[Any], __snake_case : List[Any] ) -> Dict: """simple docstring""" if len(snake_case__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(snake_case__ )) ) return sequence def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" A__ : Optional[Any] =torch.ones_like(snake_case__ ) A__ : List[Any] =sequence == pad_token_id A__ : List[str] =0 return mask def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : str, __snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" A__ : Dict =[tokenizer.encode(snake_case__ ) for line in story_lines] A__ : Any =[token for sentence in story_lines_token_ids for token in sentence] A__ : Optional[int] =[tokenizer.encode(snake_case__ ) for line in summary_lines] A__ : Any =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict ) -> str: """simple docstring""" A__ : Tuple =[] for sequence in batch: A__ : Optional[int] =-1 A__ : Optional[int] =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(snake_case__ ) return torch.tensor(snake_case__ )
365
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" A__ : List[Any] =prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Any = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Tuple , *lowercase_ : str , **lowercase_ : List[Any]): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : Optional[int]=None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = {} if prompt is not None: SCREAMING_SNAKE_CASE_ : Tuple = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE_ : int = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''') SCREAMING_SNAKE_CASE_ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Any): '''simple docstring''' return super().__call__(lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str]=None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = load_image(lowercase_) if prompt is not None: if not isinstance(lowercase_ , lowercase_): raise ValueError( F'Received an invalid text input, got - {type(lowercase_)} - but expected a single string. ' '''Note also that one single text can be provided for conditional image to text generation.''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_).input_ids SCREAMING_SNAKE_CASE_ : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(lowercase_).unsqueeze(0) model_inputs.update({'''input_ids''': input_ids}) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE_ : str = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE_ : int = self.image_processor(images=lowercase_ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , return_tensors=self.framework) model_inputs.update(lowercase_) else: raise ValueError(F'Model type {model_type} does not support conditional text generation') else: SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE_ : List[str] = None return model_inputs def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int]=None): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , lowercase_) and all(x is None for x in model_inputs['''input_ids''']) ): SCREAMING_SNAKE_CASE_ : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE_ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE_ : int = model_inputs.pop(self.model.main_input_name) SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.generate(lowercase_ , **lowercase_ , **lowercase_) return model_outputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''generated_text''': self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_) return records
91
"""simple docstring""" import random from typing import Any def _A (__a ) -> list[Any]: """simple docstring""" for _ in range(len(__a ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = random.randint(0 , len(__a ) - 1 ) SCREAMING_SNAKE_CASE_ : Tuple = random.randint(0 , len(__a ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
91
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : str = IFInpaintingSuperResolutionPipeline _A : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _A : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) _A : Dict = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Any=0 ) -> Dict: """simple docstring""" if str(__lowerCamelCase ).startswith("""mps""" ): __lowercase : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: __lowercase : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __lowercase : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowercase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowercase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase : str = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'ClapFeatureExtractor' SCREAMING_SNAKE_CASE__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): a :Dict = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: a :Optional[int] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if audios is not None: a :Tuple = self.feature_extractor( _lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and audios is not None: a :Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.tokenizer.model_input_names a :str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
94
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> str: if not (isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase)): raise ValueError("longest_common_substring() takes two strings for inputs") a = len(__UpperCAmelCase) a = len(__UpperCAmelCase) a = [[0] * (texta_length + 1) for _ in range(texta_length + 1)] a = 0 a = 0 for i in range(1 , texta_length + 1): for j in range(1 , texta_length + 1): if texta[i - 1] == texta[j - 1]: a = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: a = i a = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
356
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : str = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class a__ ( UpperCamelCase__ ): a : Optional[int] = """table-transformer""" a : Tuple = ["""past_key_values"""] a : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) a = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A , A ): a = backbone_config.get("model_type" ) a = CONFIG_MAPPING[backbone_model_type] a = config_class.from_dict(A ) # set timm attributes to None a , a , a = None, None, None a = use_timm_backbone a = backbone_config a = num_channels a = num_queries a = d_model a = encoder_ffn_dim a = encoder_layers a = encoder_attention_heads a = decoder_ffn_dim a = decoder_layers a = decoder_attention_heads a = dropout a = attention_dropout a = activation_dropout a = activation_function a = init_std a = init_xavier_std a = encoder_layerdrop a = decoder_layerdrop a = encoder_layers a = auxiliary_loss a = position_embedding_type a = backbone a = use_pretrained_backbone a = dilation # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = mask_loss_coefficient a = dice_loss_coefficient a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.d_model class a__ ( UpperCamelCase__ ): a : Any = version.parse("""1.11""" ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' return 1e-5 @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return 12
180
0
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> str: # noqa: E741 while r - l > 1: __lowerCamelCase = (l + r) // 2 if v[m] >= key: __lowerCamelCase = m else: __lowerCamelCase = m # noqa: E741 return r def __magic_name__ ( __lowerCAmelCase : list[int] ) -> int: if len(__lowerCAmelCase ) == 0: return 0 __lowerCamelCase = [0] * len(__lowerCAmelCase ) __lowerCamelCase = 1 __lowerCamelCase = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: __lowerCamelCase = v[i] elif v[i] > tail[length - 1]: __lowerCamelCase = v[i] length += 1 else: __lowerCamelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
270
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase__ ( __lowercase ): def __init__( self : int ) -> Optional[int]: __lowerCamelCase = [] def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: self.events.append('''on_init_end''' ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: self.events.append('''on_train_begin''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Any: self.events.append('''on_train_end''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: self.events.append('''on_epoch_begin''' ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: self.events.append('''on_epoch_end''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.events.append('''on_step_begin''' ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: self.events.append('''on_step_end''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: self.events.append('''on_evaluate''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> str: self.events.append('''on_predict''' ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: self.events.append('''on_save''' ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: self.events.append('''on_log''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: self.events.append('''on_prediction_step''' ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = tempfile.mkdtemp() def __A ( self : int ) -> List[str]: shutil.rmtree(self.output_dir ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : List[str]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionModelConfig(a=SCREAMING_SNAKE_CASE__ , b=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE__ , report_to=[] , **SCREAMING_SNAKE_CASE__ ) return Trainer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , callbacks=SCREAMING_SNAKE_CASE__ , ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) # Order doesn't matter __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ ) __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ ) for cba, cba in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(SCREAMING_SNAKE_CASE__ , cba.__class__ ) elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCamelCase = ['''on_init_end''', '''on_train_begin'''] __lowerCamelCase = 0 __lowerCamelCase = len(trainer.get_eval_dataloader() ) __lowerCamelCase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(SCREAMING_SNAKE_CASE__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.get_trainer() __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # Callbacks passed at init are added to the default callbacks __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowerCamelCase = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> str: __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowerCamelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ ) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) trainer.add_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # We can also add, pop, or remove by instance __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.callback_handler.callbacks[0] __lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) trainer.add_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> Any: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # Independent log/save/eval __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # A bit of everything __lowerCamelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowerCamelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE__ ) in warn_mock.call_args[0][0]
270
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = BertConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) lowercase_ = BertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
297
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
1
"""simple docstring""" __magic_name__ = [0, 2, 4, 6, 8] __magic_name__ = [1, 3, 5, 7, 9] def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __SCREAMING_SNAKE_CASE = 0 for digit in range(10 ): __SCREAMING_SNAKE_CASE = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , UpperCamelCase_ , UpperCamelCase_ ) return result __SCREAMING_SNAKE_CASE = 0 for digita in range(10 ): __SCREAMING_SNAKE_CASE = digita if (remainder + digita) % 2 == 0: __SCREAMING_SNAKE_CASE = ODD_DIGITS else: __SCREAMING_SNAKE_CASE = EVEN_DIGITS for digita in other_parity_digits: __SCREAMING_SNAKE_CASE = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCamelCase_ , UpperCamelCase_ , ) return result def _lowerCAmelCase ( UpperCamelCase_ = 9 ): __SCREAMING_SNAKE_CASE = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase_ , 0 , [0] * length , UpperCamelCase_ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
100
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : Union[str, Any] = TypeVar("T") UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]] UpperCAmelCase : int = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
136
0
def __lowercase ( lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : int ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase_ : List[Any] = mf_knapsack(i - 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_ : Union[str, Any] = max( mf_knapsack(i - 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , mf_knapsack(i - 1 , UpperCAmelCase__ , UpperCAmelCase__ , j - wt[i - 1] ) + val[i - 1] , ) UpperCamelCase_ : Optional[int] = val return f[i][j] def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ): UpperCamelCase_ : int = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCamelCase_ : Any = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCamelCase_ : Optional[int] = dp[i - 1][w_] return dp[n][w_], dp def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] ): if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(UpperCAmelCase__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) UpperCamelCase_ : Union[str, Any] = len(UpperCAmelCase__ ) if num_items != len(UpperCAmelCase__ ): UpperCamelCase_ : List[Any] = ( 'The number of weights must be the same as the number of values.\n' F"But got {num_items} weights and {len(UpperCAmelCase__ )} values" ) raise ValueError(UpperCAmelCase__ ) for i in range(UpperCAmelCase__ ): if not isinstance(wt[i] , UpperCAmelCase__ ): UpperCamelCase_ : str = ( 'All weights must be integers but got weight of ' F"type {type(wt[i] )} at index {i}" ) raise TypeError(UpperCAmelCase__ ) UpperCamelCase_, UpperCamelCase_ : Optional[int] = knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_ : Any = set() _construct_solution(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return optimal_val, example_optional_set def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : int ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCAmelCase__ , UpperCAmelCase__ , i - 1 , UpperCAmelCase__ , UpperCAmelCase__ ) else: optimal_set.add(UpperCAmelCase__ ) _construct_solution(UpperCAmelCase__ , UpperCAmelCase__ , i - 1 , j - wt[i - 1] , UpperCAmelCase__ ) if __name__ == "__main__": a_ = [3, 2, 4, 4] a_ = [4, 3, 2, 3] a_ = 4 a_ = 6 a_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a_ , a_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a_ , a_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
362
def __lowercase ( lowerCamelCase : int ): if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError('only integers accepted as input' ) else: UpperCamelCase_ : Any = str(abs(lowerCamelCase ) ) UpperCamelCase_ : Any = [list(lowerCamelCase ) for char in range(len(lowerCamelCase ) )] for index in range(len(lowerCamelCase ) ): num_transpositions[index].pop(lowerCamelCase ) return max( int(''.join(list(lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
50
0
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : Tuple = ["speech"] def __init__( self : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> List[str]: requires_backends(self , ["speech"] ) class snake_case_ ( metaclass=__A ): __A : Any = ["speech"] def __init__( self : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : int ) -> Any: requires_backends(self , ["speech"] )
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : str=None ): """simple docstring""" require_version(deps[pkg] , __UpperCamelCase )
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) A__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A__ = DDPMScheduler() A__ = AudioDiffusionPipeline(vqvae=lowercase , unet=self.dummy_unet , mel=lowercase , scheduler=lowercase ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A__ = torch.Generator(device=lowercase ).manual_seed(42 ) A__ = pipe(generator=lowercase , steps=4 ) A__ = output.audios[0] A__ = output.images[0] A__ = torch.Generator(device=lowercase ).manual_seed(42 ) A__ = pipe(generator=lowercase , steps=4 , return_dict=lowercase ) A__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A__ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] A__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A__ = DDIMScheduler() A__ = self.dummy_vqvae_and_unet A__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowercase , scheduler=lowercase ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) A__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A__ = torch.Generator(device=lowercase ).manual_seed(42 ) A__ = pipe(raw_audio=lowercase , generator=lowercase , start_step=5 , steps=10 ) A__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A__ = self.dummy_unet_condition A__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowercase , mel=lowercase , scheduler=lowercase ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) A__ = torch.rand((1, 1, 10) ) A__ = pipe(generator=lowercase , encoding=lowercase ) A__ = output.images[0] A__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = torch_device A__ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A__ = torch.Generator(device=lowercase ).manual_seed(42 ) A__ = pipe(generator=lowercase ) A__ = output.audios[0] A__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
68
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = 'src/transformers' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*try:') # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*else:') def snake_case ( snake_case__ :Optional[Any]) -> List[str]: if _re_test_backend.search(snake_case__) is None: return None _A = [b[0] for b in _re_backend.findall(snake_case__)] backends.sort() return "_and_".join(snake_case__) def snake_case ( snake_case__ :Any) -> Any: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.readlines() _A = 0 while line_index < len(snake_case__) and not lines[line_index].startswith("""_import_structure = {"""): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith("""if TYPE_CHECKING""") and find_backend(lines[line_index]) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__): _A = _re_one_line_import_struct.search(snake_case__).groups()[0] _A = re.findall("""\[([^\]]+)\]""" , snake_case__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """)]) line_index += 1 continue _A = _re_import_struct_key_value.search(snake_case__) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """) if len(snake_case__) > 0] objects.extend(snake_case__) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING"""): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 4): _A = lines[line_index] if _re_import_struct_add_one.search(snake_case__) is not None: objects.append(_re_import_struct_add_one.search(snake_case__).groups()[0]) elif _re_import_struct_add_many.search(snake_case__) is not None: _A = _re_import_struct_add_many.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_between_brackets.search(snake_case__) is not None: _A = _re_between_brackets.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_quote_object.search(snake_case__) is not None: objects.append(_re_quote_object.search(snake_case__).groups()[0]) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) elif line.startswith(""" """ * 12 + """\""""): objects.append(line[13:-3]) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(snake_case__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("""else""") ): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 8): objects.append(line[8:-2]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 8): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 12): objects.append(line[12:-2]) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case ( snake_case__ :Dict , snake_case__ :int) -> List[Any]: def find_duplicates(snake_case__ :Union[str, Any]): return [k for k, v in collections.Counter(snake_case__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''') _A = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): _A = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''') return errors def snake_case ( ) -> int: _A = [] for root, _, files in os.walk(snake_case__): if "__init__.py" in files: _A = os.path.join(snake_case__ , """__init__.py""") _A = parse_init(snake_case__) if objects is not None: _A = analyze_results(*snake_case__) if len(snake_case__) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case__)) if len(snake_case__) > 0: raise ValueError("""\n\n""".join(snake_case__)) def snake_case ( ) -> Optional[Any]: _A = [] for path, directories, files in os.walk(snake_case__): for folder in directories: # Ignore private modules if folder.startswith("""_"""): directories.remove(snake_case__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__) / folder).glob("""*.py"""))) == 0: continue _A = str((Path(snake_case__) / folder).relative_to(snake_case__)) _A = short_path.replace(os.path.sep , """.""") submodules.append(snake_case__) for fname in files: if fname == "__init__.py": continue _A = str((Path(snake_case__) / fname).relative_to(snake_case__)) _A = short_path.replace(""".py""" , """""").replace(os.path.sep , """.""") if len(submodule.split(""".""")) == 1: submodules.append(snake_case__) return submodules _SCREAMING_SNAKE_CASE = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. _A = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case__ , """__init__.py""") , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _A = spec.loader.load_module() _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__) > 0: _A = """\n""".join(F'''- {module}''' for module in module_not_registered) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""") if __name__ == "__main__": check_all_inits() check_submodules()
180
0
import random def snake_case_ ( snake_case , snake_case ) -> tuple: lowercase__: Any = [], [], [] for element in data: if element < pivot: less.append(snake_case ) elif element > pivot: greater.append(snake_case ) else: equal.append(snake_case ) return less, equal, greater def snake_case_ ( snake_case , snake_case ) -> Tuple: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(snake_case ) or index < 0: return None lowercase__: Optional[int] = items[random.randint(0 , len(snake_case ) - 1 )] lowercase__: int = 0 lowercase__: Optional[Any] = _partition(snake_case , snake_case ) lowercase__: Any = len(snake_case ) lowercase__: List[str] = len(snake_case ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(snake_case , snake_case ) # must be in larger else: return quick_select(snake_case , index - (m + count) )
357
def snake_case_ ( snake_case ) -> list[int]: lowercase__: Dict = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer lowercase__ , lowercase__: Union[str, Any] = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: lowercase__: List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowercase__: List[str] = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowercase__ , lowercase__: List[Any] = i, i + z_result[i] - 1 return z_result def snake_case_ ( snake_case , snake_case , snake_case ) -> bool: return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowercase__: Any = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
288
0
def UpperCAmelCase_ ( __lowerCAmelCase = 1_000_000 ) -> int: __lowercase : Dict = limit + 1 __lowercase : Optional[Any] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase : int = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __lowercase : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
156
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[str] = TextToVideoSDPipeline __snake_case : int = TEXT_TO_IMAGE_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Dict = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """np""" SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase__ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=25 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE = """Spiderman is surfing""" SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""pt""" ).frames SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
296
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Tuple = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def A_ ( A__ ) -> Union[str, Any]: a__ : List[str] = split_dict._to_yaml_list() assert len(A__ ) == len(A__ ) a__ : List[Any] = SplitDict._from_yaml_list(A__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump a__ : Any = None # the split name of split_dict takes over the name of the split info object a__ : str = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=A__ ), SplitInfo(dataset_name='my_dataset' )] ) def A_ ( A__ ) -> Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files a__ : Any = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
99
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
319
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
1
import os from pathlib import Path def UpperCamelCase ( __lowercase : List[str] ,__lowercase : int ,__lowercase : int ): '''simple docstring''' A_ : List[str] = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ : Dict = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } A_ : str = f'''{src_lang}-{tgt_lang}''' A_ : Dict = f'''\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n''' os.makedirs(__lowercase ,exist_ok=__lowercase ) A_ : Optional[Any] = os.path.join(__lowercase ,'README.md' ) print(f'''Generating {path}''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(__lowercase ) # make sure we are under the root of the project _UpperCAmelCase = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase = model_name.split("""-""") _UpperCAmelCase = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
140
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Tuple = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] _SCREAMING_SNAKE_CASE : List[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
0
"""simple docstring""" from __future__ import annotations from typing import Any class A__ : '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int = 6) -> None: """simple docstring""" __lowerCAmelCase : Node | None = None __lowerCAmelCase : Node | None = None self.create_linked_list(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: int) -> None: """simple docstring""" __lowerCAmelCase : Optional[int] = Node() __lowerCAmelCase : str = current_node __lowerCAmelCase : int = current_node __lowerCAmelCase : Union[str, Any] = current_node for _ in range(1 , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = Node() __lowerCAmelCase : int = current_node __lowerCAmelCase : str = previous_node __lowerCAmelCase : Optional[Any] = current_node __lowerCAmelCase : List[Any] = self.front __lowerCAmelCase : List[str] = previous_node def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> bool: """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any | None: """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Any) -> None: """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): __lowerCAmelCase : Optional[int] = self.rear.next if self.rear: __lowerCAmelCase : Optional[int] = data def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __lowerCAmelCase : str = self.front.data __lowerCAmelCase : Tuple = None return data __lowerCAmelCase : List[Any] = self.front __lowerCAmelCase : Tuple = old_front.next __lowerCAmelCase : List[str] = old_front.data __lowerCAmelCase : List[str] = None return data def _SCREAMING_SNAKE_CASE ( self: str) -> None: """simple docstring""" if self.is_empty(): raise Exception("Empty Queue") def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> None: """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("Full Queue") class A__ : '''simple docstring''' def __init__( self: Optional[Any]) -> None: """simple docstring""" __lowerCAmelCase : Any | None = None __lowerCAmelCase : Node | None = None __lowerCAmelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
58
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __snake_case : str = logging.get_logger(__name__) # General docstring __snake_case : Optional[int] = 'PoolFormerConfig' # Base docstring __snake_case : Any = 'sail/poolformer_s12' __snake_case : Optional[Any] = [1, 512, 7, 7] # Image classification docstring __snake_case : List[Any] = 'sail/poolformer_s12' __snake_case : Optional[Any] = 'tabby, tabby cat' __snake_case : Union[str, Any] = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowercase ( __snake_case ,__snake_case = 0.0 ,__snake_case = False ) -> Tuple: if drop_prob == 0.0 or not training: return input __lowerCAmelCase : Optional[int] = 1 - drop_prob __lowerCAmelCase : Union[str, Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCAmelCase : List[str] = keep_prob + torch.rand(__snake_case ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize __lowerCAmelCase : Tuple = input.div(__snake_case ) * random_tensor return output class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[float] = None) -> None: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = drop_prob def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: torch.Tensor) -> torch.Tensor: """simple docstring""" return drop_path(_SCREAMING_SNAKE_CASE , self.drop_prob , self.training) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" return "p={}".format(self.drop_prob) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any=None) -> int: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = patch_size if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (patch_size, patch_size) __lowerCAmelCase : Any = stride if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (stride, stride) __lowerCAmelCase : Any = padding if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (padding, padding) __lowerCAmelCase : Optional[int] = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = norm_layer(_SCREAMING_SNAKE_CASE) if norm_layer else nn.Identity() def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.projection(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.norm(_SCREAMING_SNAKE_CASE) return embeddings class A__ ( nn.GroupNorm ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" super().__init__(1 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.AvgPoolad(_SCREAMING_SNAKE_CASE , stride=1 , padding=pool_size // 2 , count_include_pad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Dict) -> Dict: """simple docstring""" return self.pool(_SCREAMING_SNAKE_CASE) - hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Tuple = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Any = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if isinstance(config.hidden_act , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: __lowerCAmelCase : int = config.hidden_act def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.act_fn(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.drop(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.drop(_SCREAMING_SNAKE_CASE) return hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : List[str] = PoolFormerPooling(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = PoolFormerOutput(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) # Useful for training neural nets __lowerCAmelCase : Optional[int] = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if drop_path > 0.0 else nn.Identity() __lowerCAmelCase : Union[str, Any] = config.use_layer_scale if config.use_layer_scale: __lowerCAmelCase : List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" if self.use_layer_scale: __lowerCAmelCase : int = self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection __lowerCAmelCase : Optional[Any] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = () __lowerCAmelCase : Union[str, Any] = self.output(self.after_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Dict = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection __lowerCAmelCase : List[str] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = (output,) + outputs return outputs else: __lowerCAmelCase : Optional[Any] = self.drop_path(self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE))) # First residual connection __lowerCAmelCase : Optional[Any] = pooling_output + hidden_states __lowerCAmelCase : List[Any] = () # Second residual connection inside the PoolFormerOutput block __lowerCAmelCase : Any = self.drop_path(self.output(self.after_norm(_SCREAMING_SNAKE_CASE))) __lowerCAmelCase : str = hidden_states + layer_output __lowerCAmelCase : List[Any] = (output,) + outputs return outputs class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[Any]: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = config # stochastic depth decay rule __lowerCAmelCase : Tuple = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths))] # patch embeddings __lowerCAmelCase : List[str] = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , )) __lowerCAmelCase : Tuple = nn.ModuleList(_SCREAMING_SNAKE_CASE) # Transformer blocks __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Any = 0 for i in range(config.num_encoder_blocks): # each block consists of layers __lowerCAmelCase : List[Any] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( _SCREAMING_SNAKE_CASE , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio) , drop_path=dpr[cur + j] , )) blocks.append(nn.ModuleList(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Union[str, Any] = nn.ModuleList(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=True) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = () if output_hidden_states else None __lowerCAmelCase : Union[str, Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block)): __lowerCAmelCase , __lowerCAmelCase : str = layers # Get patch embeddings from hidden_states __lowerCAmelCase : str = embedding_layer(_SCREAMING_SNAKE_CASE) # Send the embeddings through the blocks for _, blk in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = blk(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = layer_outputs[0] if output_hidden_states: __lowerCAmelCase : int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = PoolFormerConfig SCREAMING_SNAKE_CASE = 'poolformer' SCREAMING_SNAKE_CASE = 'pixel_values' SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(_SCREAMING_SNAKE_CASE , nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=False) -> Dict: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[Any] = value __snake_case : Union[str, Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : str = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = config __lowerCAmelCase : Any = PoolFormerEncoder(_SCREAMING_SNAKE_CASE) # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") __lowerCAmelCase : Union[str, Any] = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" super().__init__() __lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , config.hidden_size) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.dense(_SCREAMING_SNAKE_CASE) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = config.num_labels __lowerCAmelCase : Tuple = PoolFormerModel(_SCREAMING_SNAKE_CASE) # Final norm __lowerCAmelCase : Optional[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head __lowerCAmelCase : Any = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[torch.LongTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Union[str, Any] = self.poolformer( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = outputs[0] __lowerCAmelCase : Optional[int] = self.classifier(self.norm(_SCREAMING_SNAKE_CASE).mean([-2, -1])) __lowerCAmelCase : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase : List[Any] = "single_label_classification" else: __lowerCAmelCase : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": __lowerCAmelCase : Dict = MSELoss() if self.num_labels == 1: __lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze()) else: __lowerCAmelCase : int = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase : int = CrossEntropyLoss() __lowerCAmelCase : str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase : Union[str, Any] = BCEWithLogitsLoss() __lowerCAmelCase : Optional[int] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if not return_dict: __lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states)
58
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): """simple docstring""" for attribute in key.split("." ): lowerCAmelCase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCAmelCase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase_ = value elif weight_type == "weight_g": lowerCAmelCase_ = value elif weight_type == "weight_v": lowerCAmelCase_ = value elif weight_type == "bias": lowerCAmelCase_ = value elif weight_type == "running_mean": lowerCAmelCase_ = value elif weight_type == "running_var": lowerCAmelCase_ = value elif weight_type == "num_batches_tracked": lowerCAmelCase_ = value elif weight_type == "inv_freq": lowerCAmelCase_ = value else: lowerCAmelCase_ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = fairseq_model.state_dict() lowerCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase_ = True if "*" in mapped_key: lowerCAmelCase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowerCAmelCase_ = mapped_key.replace("*" , __lowerCamelCase ) if "pos_bias_u" in name: lowerCAmelCase_ = None elif "pos_bias_v" in name: lowerCAmelCase_ = None elif "weight_g" in name: lowerCAmelCase_ = "weight_g" elif "weight_v" in name: lowerCAmelCase_ = "weight_v" elif "bias" in name: lowerCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase_ = "weight" elif "running_mean" in name: lowerCAmelCase_ = "running_mean" elif "inv_freq" in name: lowerCAmelCase_ = "inv_freq" elif "running_var" in name: lowerCAmelCase_ = "running_var" elif "num_batches_tracked" in name: lowerCAmelCase_ = "num_batches_tracked" else: lowerCAmelCase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): """simple docstring""" lowerCAmelCase_ = full_name.split("conv_layers." )[-1] lowerCAmelCase_ = name.split("." ) lowerCAmelCase_ = int(items[0] ) lowerCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def lowerCamelCase__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Union[str, Any]=True ): """simple docstring""" if config_path is not None: lowerCAmelCase_ = WavaVecaConformerConfig.from_pretrained(__lowerCamelCase , hidden_act="swish" ) else: lowerCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase_ = "rotary" if is_finetuned: if dict_path: lowerCAmelCase_ = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase_ = target_dict.pad_index lowerCAmelCase_ = target_dict.bos_index lowerCAmelCase_ = target_dict.eos_index lowerCAmelCase_ = len(target_dict.symbols ) lowerCAmelCase_ = os.path.join(__lowerCamelCase , "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) lowerCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase_ = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCamelCase , ) lowerCAmelCase_ = True if config.feat_extract_norm == "layer" else False lowerCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) lowerCAmelCase_ = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowerCAmelCase_ = WavaVecaConformerForCTC(__lowerCamelCase ) else: lowerCAmelCase_ = WavaVecaConformerForPreTraining(__lowerCamelCase ) if is_finetuned: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) lowerCAmelCase_ = fairseq.tasks.setup_task(__lowerCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) lowerCAmelCase_ = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _A = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
231
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : Dict=10 , _lowerCamelCase : Tuple=[10, 20, 30, 40] , _lowerCamelCase : int=[1, 1, 2, 1] , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = embeddings_size _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = hidden_act _snake_case = num_labels _snake_case = scope _snake_case = len(_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : Tuple ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = TFResNetModel(config=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): _snake_case = self.num_labels _snake_case = TFResNetForImageClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __a = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] ): _snake_case = TFResNetModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : List[Any] ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def lowercase ( self : Any ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def lowercase ( self : List[str] ): pass def lowercase ( self : int ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): def check_hidden_states_output(_lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str ): _snake_case = model_class(_lowerCamelCase ) _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case = layer_type _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : List[str] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFResNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : List[Any] ): _snake_case = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCamelCase , atol=1e-4 ) )
288
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = UnCLIPImageVariationPipeline __snake_case = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} __snake_case = IMAGE_VARIATION_BATCH_PARAMS __snake_case = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] __snake_case = False @property def UpperCamelCase__ ( self ): return 32 @property def UpperCamelCase__ ( self ): return 32 @property def UpperCamelCase__ ( self ): return self.time_input_dim @property def UpperCamelCase__ ( self ): return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): return 1_00 @property def UpperCamelCase__ ( self ): snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(_UpperCAmelCase ) @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case_ = UnCLIPTextProjModel(**_UpperCAmelCase ) return model @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case_ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def UpperCamelCase__ ( self ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def UpperCamelCase__ ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def UpperCamelCase__ ( self ): snake_case_ = self.dummy_decoder snake_case_ = self.dummy_text_proj snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_super_res_first snake_case_ = self.dummy_super_res_last snake_case_ = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) snake_case_ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) snake_case_ = CLIPImageProcessor(crop_size=32 , size=32 ) snake_case_ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=0 , _UpperCAmelCase=True ): snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) if pil_image: snake_case_ = input_image * 0.5 + 0.5 snake_case_ = input_image.clamp(0 , 1 ) snake_case_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case_ = DiffusionPipeline.numpy_to_pil(_UpperCAmelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCAmelCase ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = pipe(**_UpperCAmelCase ) snake_case_ = output.images snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = pipe( **_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCAmelCase ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = pipe(**_UpperCAmelCase ) snake_case_ = output.images snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = pipe( **_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCAmelCase ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case_ = pipe(**_UpperCAmelCase ) snake_case_ = output.images snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case_ = pipe( **_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) snake_case_ = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): snake_case_ = torch.device('''cpu''' ) class lowerCAmelCase_ : '''simple docstring''' __snake_case = 1 snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCAmelCase ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe.decoder.dtype snake_case_ = 1 snake_case_ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case_ = pipe.prepare_latents( _UpperCAmelCase , dtype=_UpperCAmelCase , device=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , scheduler=DummyScheduler() ) snake_case_ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case_ = pipe.prepare_latents( _UpperCAmelCase , dtype=_UpperCAmelCase , device=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , scheduler=DummyScheduler() ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) snake_case_ = pipe( **_UpperCAmelCase , decoder_latents=_UpperCAmelCase , super_res_latents=_UpperCAmelCase ).images snake_case_ = self.get_dummy_inputs(_UpperCAmelCase , pil_image=_UpperCAmelCase ) # Don't pass image, instead pass embedding snake_case_ = pipeline_inputs.pop('''image''' ) snake_case_ = pipe.image_encoder(_UpperCAmelCase ).image_embeds snake_case_ = pipe( **_UpperCAmelCase , decoder_latents=_UpperCAmelCase , super_res_latents=_UpperCAmelCase , image_embeddings=_UpperCAmelCase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def UpperCamelCase__ ( self ): snake_case_ = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case_ = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=_UpperCAmelCase , expected_max_diff=_UpperCAmelCase ) @skip_mps def UpperCamelCase__ ( self ): snake_case_ = torch_device == '''cpu''' snake_case_ = True snake_case_ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , additional_params_copy_to_batched_inputs=_UpperCAmelCase , ) def UpperCamelCase__ ( self ): snake_case_ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case_ = [2, 3] self._test_inference_batch_consistent( batch_sizes=_UpperCAmelCase , additional_params_copy_to_batched_inputs=_UpperCAmelCase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_UpperCAmelCase ) @skip_mps def UpperCamelCase__ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCamelCase__ ( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case_ = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_ = pipeline( _UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase , 15 )
267
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> list[int]: """simple docstring""" snake_case_ = int(SCREAMING_SNAKE_CASE ) # Initialize Result snake_case_ = [] # Traverse through all denomination for denomination in reversed(SCREAMING_SNAKE_CASE ): # Find denominations while int(SCREAMING_SNAKE_CASE ) >= int(SCREAMING_SNAKE_CASE ): total_value -= int(SCREAMING_SNAKE_CASE ) answer.append(SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase = [] UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f'''Following is minimal change for {value}: ''') UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
267
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : int = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : str = DPTConfig() if "large" in checkpoint_url: lowerCAmelCase__ : str = 1_024 lowerCAmelCase__ : str = 4_096 lowerCAmelCase__ : Optional[Any] = 24 lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Dict = [5, 11, 17, 23] lowerCAmelCase__ : Optional[int] = [256, 512, 1_024, 1_024] lowerCAmelCase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : str = 150 lowerCAmelCase__ : str = 'huggingface/label-files' lowerCAmelCase__ : List[str] = 'ade20k-id2label.json' lowerCAmelCase__ : Any = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase__ : Optional[int] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = idalabel lowerCAmelCase__ : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Any = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase__ : str = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase__ : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase__ : Any = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: lowerCAmelCase__ : Optional[int] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase__ : str = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase__ : Optional[int] = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCAmelCase__ : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: lowerCAmelCase__ : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ : Any = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCAmelCase__ : Tuple = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCAmelCase__ : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase__ : List[str] = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase__ : Optional[Any] = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase__ : Optional[int] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCAmelCase__ : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase__ : List[str] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCAmelCase__ : Optional[int] = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCAmelCase__ : Optional[Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase__ : str = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCAmelCase__ : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCAmelCase__ : Optional[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase__ : Tuple = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase__ : str = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase__ : List[Any] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase__ : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase__ : List[str] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase__ : List[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase__ : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase__ : Tuple = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase__ : List[str] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase__ : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCAmelCase__ : Optional[Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCAmelCase__ : Optional[Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCAmelCase__ : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : int = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCAmelCase__ : Tuple = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Any = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ : str = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_dpt_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict from URL lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ : str = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model lowerCAmelCase__ : Any = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # Check outputs on an image lowerCAmelCase__ : str = 480 if 'ade' in checkpoint_url else 384 lowerCAmelCase__ : int = DPTImageProcessor(size=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) # forward pass lowerCAmelCase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ).logits if 'ade' in checkpoint_url else model(**SCREAMING_SNAKE_CASE_ ).predicted_depth # Assert logits lowerCAmelCase__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowerCAmelCase__ : str = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE_ ) ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
319
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __A : Union[str, Any] = 'src/diffusers' # Matches is_xxx_available() __A : Dict = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla __A : List[str] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') __A : Optional[Any] = '\n{0} = None\n' __A : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' __A : Tuple = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __UpperCamelCase ( _A : Optional[Any] ) ->Dict: """simple docstring""" lowerCamelCase_ =_re_backend.findall(_A ) if len(_A ) == 0: return None return "_and_".join(_A ) def __UpperCamelCase ( ) ->Optional[int]: """simple docstring""" with open(os.path.join(_A , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(_A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(_A ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_A ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def __UpperCamelCase ( _A : Union[str, Any] , _A : int ) ->Optional[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_A ) elif name.islower(): return DUMMY_FUNCTION.format(_A , _A ) else: return DUMMY_CLASS.format(_A , _A ) def __UpperCamelCase ( _A : Any=None ) ->Any: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ="""[""" + """, """.join(f'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase_ ="""# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_A , _A ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def __UpperCamelCase ( _A : Dict=False ) ->Tuple: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(_A , """utils""" ) lowerCamelCase_ ={ backend: os.path.join(_A , f'dummy_{short_names.get(_A , _A )}_objects.py' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_A ): with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ="""""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(_A , _A )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'diffusers.utils.dummy_{short_names.get(_A , _A )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __A : str = parser.parse_args() check_dummies(args.fix_and_overwrite)
49
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def lowerCamelCase ( __lowerCamelCase : Callable ) ->Callable: @wraps(__lowerCamelCase ) def _inner_fn(*__lowerCamelCase : Optional[int] , **__lowerCamelCase : Tuple ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , __lowerCamelCase , ) return fn(*__lowerCamelCase , **__lowerCamelCase ) return _inner_fn
58
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase_ = logging.getLogger(__name__) lowercase_ = """Hello world! cécé herlolip""" lowercase_ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ) ->List[Any]: _SCREAMING_SNAKE_CASE = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) _SCREAMING_SNAKE_CASE = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() _SCREAMING_SNAKE_CASE = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _SCREAMING_SNAKE_CASE = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _SCREAMING_SNAKE_CASE = encoder_input_ids _SCREAMING_SNAKE_CASE = decoder_input_ids _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _SCREAMING_SNAKE_CASE = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = original.generator(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = new_model.generator(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
58
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
102
UpperCamelCase__ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
102
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
267
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = PNDMScheduler() __SCREAMING_SNAKE_CASE = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type="""numpy""" , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """google/ddpm-cifar10-32""" __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = PNDMScheduler() __SCREAMING_SNAKE_CASE = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pndm(generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
267
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING SCREAMING_SNAKE_CASE_ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class a ( __lowerCamelCase ): def __init__( self , **_snake_case ): """simple docstring""" super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type(UpperCamelCase_ ) def __call__( self , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" if "text_queries" in kwargs: lowerCAmelCase = kwargs.pop('text_queries' ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): lowerCAmelCase = {'image': image, 'candidate_labels': candidate_labels} else: lowerCAmelCase = image lowerCAmelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = {} if "threshold" in kwargs: lowerCAmelCase = kwargs['threshold'] if "top_k" in kwargs: lowerCAmelCase = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = load_image(inputs['image'] ) lowerCAmelCase = inputs['candidate_labels'] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase = candidate_labels.split(',' ) lowerCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): lowerCAmelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) lowerCAmelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = model_inputs.pop('target_size' ) lowerCAmelCase = model_inputs.pop('candidate_label' ) lowerCAmelCase = model_inputs.pop('is_last' ) lowerCAmelCase = self.model(**UpperCamelCase_ ) lowerCAmelCase = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase__ ( self , _snake_case , _snake_case=0.1 , _snake_case=None ): """simple docstring""" lowerCAmelCase = [] for model_output in model_outputs: lowerCAmelCase = model_output['candidate_label'] lowerCAmelCase = BaseModelOutput(UpperCamelCase_ ) lowerCAmelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): lowerCAmelCase = outputs['scores'][index].item() lowerCAmelCase = self._get_bounding_box(outputs['boxes'][index][0] ) lowerCAmelCase = {'score': score, 'label': label, 'box': box} results.append(UpperCamelCase_ ) lowerCAmelCase = sorted(UpperCamelCase_ , key=lambda _snake_case : x["score"] , reverse=UpperCamelCase_ ) if top_k: lowerCAmelCase = results[:top_k] return results def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = box.int().tolist() lowerCAmelCase = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
357
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case = '''''' else: snake_case = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) snake_case = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[ : config.hidden_size, : ] snake_case = in_proj_bias[: config.hidden_size] snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case = in_proj_weight[ -config.hidden_size :, : ] snake_case = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = dct.pop(UpperCamelCase_ ) snake_case = val def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ViTMSNConfig() snake_case = 10_00 snake_case = '''datasets/huggingface/label-files''' snake_case = '''imagenet-1k-id2label.json''' snake_case = json.load(open(hf_hub_download(UpperCamelCase_ ,UpperCamelCase_ ) ,'''r''' ) ) snake_case = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case = 3_84 snake_case = 15_36 snake_case = 6 elif "l16" in checkpoint_url: snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 snake_case = 0.1 elif "b4" in checkpoint_url: snake_case = 4 elif "l7" in checkpoint_url: snake_case = 7 snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 snake_case = 0.1 snake_case = ViTMSNModel(UpperCamelCase_ ) snake_case = torch.hub.load_state_dict_from_url(UpperCamelCase_ ,map_location='''cpu''' )['''target_encoder'''] snake_case = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) snake_case = create_rename_keys(UpperCamelCase_ ,base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ ,UpperCamelCase_ ,base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(UpperCamelCase_ ,stream=UpperCamelCase_ ).raw ) snake_case = ViTImageProcessor( size=config.image_size ,image_mean=UpperCamelCase_ ,image_std=UpperCamelCase_ ) snake_case = image_processor(images=UpperCamelCase_ ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) snake_case = model(**UpperCamelCase_ ) snake_case = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: snake_case = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: snake_case = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] ,UpperCamelCase_ ,atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
213
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Dict = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
213
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: __lowerCamelCase , __lowerCamelCase : Dict = analyze_text(lowerCamelCase__ ) __lowerCamelCase : List[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __lowerCamelCase : int = sum(single_char_strings.values() ) # one length string __lowerCamelCase : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowerCamelCase : str = single_char_strings[ch] __lowerCamelCase : Dict = my_str / all_sum my_fir_sum += prob * math.loga(lowerCamelCase__ ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string __lowerCamelCase : Tuple = sum(two_char_strings.values() ) __lowerCamelCase : Any = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowerCamelCase : str = cha + cha if sequence in two_char_strings: __lowerCamelCase : str = two_char_strings[sequence] __lowerCamelCase : Optional[int] = int(lowerCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCamelCase__ ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[dict, dict]: __lowerCamelCase : List[str] = Counter() # type: ignore __lowerCamelCase : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE__ ( ) -> Dict: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
73
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _A ( __UpperCAmelCase ): def __init__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = eval_examples __a = post_process_function def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Dataset] = None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "eval" , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' __a = gen_kwargs.copy() __a = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length ) __a = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams ) __a = gen_kwargs __a = self.eval_dataset if eval_dataset is None else eval_dataset __a = self.get_eval_dataloader(__SCREAMING_SNAKE_CASE) __a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( __SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __a = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.compute_metrics(__SCREAMING_SNAKE_CASE) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'{metric_key_prefix}_'): __a = metrics.pop(__SCREAMING_SNAKE_CASE) metrics.update(output.metrics) else: __a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE) return metrics def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str = "test" , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = gen_kwargs.copy() __a = self.get_test_dataloader(__SCREAMING_SNAKE_CASE) # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( __SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __a = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''predict''') __a = self.compute_metrics(__SCREAMING_SNAKE_CASE) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'{metric_key_prefix}_'): __a = metrics.pop(__SCREAMING_SNAKE_CASE) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE)
49
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase : List[Any] = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def _lowerCAmelCase ( self , **_a ): """simple docstring""" lowerCamelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_a ) return config def _lowerCAmelCase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def _lowerCAmelCase ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def _lowerCAmelCase ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if str(_a ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
168
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='mobilenet_v1' def __init__(self , a_=3 , a_=2_24 , a_=1.0 , a_=8 , a_="relu6" , a_=True , a_=0.999 , a_=0.02 , a_=0.001 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __snake_case : Union[str, Any] = num_channels __snake_case : Optional[int] = image_size __snake_case : Dict = depth_multiplier __snake_case : List[str] = min_depth __snake_case : Tuple = hidden_act __snake_case : Tuple = tf_padding __snake_case : List[Any] = classifier_dropout_prob __snake_case : Optional[int] = initializer_range __snake_case : Any = layer_norm_eps class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-4
102
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) SCREAMING_SNAKE_CASE : Dict = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) SCREAMING_SNAKE_CASE : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__snake_case )}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase__ =field( default=__snake_case, metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Whether ot not to use whole word mask.'} ) lowerCamelCase__ =field( default=0.1_5, metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase__ =field( default=1 / 6, metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) }, ) lowerCamelCase__ =field( default=5, metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) lowerCamelCase__ =field( default=-1, metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase ( _snake_case : DataTrainingArguments , _snake_case : PreTrainedTokenizer , _snake_case : bool = False , _snake_case : Optional[str] = None , ) ->Any: """simple docstring""" def _dataset(_snake_case : List[Any] , _snake_case : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , ref_path=_snake_case , ) return LineByLineTextDataset(tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowercase ( ) ->List[Any]: """simple docstring""" __snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case : Union[str, Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __snake_case : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __snake_case : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __snake_case : int = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __snake_case : List[Any] = AutoModelWithLMHead.from_config(_snake_case ) model.resize_token_embeddings(len(_snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __snake_case : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: __snake_case : Optional[int] = min(data_args.block_size , tokenizer.max_len ) # Get datasets __snake_case : Optional[Any] = ( get_dataset(_snake_case , tokenizer=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __snake_case : Any = ( get_dataset(_snake_case , tokenizer=_snake_case , evaluate=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __snake_case : List[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=_snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __snake_case : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_snake_case , mlm_probability=data_args.mlm_probability ) else: __snake_case : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=_snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __snake_case : Optional[int] = Trainer( model=_snake_case , args=_snake_case , data_collator=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , prediction_loss_only=_snake_case , ) # Training if training_args.do_train: __snake_case : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case : Dict = trainer.evaluate() __snake_case : Dict = math.exp(eval_output['''eval_loss'''] ) __snake_case : List[Any] = {'''perplexity''': perplexity} __snake_case : str = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _snake_case , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(_snake_case ) return results def lowercase ( _snake_case : Optional[int] ) ->Tuple: """simple docstring""" main() if __name__ == "__main__": main()
102
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ = 'src/diffusers' # Matches is_xxx_available() a_ = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla a_ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') a_ = '\n{0} = None\n' a_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' a_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _a( UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =_re_backend.findall(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 0: return None return "_and_".join(UpperCamelCase__ ) def _a( ): '''simple docstring''' with open(os.path.join(UpperCamelCase__, '''__init__.py''' ), '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : List[str] =f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : List[str] ={} # Go through the end of the file while line_index < len(UpperCamelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE__ : List[Any] =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ : List[Any] =[] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase__ ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE__ : Optional[Any] =lines[line_index] SCREAMING_SNAKE_CASE__ : Optional[Any] =_re_single_line_import.search(UpperCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase__ ) > 0: SCREAMING_SNAKE_CASE__ : Any =objects else: line_index += 1 return backend_specific_objects def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[Any] ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase__, UpperCamelCase__ ) else: return DUMMY_CLASS.format(UpperCamelCase__, UpperCamelCase__ ) def _a( UpperCamelCase__ : Any=None ): '''simple docstring''' if backend_specific_objects is None: SCREAMING_SNAKE_CASE__ : int =read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE__ : Optional[int] ={} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE__ : Tuple ='''[''' + ''', '''.join(f"\"{b}\"" for b in backend.split('''_and_''' ) ) + ''']''' SCREAMING_SNAKE_CASE__ : List[str] ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase__, UpperCamelCase__ ) for o in objects] ) SCREAMING_SNAKE_CASE__ : Tuple =dummy_file return dummy_files def _a( UpperCamelCase__ : Any=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE__ : List[str] ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(UpperCamelCase__, '''utils''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ={ backend: os.path.join(UpperCamelCase__, f"dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py" ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE__ : str ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : List[Any] =f.read() else: SCREAMING_SNAKE_CASE__ : int ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py as the main " '''__init__ has new objects.''' ) with open(dummy_file_paths[backend], '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"diffusers.utils.dummy_{short_names.get(UpperCamelCase__, UpperCamelCase__ )}_objects.py. Run `make fix-copies` " '''to fix this.''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
222
'''simple docstring''' def _a( UpperCamelCase__ : Optional[Any]=2_8_1_2_3 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =[1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i SCREAMING_SNAKE_CASE__ : List[str] =set() SCREAMING_SNAKE_CASE__ : str =0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCamelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
222
1
__UpperCAmelCase = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __UpperCAmelCase = ['a', 'b', 'c', 'd', 'e'] def lowercase__ ( __snake_case : List[str] , __snake_case : str , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = start # add current to visited visited.append(__snake_case ) UpperCAmelCase_ : Optional[int] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase_ : str = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: UpperCAmelCase_ : Optional[Any] = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase = topological_sort('a', [], []) print(sort)
29
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCamelCase_ ( lowerCAmelCase: str )-> List[Any]: _snake_case : Optional[int] = FileLock(str(tmpdir / 'foo.lock' ) ) _snake_case : int = FileLock(str(tmpdir / 'foo.lock' ) ) _snake_case : Any = 0.0_1 with locka.acquire(): with pytest.raises(lowerCAmelCase ): _snake_case : Tuple = time.time() locka.acquire(lowerCAmelCase ) assert time.time() - _start > timeout def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> str: _snake_case : Tuple = 'a' * 10_00 + '.lock' _snake_case : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 _snake_case : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase ): locka.acquire(0 )
260
from __future__ import annotations lowerCAmelCase_ = [] def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int )-> bool: for i in range(len(lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase , -1 , -1 ) , range(lowerCAmelCase , len(lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int )-> bool: if row >= len(lowerCAmelCase ): solution.append(lowerCAmelCase ) printboard(lowerCAmelCase ) print() return True for i in range(len(lowerCAmelCase ) ): if is_safe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = 1 solve(lowerCAmelCase , row + 1 ) _snake_case : str = 0 return False def lowerCamelCase_ ( lowerCAmelCase: list[list[int]] )-> None: for i in range(len(lowerCAmelCase ) ): for j in range(len(lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowerCAmelCase_ = 8 lowerCAmelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
260
1
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan __SCREAMING_SNAKE_CASE =6_37_81_37.0 __SCREAMING_SNAKE_CASE =6_35_67_52.31_42_45 __SCREAMING_SNAKE_CASE =637_8137 def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): lowercase_ : Any = (AXIS_A - AXIS_B) / AXIS_A lowercase_ : Dict = atan((1 - flattening) * tan(radians(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Optional[Any] = atan((1 - flattening) * tan(radians(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Optional[Any] = radians(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = radians(__SCREAMING_SNAKE_CASE ) # Equation lowercase_ : Optional[Any] = sin((phi_a - phi_a) / 2 ) lowercase_ : Union[str, Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase_ : Tuple = sqrt(sin_sq_phi + (cos(__SCREAMING_SNAKE_CASE ) * cos(__SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
213
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : str = data # Initialize hash values lowercase_ : Optional[int] = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants lowercase_ : Tuple = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] lowercase_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCAmelCase ( __UpperCamelCase ) -> bytes: '''simple docstring''' lowercase_ : str = B'\x80' + (B'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64)) lowercase_ : str = struct.pack('>Q' ,(len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase_ : Any = list(struct.unpack('>16L' ,__UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase_ : str = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowercase_ : int = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowercase_ : Optional[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowercase_ : Tuple = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 ) lowercase_ : Union[str, Any] = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) lowercase_ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowercase_ : Optional[int] = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 ) lowercase_ : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) lowercase_ : Any = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowercase_ : str = [a, b, c, d, e, f, g, h] # Modify final values lowercase_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] lowercase_ : Any = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> None: '''simple docstring''' import hashlib lowercase_ : Union[str, Any] = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def lowercase__( ): import doctest doctest.testmod() lowercase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowercase_ : Any = parser.parse_args() lowercase_ : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase_ : str = f.read() else: lowercase_ : Optional[int] = bytes(__SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(__SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
213
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCamelCase : int = 4 __lowerCamelCase : Dict = 3 class __snake_case ( lowerCamelCase_ ): pass def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for shard in shards: for i in range(__UpperCamelCase ): yield {"i": i, "shard": shard} def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = int(os.environ["""RANK"""] ) SCREAMING_SNAKE_CASE__ = int(os.environ["""WORLD_SIZE"""] ) SCREAMING_SNAKE_CASE__ = ArgumentParser() parser.add_argument("""--streaming""" , type=__UpperCamelCase ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase ) parser.add_argument("""--num_workers""" , type=__UpperCamelCase , default=0 ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.streaming SCREAMING_SNAKE_CASE__ = args.num_workers SCREAMING_SNAKE_CASE__ = {"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(__UpperCamelCase )]} SCREAMING_SNAKE_CASE__ = IterableDataset.from_generator(__UpperCamelCase , gen_kwargs=__UpperCamelCase ) if not streaming: SCREAMING_SNAKE_CASE__ = Dataset.from_list(list(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = split_dataset_by_node(__UpperCamelCase , rank=__UpperCamelCase , world_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = torch.utils.data.DataLoader(__UpperCamelCase , num_workers=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
204
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
204
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase = logging.get_logger(__name__) # General docstring UpperCAmelCase = "RegNetConfig" # Base docstring UpperCAmelCase = "facebook/regnet-y-040" UpperCAmelCase = [1, 1_088, 7, 7] # Image classification docstring UpperCAmelCase = "facebook/regnet-y-040" UpperCAmelCase = "tabby, tabby cat" UpperCAmelCase = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( nn.Module): def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict = 3 , __UpperCamelCase : List[Any] = 1 , __UpperCamelCase : Tuple = 1 , __UpperCamelCase : Optional[int] = "relu" , ) -> Union[str, Any]: super().__init__() _UpperCamelCase = nn.Convad( __UpperCamelCase , __UpperCamelCase , kernel_size=__UpperCamelCase , stride=__UpperCamelCase , padding=kernel_size // 2 , groups=__UpperCamelCase , bias=__UpperCamelCase , ) _UpperCamelCase = nn.BatchNormad(__UpperCamelCase ) _UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : List[str] ) -> Optional[int]: _UpperCamelCase = self.convolution(__UpperCamelCase ) _UpperCamelCase = self.normalization(__UpperCamelCase ) _UpperCamelCase = self.activation(__UpperCamelCase ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : Tuple , __UpperCamelCase : int ) -> str: super().__init__() _UpperCamelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _UpperCamelCase = config.num_channels def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Dict ) -> Dict: _UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCamelCase = self.embedder(__UpperCamelCase ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] = 2 ) -> str: super().__init__() _UpperCamelCase = nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , stride=__UpperCamelCase , bias=__UpperCamelCase ) _UpperCamelCase = nn.BatchNormad(__UpperCamelCase ) def _UpperCamelCase ( self : str , __UpperCamelCase : Optional[Any] ) -> Tensor: _UpperCamelCase = self.convolution(__UpperCamelCase ) _UpperCamelCase = self.normalization(__UpperCamelCase ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ) -> Any: super().__init__() _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) _UpperCamelCase = nn.Sequential( nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] ) -> Any: # b c h w -> b c 1 1 _UpperCamelCase = self.pooler(__UpperCamelCase ) _UpperCamelCase = self.attention(__UpperCamelCase ) _UpperCamelCase = hidden_state * attention return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] = 1 ) -> int: super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = max(1 , out_channels // config.groups_width ) _UpperCamelCase = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) _UpperCamelCase = ACTaFN[config.hidden_act] def _UpperCamelCase ( self : Any , __UpperCamelCase : Any ) -> Optional[int]: _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(__UpperCamelCase ) _UpperCamelCase = self.shortcut(__UpperCamelCase ) hidden_state += residual _UpperCamelCase = self.activation(__UpperCamelCase ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : str = 1 ) -> int: super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = max(1 , out_channels // config.groups_width ) _UpperCamelCase = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) _UpperCamelCase = ACTaFN[config.hidden_act] def _UpperCamelCase ( self : Any , __UpperCamelCase : Union[str, Any] ) -> Tuple: _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(__UpperCamelCase ) _UpperCamelCase = self.shortcut(__UpperCamelCase ) hidden_state += residual _UpperCamelCase = self.activation(__UpperCamelCase ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str = 2 , __UpperCamelCase : Tuple = 2 , ) -> Union[str, Any]: super().__init__() _UpperCamelCase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer _UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , ) , *[layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for _ in range(depth - 1 )] , ) def _UpperCamelCase ( self : int , __UpperCamelCase : str ) -> List[Any]: _UpperCamelCase = self.layers(__UpperCamelCase ) return hidden_state class UpperCAmelCase_ ( nn.Module): def __init__( self : List[Any] , __UpperCamelCase : List[str] ) -> Tuple: super().__init__() _UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , depth=__UpperCamelCase ) ) def _UpperCamelCase ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] = False , __UpperCamelCase : Any = True ) -> BaseModelOutputWithNoAttention: _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(__UpperCamelCase ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCamelCase , hidden_states=__UpperCamelCase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): snake_case__ = RegNetConfig snake_case__ = '''regnet''' snake_case__ = '''pixel_values''' snake_case__ = True def _UpperCamelCase ( self : Any , __UpperCamelCase : Union[str, Any] ) -> Dict: if isinstance(__UpperCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=False ) -> Any: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = value UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , _SCREAMING_SNAKE_CASE , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): def __init__( self : int , __UpperCamelCase : List[str] ) -> str: super().__init__(__UpperCamelCase ) _UpperCamelCase = config _UpperCamelCase = RegNetEmbeddings(__UpperCamelCase ) _UpperCamelCase = RegNetEncoder(__UpperCamelCase ) _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] = None , __UpperCamelCase : str = None ) -> BaseModelOutputWithPoolingAndNoAttention: _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(__UpperCamelCase ) _UpperCamelCase = self.encoder( __UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(__UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCamelCase , pooler_output=__UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _SCREAMING_SNAKE_CASE , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): def __init__( self : List[Any] , __UpperCamelCase : Any ) -> Dict: super().__init__(__UpperCamelCase ) _UpperCamelCase = config.num_labels _UpperCamelCase = RegNetModel(__UpperCamelCase ) # classification head _UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Tuple = None , __UpperCamelCase : Any = None , __UpperCamelCase : Tuple = None , __UpperCamelCase : Union[str, Any] = None , ) -> ImageClassifierOutputWithNoAttention: _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.regnet(__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier(__UpperCamelCase ) _UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase = '''single_label_classification''' else: _UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCamelCase = MSELoss() if self.num_labels == 1: _UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCamelCase = loss_fct(__UpperCamelCase , __UpperCamelCase ) elif self.config.problem_type == "single_label_classification": _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase = BCEWithLogitsLoss() _UpperCamelCase = loss_fct(__UpperCamelCase , __UpperCamelCase ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states )
256
'''simple docstring''' import math class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = 0.0 _a = 0.0 for i in range(len(__magic_name__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> list[list[int | float]]: for i in range(len(__magic_name__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _A () -> None: '''simple docstring''' _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector _a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
168
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if len(lowerCAmelCase_ ) < 2: return collection def circle_sort_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: __SCREAMING_SNAKE_CASE = False if low == high: return swapped __SCREAMING_SNAKE_CASE = low __SCREAMING_SNAKE_CASE = high while left < right: if collection[left] > collection[right]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( collection[right], collection[left], ) __SCREAMING_SNAKE_CASE = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( collection[right + 1], collection[left], ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = low + int((high - low) / 2 ) __SCREAMING_SNAKE_CASE = circle_sort_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = circle_sort_util(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) return swapped or left_swap or right_swap __SCREAMING_SNAKE_CASE = True while is_not_sorted is True: __SCREAMING_SNAKE_CASE = circle_sort_util(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) - 1 ) return collection if __name__ == "__main__": a__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() a__ : List[Any] = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
371
"""simple docstring""" from datetime import datetime import requests def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __SCREAMING_SNAKE_CASE = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": a__ : str = input('''Enter Video/IGTV url: ''').strip() a__ : List[Any] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
195
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase ( unittest.TestCase ): __lowercase : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = VideoClassificationPipeline(model=A_ , image_processor=A_ , top_k=2 ) UpperCamelCase = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" for example in examples: UpperCamelCase = video_classifier(A_ ) self.assertEqual( A_ , [ {'score': ANY(A_ ), 'label': ANY(A_ )}, {'score': ANY(A_ ), 'label': ANY(A_ )}, ] , ) @require_torch def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCamelCase = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) UpperCamelCase = pipeline( 'video-classification' , model=A_ , feature_extractor=A_ , frame_sampling_rate=4 ) UpperCamelCase = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = video_classifier(A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass
222
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = {"vocab_file": "spiece.model"} _UpperCAmelCase : Dict = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } _UpperCAmelCase : int = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[Any] = ["input_ids", "attention_mask"] __lowercase : List[int] = [] def __init__( self , A_ , A_="<unk>" , A_="<s>" , A_="</s>" , A_="<pad>" , A_="[SEP]" , A_="[MASK]" , A_="[CLS]" , A_ = None , **A_ , ) -> None: """simple docstring""" UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sep_token=A_ , mask_token=A_ , cls_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(A_ ) def __UpperCamelCase ( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(A_ ) return token def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(A_ ) UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __UpperCamelCase ( self , A_ , A_ = False , A_ = None , A_ = True , **A_ , ) -> str: """simple docstring""" UpperCamelCase = kwargs.pop('use_source_tokenizer' , A_ ) UpperCamelCase = self.convert_ids_to_tokens(A_ , skip_special_tokens=A_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) UpperCamelCase = [] sub_texts.append(A_ ) else: current_sub_text.append(A_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCamelCase = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(A_ ) ) else: UpperCamelCase = ''.join(A_ ) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(A_ ) return clean_text else: return text def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
222
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Dict=10 , UpperCamelCase__ : Any=[10, 20, 30, 40] , UpperCamelCase__ : Any=[1, 1, 2, 1] , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Tuple=None , ) -> List[str]: """simple docstring""" snake_case : List[str] = parent snake_case : Tuple = batch_size snake_case : int = image_size snake_case : Any = num_channels snake_case : Optional[int] = embeddings_size snake_case : Optional[int] = hidden_sizes snake_case : str = depths snake_case : Tuple = is_training snake_case : List[str] = use_labels snake_case : List[str] = hidden_act snake_case : Tuple = num_labels snake_case : Tuple = scope snake_case : List[str] = len(UpperCamelCase__ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Any = self.get_config() return config, pixel_values def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" snake_case : List[str] = FlaxRegNetModel(config=UpperCamelCase__ ) snake_case : str = model(UpperCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" snake_case : int = self.num_labels snake_case : List[str] = FlaxRegNetForImageClassification(config=UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" snake_case : str = self.prepare_config_and_inputs() snake_case ,snake_case : Tuple = config_and_inputs snake_case : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" snake_case : List[str] = FlaxRegNetModelTester(self ) snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" snake_case ,snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) snake_case : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : int = [*signature.parameters.keys()] snake_case : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) snake_case : Any = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) snake_case ,snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : Any = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = model_class(UpperCamelCase__ ) @jax.jit def model_jitted(UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ): return model(pixel_values=UpperCamelCase__ , **UpperCamelCase__ ) with self.subTest('''JIT Enabled''' ): snake_case : Optional[int] = model_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case : Tuple = model_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowerCAmelCase ( self : int ) -> int: """simple docstring""" snake_case : str = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) snake_case : Any = self.default_image_processor snake_case : Any = prepare_img() snake_case : Union[str, Any] = image_processor(images=UpperCamelCase__ , return_tensors='''np''' ) snake_case : List[str] = model(**UpperCamelCase__ ) # verify the logits snake_case : Optional[int] = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Dict = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
83
'''simple docstring''' from functools import lru_cache @lru_cache def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
83
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase = True for i in range(_SCREAMING_SNAKE_CASE ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase = True if a[i].islower(): _UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
1
"""simple docstring""" from math import isqrt def A ( snake_case :int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case ) + 1 ) ) def A ( snake_case :int = 1_0**6 ) -> int: __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
263
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , 'num_attention_heads' ) ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[128, 256, 384] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = num_channels __UpperCamelCase = kernel_size __UpperCamelCase = stride __UpperCamelCase = padding __UpperCamelCase = hidden_sizes __UpperCamelCase = num_attention_heads __UpperCamelCase = depths __UpperCamelCase = key_dim __UpperCamelCase = drop_path_rate __UpperCamelCase = patch_size __UpperCamelCase = attention_ratio __UpperCamelCase = mlp_ratio __UpperCamelCase = initializer_range __UpperCamelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = num_labels __UpperCamelCase = initializer_range def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = LevitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = (self.image_size, self.image_size) __UpperCamelCase , __UpperCamelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCamelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __UpperCamelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = LevitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LevitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCamelCase = (self.model_tester.image_size, self.model_tester.image_size) __UpperCamelCase , __UpperCamelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCamelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __UpperCamelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): __UpperCamelCase = problem_type['title'] __UpperCamelCase = problem_type['num_labels'] __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: __UpperCamelCase = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __UpperCamelCase = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: __UpperCamelCase = model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = LevitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Union[str, Any]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
263
1
def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : list[float] ): '''simple docstring''' if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) lowerCamelCase_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowercase ) ) return round(lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
204
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class A: '''simple docstring''' def __init__( self : str , A_ : Optional[Any] , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 2 lowerCamelCase_ = 99 lowerCamelCase_ = 0 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 'last' lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = 0 def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase_ = None if self.use_input_lengths: lowerCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : int , A_ : Tuple , A_ : Optional[int] , A_ : Optional[int] , A_ : str , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertModel(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Tuple , A_ : List[str] , A_ : int , A_ : List[Any] , A_ : Any , A_ : Any , A_ : Dict , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFFlaubertWithLMHeadModel(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , A_ : Tuple , A_ : Any , A_ : Any , A_ : List[Any] , A_ : Dict , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : List[Any] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForQuestionAnsweringSimple(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] , A_ : List[Any] , A_ : str , A_ : List[str] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : str , A_ : Optional[int] , A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForSequenceClassification(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : List[str] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFFlaubertForTokenClassification(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : str , A_ : Tuple , A_ : str , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFFlaubertForMultipleChoice(config=A_ ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : Union[str, Any] , A_ : Any , A_ : List[Any] , A_ : Union[str, Any] , A_ : str , A_ : List[str] ) -> Optional[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFFlaubertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) lowerCamelCase_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
204
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCAmelCase__ = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Tuple =1 a : Dict =2 a : Tuple =3 a : Optional[int] =4 a : List[str] =5 @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : jnp.ndarray class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : str =SCHEDULER_CONFIG_NAME a : Optional[int] =["dtype"] a : Any =[] a : Dict =True @classmethod def lowercase__ ( cls , snake_case__ = None , snake_case__ = None , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Any = cls.load_config( pretrained_model_name_or_path=snake_case__ , subfolder=snake_case__ , return_unused_kwargs=snake_case__ , **snake_case__ , ) lowerCAmelCase , lowerCAmelCase : int = cls.from_config(snake_case__ , return_unused_kwargs=snake_case__ , **snake_case__ ) if hasattr(snake_case__ , "create_state" ) and getattr(snake_case__ , "has_state" , snake_case__ ): lowerCAmelCase : str = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowercase__ ( self , snake_case__ , snake_case__ = False , **snake_case__ ): """simple docstring""" self.save_config(save_directory=snake_case__ , push_to_hub=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : Optional[Any] = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase : str = importlib.import_module(__name__.split("." )[0] ) lowerCAmelCase : Union[str, Any] = [ getattr(snake_case__ , snake_case__ ) for c in compatible_classes_str if hasattr(snake_case__ , snake_case__ ) ] return compatible_classes def a__ ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ): '''simple docstring''' assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str=0.999 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ): '''simple docstring''' def alpha_bar(SCREAMING_SNAKE_CASE : Tuple ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase : Union[str, Any] = [] for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = i / num_diffusion_timesteps lowerCAmelCase : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : jnp.ndarray a : jnp.ndarray a : jnp.ndarray @classmethod def lowercase__ ( cls , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = scheduler.config if config.trained_betas is not None: lowerCAmelCase : Any = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase : Dict = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase : Union[str, Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase : Any = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowerCAmelCase : List[str] = 1.0 - betas lowerCAmelCase : List[str] = jnp.cumprod(snake_case__ , axis=0 ) return cls( alphas=snake_case__ , betas=snake_case__ , alphas_cumprod=snake_case__ , ) def a__ ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): '''simple docstring''' lowerCAmelCase : Dict = state.alphas_cumprod lowerCAmelCase : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : int = sqrt_alpha_prod.flatten() lowerCAmelCase : Union[str, Any] = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) lowerCAmelCase : int = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Optional[int] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase : Tuple = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def a__ ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Dict = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def a__ ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
133
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = data lowerCAmelCase : Tuple = None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Optional[int] = None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" " ) lowerCAmelCase : List[str] = temp.next print() def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = Node(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.head lowerCAmelCase : Optional[Any] = new_node def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if node_data_a == node_data_a: return else: lowerCAmelCase : str = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : Union[str, Any] = node_a.next lowerCAmelCase : Any = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return lowerCAmelCase , lowerCAmelCase : str = node_a.data, node_a.data if __name__ == "__main__": lowerCAmelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
133
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Any: print(F'''Vertex\tShortest Distance from vertex {src}''') for i, d in enumerate(__SCREAMING_SNAKE_CASE): print(F'''{i}\t\t{d}''') def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[Any]: for j in range(__SCREAMING_SNAKE_CASE): __snake_case , __snake_case , __snake_case: List[Any] = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""") and distance[u] + w < distance[v]: return True return False def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[Any]: __snake_case: List[str] = [float("""inf""")] * vertex_count __snake_case: Tuple = 0.0 for _ in range(vertex_count - 1): for j in range(__SCREAMING_SNAKE_CASE): __snake_case , __snake_case , __snake_case: Optional[int] = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""") and distance[u] + w < distance[v]: __snake_case: Dict = distance[u] + w __snake_case: Optional[Any] = check_negative_cycle(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if negative_cycle_exists: raise Exception("""Negative cycle found""") return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : int = int(input("Enter number of vertices: ").strip()) __UpperCAmelCase : Optional[Any] = int(input("Enter number of edges: ").strip()) __UpperCAmelCase : Dict = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __UpperCAmelCase : Dict = {"src": src, "dst": dest, "weight": weight} __UpperCAmelCase : List[str] = int(input("\nEnter shortest path source:").strip()) __UpperCAmelCase : Dict = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
111
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_ ( ): lowercase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def UpperCAmelCase_ ( ): lowercase = parse_args() # Import training_script as a module. lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase = script_fpath.stem lowercase = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
195
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_ = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_ = torch.tensor( __lowerCamelCase, dtype=torch.intaa, device=protein['''aatype'''].device, ) SCREAMING_SNAKE_CASE_ = torch.tensor( __lowerCamelCase, dtype=torch.intaa, device=protein['''aatype'''].device, ) SCREAMING_SNAKE_CASE_ = torch.tensor( __lowerCamelCase, dtype=torch.floataa, device=protein['''aatype'''].device, ) SCREAMING_SNAKE_CASE_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_ = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_ = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_ = residx_atomaa_mask SCREAMING_SNAKE_CASE_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_ = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_ = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_ = torch.zeros([21, 37], dtype=torch.floataa, device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_ = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_ = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_ = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_ = residx_atomaa_mask return protein def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = tree_map(lambda __lowerCamelCase : torch.tensor(__lowerCamelCase, device=batch['''aatype'''].device ), __lowerCamelCase, np.ndarray ) SCREAMING_SNAKE_CASE_ = tensor_tree_map(lambda __lowerCamelCase : np.array(__lowerCamelCase ), make_atomaa_masks(__lowerCamelCase ) ) return out
257
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **_A ) -> Union[str, Any]: super().__init__(**_A ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(_A ) def __call__( self , _A , _A = None , **_A , ) -> str: if "text_queries" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs.pop('''text_queries''' ) if isinstance(_A , (str, Image.Image) ): SCREAMING_SNAKE_CASE_ = {'''image''': image, '''candidate_labels''': candidate_labels} else: SCREAMING_SNAKE_CASE_ = image SCREAMING_SNAKE_CASE_ = super().__call__(_A , **_A ) return results def _UpperCamelCase ( self , **_A ) -> str: SCREAMING_SNAKE_CASE_ = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''threshold'''] if "top_k" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''top_k'''] return {}, {}, postprocess_params def _UpperCamelCase ( self , _A ) -> Any: SCREAMING_SNAKE_CASE_ = load_image(inputs['''image'''] ) SCREAMING_SNAKE_CASE_ = inputs['''candidate_labels'''] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = candidate_labels.split(''',''' ) SCREAMING_SNAKE_CASE_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_A ): SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ = self.image_processor(_A , return_tensors=self.framework ) yield { "is_last": i == len(_A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _UpperCamelCase ( self , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = model_inputs.pop('''target_size''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''candidate_label''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''is_last''' ) SCREAMING_SNAKE_CASE_ = self.model(**_A ) SCREAMING_SNAKE_CASE_ = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _UpperCamelCase ( self , _A , _A=0.1 , _A=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE_ = model_output['''candidate_label'''] SCREAMING_SNAKE_CASE_ = BaseModelOutput(_A ) SCREAMING_SNAKE_CASE_ = self.image_processor.post_process_object_detection( outputs=_A , threshold=_A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE_ = outputs['''scores'''][index].item() SCREAMING_SNAKE_CASE_ = self._get_bounding_box(outputs['''boxes'''][index][0] ) SCREAMING_SNAKE_CASE_ = {'''score''': score, '''label''': label, '''box''': box} results.append(_A ) SCREAMING_SNAKE_CASE_ = sorted(_A , key=lambda _A : x["score"] , reverse=_A ) if top_k: SCREAMING_SNAKE_CASE_ = results[:top_k] return results def _UpperCamelCase ( self , _A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = box.int().tolist() SCREAMING_SNAKE_CASE_ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
257
1
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Dict = ['a', 'b', 'c'] # Defaults to last layer if both are None _UpperCamelCase , _UpperCamelCase : Any = get_aligned_output_features_output_indices(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,['c'] ) self.assertEqual(lowerCamelCase__ ,[2] ) # Out indices set to match out features _UpperCamelCase , _UpperCamelCase : Union[str, Any] = get_aligned_output_features_output_indices(['a', 'c'] ,lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,['a', 'c'] ) self.assertEqual(lowerCamelCase__ ,[0, 2] ) # Out features set to match out indices _UpperCamelCase , _UpperCamelCase : List[Any] = get_aligned_output_features_output_indices(lowerCamelCase__ ,[0, 2] ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,['a', 'c'] ) self.assertEqual(lowerCamelCase__ ,[0, 2] ) # Out features selected from negative indices _UpperCamelCase , _UpperCamelCase : Any = get_aligned_output_features_output_indices(lowerCamelCase__ ,[-3, -1] ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,['a', 'c'] ) self.assertEqual(lowerCamelCase__ ,[-3, -1] ) def UpperCamelCase_ ( self : str ): '''simple docstring''' # Stage names must be set with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] ,(0, 1) ,lowerCamelCase__ ) # Out features must be a list with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(('a', 'b') ,(0, 1) ,['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] ,(0, 1) ,['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(lowerCamelCase__ ,0 ,['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(lowerCamelCase__ ,(0, 1) ,['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] ,(0,) ,['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] ,(0, 2) ,['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['b', 'a'] ,(0, 1) ,['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] ,(0, 1, -1) ,['a', 'b', 'c', 'd'] ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Dict = BackboneMixin() _UpperCamelCase : str = ['a', 'b', 'c'] _UpperCamelCase : Tuple = ['a', 'c'] _UpperCamelCase : Optional[int] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['a', 'c'] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly _UpperCamelCase : str = ['a', 'b'] self.assertEqual(backbone.out_features ,['a', 'b'] ) self.assertEqual(backbone.out_indices ,[0, 1] ) _UpperCamelCase : Union[str, Any] = [-3, -1] self.assertEqual(backbone.out_features ,['a', 'c'] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
83
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
83
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> Optional[Any]: """simple docstring""" if name is None: UpperCamelCase_ = None else: UpperCamelCase_ = "." * max(0 , spaces - 2 ) + "# {:" + str(5_0 - spaces ) + "s}" UpperCamelCase_ = fmt.format(SCREAMING_SNAKE_CASE_ ) # Print and recurse (if needed). if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if msg is not None: print(SCREAMING_SNAKE_CASE_ ) for k in val.keys(): recursive_print(SCREAMING_SNAKE_CASE_ , val[k] , spaces + 2 ) elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): print(SCREAMING_SNAKE_CASE_ , ":" , val.size() ) else: print(SCREAMING_SNAKE_CASE_ , ":" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" UpperCamelCase_ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase_ = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase_ = param.view(*SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = param.transpose(0 , 2 ) UpperCamelCase_ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase_ = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase_ = param.view(*SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = param.transpose(0 , 1 ).contiguous() UpperCamelCase_ = param.view(*SCREAMING_SNAKE_CASE_ ) return param def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = {} # old versions did not store training args UpperCamelCase_ = input_state_dict.get("args" , SCREAMING_SNAKE_CASE_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase_ = ds_args.padded_vocab_size UpperCamelCase_ = ds_args.max_position_embeddings UpperCamelCase_ = ds_args.hidden_size UpperCamelCase_ = ds_args.num_layers UpperCamelCase_ = ds_args.num_attention_heads UpperCamelCase_ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase_ = config.n_head # The hidden_size per head. UpperCamelCase_ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase_ = input_state_dict["checkpoint_version"] else: UpperCamelCase_ = 0.0 # The model. UpperCamelCase_ = input_state_dict["model"] # The language model. UpperCamelCase_ = model["language_model"] # The embeddings. UpperCamelCase_ = lm["embedding"] # The word embeddings. UpperCamelCase_ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase_ = word_embeddings[: config.vocab_size, :] UpperCamelCase_ = word_embeddings # The position embeddings. UpperCamelCase_ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase_ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. UpperCamelCase_ = pos_embeddings # The transformer. UpperCamelCase_ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase_ = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase_ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase_ = layer_re.match(SCREAMING_SNAKE_CASE_ ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase_ = int(m.group(1 ) ) # The name of the operation. UpperCamelCase_ = m.group(2 ) # Is it a weight or a bias? UpperCamelCase_ = m.group(3 ) # The name of the layer. UpperCamelCase_ = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase_ = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase_ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase_ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase_ = torch.tensor(-1E4 , dtype=torch.floataa ) UpperCamelCase_ = masked_bias UpperCamelCase_ = fix_query_key_value_ordering(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase_ = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase_ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase_ = fix_query_key_value_ordering(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Store. No change of shape. UpperCamelCase_ = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase_ = transformer["final_layernorm.weight"] UpperCamelCase_ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase_ = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase( )-> Any: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=SCREAMING_SNAKE_CASE_ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=SCREAMING_SNAKE_CASE_ , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase_ = parser.parse_args() # Extract the basename. UpperCamelCase_ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase_ = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) else: UpperCamelCase_ = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase_ = input_state_dict.get("args" , SCREAMING_SNAKE_CASE_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase_ = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase_ = "gelu_new" else: UpperCamelCase_ = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase_ = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase_ = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=SCREAMING_SNAKE_CASE_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=SCREAMING_SNAKE_CASE_ , summary_activation=SCREAMING_SNAKE_CASE_ , summary_proj_to_labels=SCREAMING_SNAKE_CASE_ , summary_first_dropout=0.1 , scale_attn_weights=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: UpperCamelCase_ = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase_ = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase_ = convert_megatron_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase_ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase_ = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase_ = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: UpperCamelCase_ = "gpt2" UpperCamelCase_ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = type(SCREAMING_SNAKE_CASE_ ).__name__ UpperCamelCase_ = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Store the state_dict to file. UpperCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , "pytorch_model.bin" ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
60
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE :Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None )-> Any: UpperCamelCase_ = None UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase_ = os.path.abspath("examples" ) for item in os.listdir(_lowercase ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ) and ".py" in item_path: with self.subTest( tested_script=_lowercase , feature_script=_lowercase , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase_ = compare_against_test( os.path.join(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase ) UpperCamelCase_ = "\n".join(_lowercase ) if special_strings is not None: for string in special_strings: UpperCamelCase_ = diff.replace(_lowercase , "" ) self.assertEqual(_lowercase , "" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.one_complete_example("complete_nlp_example.py" , _lowercase ) self.one_complete_example("complete_nlp_example.py" , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = False @classmethod def UpperCAmelCase_ ( cls )-> List[str]: super().setUpClass() UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls )-> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) else: self.assertIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) UpperCamelCase_ = re.findall("({.+})" , _lowercase ) UpperCamelCase_ = [r for r in results if "accuracy" in r][-1] UpperCamelCase_ = ast.literal_eval(_lowercase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "tracking" ) ) ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
60
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase :str = logging.get_logger(__name__) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): _UpperCAmelCase : int = b.T _UpperCAmelCase : Optional[int] = np.sum(np.square(UpperCamelCase__ ) , axis=1 ) _UpperCAmelCase : Any = np.sum(np.square(UpperCamelCase__ ) , axis=0 ) _UpperCAmelCase : Any = np.matmul(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCamelCase_ (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): _UpperCAmelCase : Union[str, Any] = x.reshape(-1 , 3 ) _UpperCAmelCase : Optional[Any] = squared_euclidean_distance(UpperCamelCase__ , UpperCamelCase__ ) return np.argmin(UpperCamelCase__ , axis=1 ) class _UpperCAmelCase ( a ): '''simple docstring''' a__ =['''pixel_values'''] def __init__( self , A = None , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = True , **A , ) -> None: super().__init__(**A ) _UpperCAmelCase : List[Any] = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _UpperCAmelCase : Any = get_size_dict(A ) _UpperCAmelCase : Union[str, Any] = np.array(A ) if clusters is not None else None _UpperCAmelCase : str = do_resize _UpperCAmelCase : Tuple = size _UpperCAmelCase : Any = resample _UpperCAmelCase : Dict = do_normalize _UpperCAmelCase : Optional[int] = do_color_quantize def __lowerCAmelCase ( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: _UpperCAmelCase : int = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( A , size=(size['''height'''], size['''width''']) , resample=A , data_format=A , **A ) def __lowerCAmelCase ( self , A , A = None , ) -> np.ndarray: _UpperCAmelCase : Optional[Any] = rescale(image=A , scale=1 / 127.5 , data_format=A ) _UpperCAmelCase : List[str] = image - 1 return image def __lowerCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[Any] = size if size is not None else self.size _UpperCAmelCase : Union[str, Any] = get_size_dict(A ) _UpperCAmelCase : List[Any] = resample if resample is not None else self.resample _UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase : Dict = clusters if clusters is not None else self.clusters _UpperCAmelCase : Union[str, Any] = np.array(A ) _UpperCAmelCase : str = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase : Tuple = [to_numpy_array(A ) for image in images] if do_resize: _UpperCAmelCase : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_normalize: _UpperCAmelCase : str = [self.normalize(image=A ) for image in images] if do_color_quantize: _UpperCAmelCase : Optional[int] = [to_channel_dimension_format(A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase : int = np.array(A ) _UpperCAmelCase : Tuple = color_quantize(A , A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _UpperCAmelCase : List[Any] = images.shape[0] _UpperCAmelCase : int = images.reshape(A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase : int = list(A ) else: _UpperCAmelCase : List[str] = [to_channel_dimension_format(A , A ) for image in images] _UpperCAmelCase : Optional[Any] = {'''input_ids''': images} return BatchFeature(data=A , tensor_type=A )
263
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''mgp-str''' def __init__( self , A=[3_2, 1_2_8] , A=4 , A=3 , A=2_7 , A=3_8 , A=5_0_2_5_7 , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=4.0 , A=True , A=False , A=1E-5 , A=0.0 , A=0.0 , A=0.0 , A=False , A=0.02 , **A , ) -> Union[str, Any]: super().__init__(**A ) _UpperCAmelCase : Any = image_size _UpperCAmelCase : str = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Dict = max_token_length _UpperCAmelCase : Optional[Any] = num_character_labels _UpperCAmelCase : int = num_bpe_labels _UpperCAmelCase : List[str] = num_wordpiece_labels _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[Any] = mlp_ratio _UpperCAmelCase : List[str] = distilled _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : str = drop_rate _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : List[str] = attn_drop_rate _UpperCAmelCase : Dict = drop_path_rate _UpperCAmelCase : Union[str, Any] = output_aa_attentions _UpperCAmelCase : List[str] = initializer_range
263
1
__a = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" lowercase : List[Any] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} lowercase : Optional[Any] = 0 lowercase : Optional[Any] = 0 while place < len(_UpperCamelCase ): if (place + 1 < len(_UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : List[str] = [] for arabic, roman in ROMAN: ((lowercase) , (lowercase)) : Dict = divmod(_UpperCamelCase, _UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
173
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): lowercase : int = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase : List[Any] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase : Optional[int] = '''The dog is cute and lives in the garden house''' lowercase : List[str] = jnp.array([tokenizer.encode(SCREAMING_SNAKE_CASE__ )] ) lowercase : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase : Union[str, Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase : Any = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
173
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase_ : List[Any] = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self : str , snake_case__ : Dict , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = question_encoder _UpperCAmelCase = generator _UpperCAmelCase = self.question_encoder def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" if os.path.isfile(snake_case__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _UpperCAmelCase = os.path.join(snake_case__ , "question_encoder_tokenizer" ) _UpperCAmelCase = os.path.join(snake_case__ , "generator_tokenizer" ) self.question_encoder.save_pretrained(snake_case__ ) self.generator.save_pretrained(snake_case__ ) @classmethod def UpperCamelCase ( cls : List[Any] , snake_case__ : Optional[Any] , **snake_case__ : Optional[int] ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer _UpperCAmelCase = kwargs.pop("config" , snake_case__ ) if config is None: _UpperCAmelCase = RagConfig.from_pretrained(snake_case__ ) _UpperCAmelCase = AutoTokenizer.from_pretrained( snake_case__ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) _UpperCAmelCase = AutoTokenizer.from_pretrained( snake_case__ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=snake_case__ , generator=snake_case__ ) def __call__( self : Tuple , *snake_case__ : Optional[Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.current_tokenizer(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.generator.batch_decode(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[Any] , *snake_case__ : List[Any] , **snake_case__ : List[Any] ): """simple docstring""" return self.generator.decode(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = self.question_encoder def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = self.generator def UpperCamelCase ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[List[str]] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , snake_case__ : str = "longest" , snake_case__ : str = None , snake_case__ : bool = True , **snake_case__ : Any , ): """simple docstring""" warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , snake_case__ , ) if max_length is None: _UpperCAmelCase = self.current_tokenizer.model_max_length _UpperCAmelCase = self( snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , max_length=snake_case__ , padding=snake_case__ , truncation=snake_case__ , **snake_case__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _UpperCAmelCase = self.current_tokenizer.model_max_length _UpperCAmelCase = self( text_target=snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ , **snake_case__ , ) _UpperCAmelCase = labels["input_ids"] return model_inputs
133
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : Tuple = "codegen" snake_case_ : Optional[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , snake_case__ : Any=50_400 , snake_case__ : int=2_048 , snake_case__ : Optional[Any]=2_048 , snake_case__ : Tuple=4_096 , snake_case__ : List[str]=28 , snake_case__ : List[Any]=16 , snake_case__ : int=64 , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]="gelu_new" , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : Optional[int]=0.0 , snake_case__ : Dict=1e-5 , snake_case__ : int=0.02 , snake_case__ : Union[str, Any]=True , snake_case__ : str=50_256 , snake_case__ : List[str]=50_256 , snake_case__ : Optional[int]=False , **snake_case__ : str , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_ctx _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = rotary_dim _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : List[str] , snake_case__ : PretrainedConfig , snake_case__ : str = "default" , snake_case__ : List[PatchingSpec] = None , snake_case__ : bool = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , "pad_token_id" , snake_case__ ): # TODO: how to do that better? _UpperCAmelCase = 0 @property def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) _UpperCAmelCase = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase ( self : int ): """simple docstring""" return self._config.n_layer @property def UpperCamelCase ( self : List[str] ): """simple docstring""" return self._config.n_head def UpperCamelCase ( self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): """simple docstring""" _UpperCAmelCase = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCAmelCase = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] _UpperCAmelCase = common_inputs["attention_mask"] if self.use_past: _UpperCAmelCase = ordered_inputs["attention_mask"].dtype _UpperCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase ( self : Any ): """simple docstring""" return 13
133
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : str = 16 UpperCAmelCase_ : Optional[Any] = 32 def UpperCamelCase ( _A : Accelerator , _A : int = 16 )-> Dict: """simple docstring""" A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Any ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _A , batched=_A , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _A , padding="longest" , max_length=_A , pad_to_multiple_of=_A , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_A , collate_fn=_A , batch_size=_A ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ : Tuple = mocked_dataloaders # noqa: F811 def UpperCamelCase ( _A : Tuple , _A : int )-> Any: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _A ) == "1": A__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) set_seed(_A ) A__ , A__ = get_dataloaders(_A , _A ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=100 , num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( _A , _A , _A , _A , _A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A__ = os.path.split(_A )[-1].split("." )[0] accelerator.init_trackers(_A , _A ) # Now we train the model for epoch in range(_A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A__ = 0 for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_A ) A__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A__ = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_A ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_A , references=_A , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_A ), "epoch": epoch, } , step=_A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCamelCase ( )-> int: """simple docstring""" A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_A , default=_A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) A__ = parser.parse_args() A__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_A , _A ) if __name__ == "__main__": main()
198
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase_ : Dict = False @skip_mps class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Optional[Any] = StableDiffusionAttendAndExcitePipeline lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Any = TEXT_TO_IMAGE_PARAMS lowerCAmelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) lowerCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __A ( cls ): super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def __A ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def __A ( self ): torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , ) A__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) A__ = CLIPTextModel(UpperCAmelCase__ ) A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCAmelCase__ ) else: A__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A__ = A__ = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def __A ( self ): A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) A__ = self.get_dummy_inputs(UpperCAmelCase__ ) A__ = pipe(**UpperCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1e-3 ) def __A ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __A ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __A ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __A ( self ): super().test_save_load_local(expected_max_difference=5e-4 ) def __A ( self ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): @classmethod def __A ( cls ): super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def __A ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ = torch.manual_seed(51 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.to("cuda" ) A__ = "a painting of an elephant with glasses" A__ = [5, 7] A__ = pipe( prompt=UpperCAmelCase__ , token_indices=UpperCAmelCase__ , guidance_scale=7.5 , generator=UpperCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
198
1
def __lowercase ( a__ ) -> Any: __SCREAMING_SNAKE_CASE = len(a__ ) for i in range(length - 1 ): __SCREAMING_SNAKE_CASE = i for k in range(i + 1 , a__ ): if collection[k] < collection[least]: __SCREAMING_SNAKE_CASE = k if least != i: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCAmelCase__ : Any =input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ : Dict =[int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
257
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _A = 16 , _A = 88 , _A = None , _A = 1 , _A = 0.0 , _A = 32 , _A = None , _A = False , _A = None , _A = None , _A = "geglu" , _A = None , ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_A , attention_head_dim=_A , in_channels=_A , num_layers=_A , dropout=_A , norm_num_groups=_A , cross_attention_dim=_A , attention_bias=_A , sample_size=_A , num_vector_embeds=_A , activation_fn=_A , num_embeds_ada_norm=_A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __SCREAMING_SNAKE_CASE = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __SCREAMING_SNAKE_CASE = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __SCREAMING_SNAKE_CASE = [1, 0] def _A ( self , _A , _A , _A=None , _A=None , _A=None , _A = True , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __SCREAMING_SNAKE_CASE = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __SCREAMING_SNAKE_CASE = self.transformer_index_for_condition[i] __SCREAMING_SNAKE_CASE = self.transformers[transformer_index]( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , return_dict=_A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __SCREAMING_SNAKE_CASE = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __SCREAMING_SNAKE_CASE = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_A )
257
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : List[Any] = parent def A ( self : int ): return {} def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" lowerCAmelCase_ : int = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = MarkupLMFeatureExtractionTester(self ) @property def A ( self : List[str] ): return self.feature_extract_tester.prepare_feat_extract_dict() def A ( self : Union[str, Any] ): # Initialize feature_extractor lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class() # Test not batched input lowerCAmelCase_ : List[Any] = get_html_strings()[0] lowerCAmelCase_ : Any = feature_extractor(UpperCAmelCase ) # fmt: off lowerCAmelCase_ : Optional[Any] = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] lowerCAmelCase_ : Dict = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , UpperCAmelCase ) self.assertEqual(encoding.xpaths , UpperCAmelCase ) # Test batched lowerCAmelCase_ : int = get_html_strings() lowerCAmelCase_ : Tuple = feature_extractor(UpperCAmelCase ) # fmt: off lowerCAmelCase_ : Any = expected_nodes + [["""My First Heading""", """My first paragraph."""]] lowerCAmelCase_ : Any = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCAmelCase ) self.assertEqual(encoding.xpaths , UpperCAmelCase )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class snake_case_( a__ ): __UpperCamelCase = '''Wav2Vec2FeatureExtractor''' __UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = self.feature_extractor lowerCAmelCase : List[str] = False @classmethod def lowerCamelCase__ ( cls : Tuple , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): try: return super().from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , UpperCamelCase_ , ) lowerCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) return cls(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) def __call__( self : Any , *UpperCamelCase_ : int , **UpperCamelCase_ : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase_ , **UpperCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase : Tuple = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase : Tuple = kwargs.pop('''audio''' , UpperCamelCase_ ) lowerCAmelCase : List[str] = kwargs.pop('''sampling_rate''' , UpperCamelCase_ ) lowerCAmelCase : int = kwargs.pop('''text''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase : int = args[0] lowerCAmelCase : int = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase : Optional[int] = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: lowerCAmelCase : Optional[int] = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase : List[Any] = encodings['''input_ids'''] return inputs def lowerCamelCase__ ( self : str , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = kwargs.pop('''input_features''' , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = kwargs.pop('''labels''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase : Union[str, Any] = args[0] lowerCAmelCase : Optional[int] = args[1:] if input_features is not None: lowerCAmelCase : Tuple = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if labels is not None: lowerCAmelCase : Optional[Any] = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase : int = labels['''input_ids'''] return input_features def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Union[str, Any] ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @contextmanager def lowerCamelCase__ ( self : Optional[int] ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : List[str] = self.tokenizer yield lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : Union[str, Any] = False
60
"""simple docstring""" snake_case__ : str = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] snake_case__ : Optional[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] snake_case__ : Any = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] snake_case__ : Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] snake_case__ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] snake_case__ : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] snake_case__ : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] snake_case__ : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
60
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Optional[Any] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase : Optional[Any] = 50003 lowerCAmelCase : List[str] = 50002 @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = PLBartTokenizer _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : str): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: Tuple = PLBartTokenizer(lowerCAmelCase__ , language_codes="base" , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[int] = PLBartTokenizer(lowerCAmelCase__ , language_codes="base" , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: str = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE_: int = tokenizer.vocab_size SCREAMING_SNAKE_CASE_: Tuple = [tokenizer.convert_ids_to_tokens(lowerCAmelCase__) for x in range(end - 4 , lowerCAmelCase__)] self.assertListEqual(lowerCAmelCase__ , ["__java__", "__python__", "__en_XX__", "<mask>"]) SCREAMING_SNAKE_CASE_: Optional[int] = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer(lowerCAmelCase__).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) , lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = PLBartTokenizer(lowerCAmelCase__ , language_codes="multi" , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.vocab_size SCREAMING_SNAKE_CASE_: int = [tokenizer.convert_ids_to_tokens(lowerCAmelCase__) for x in range(end - 7 , lowerCAmelCase__)] self.assertListEqual( lowerCAmelCase__ , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"]) SCREAMING_SNAKE_CASE_: str = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) , lowerCAmelCase__ , ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = '''uclanlp/plbart-python-en_XX''' _UpperCAmelCase : List[str] = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] _UpperCAmelCase : int = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] _UpperCAmelCase : Optional[Any] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict): SCREAMING_SNAKE_CASE_: PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX") SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return cls def _SCREAMING_SNAKE_CASE ( self : List[str]): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0003) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids) SCREAMING_SNAKE_CASE_: Optional[Any] = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE_: int = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: Optional[Any] = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , lowerCAmelCase__) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"]) , [5_0004, 5_0001]) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = PLBartTokenizer.from_pretrained(lowerCAmelCase__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__) @require_torch def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: Any = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase__) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 26) , batch.input_ids.shape) self.assertEqual((2, 26) , batch.attention_mask.shape) SCREAMING_SNAKE_CASE_: Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors="pt") SCREAMING_SNAKE_CASE_: Any = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors="pt") SCREAMING_SNAKE_CASE_: List[Any] = targets["input_ids"] SCREAMING_SNAKE_CASE_: List[Any] = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java") self.assertEqual( nested_simplify(lowerCAmelCase__) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 5_0003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0001, } , )
127
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
"""simple docstring""" from maths.prime_factors import prime_factors def __magic_name__ ( lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
173
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
1
'''simple docstring''' __a: Dict = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
198
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Optional[int]: super().setUp() lowercase__ : List[Any] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowercase__ : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowercase__ : Dict = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowercase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : str = '''adapt act apte''' lowercase__ : Any = '''adapt act apte''' return input_text, output_text def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Tuple = '''adapt act apte''' lowercase__ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase__ : int = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] lowercase__ : str = '''I am a small frog.''' lowercase__ : Union[str, Any] = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] lowercase__ : List[str] = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowercase__ : Optional[Any] = '''I am a small frog .''' lowercase__ : Any = '''.''' lowercase__ : List[Any] = tok(__lowerCAmelCase )['''input_ids'''] lowercase__ : Optional[Any] = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
198
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "longformer" def __init__( self , __A = 512 , __A = 2 , __A = 1 , __A = 0 , __A = 2 , __A = 3_0522 , __A = 768 , __A = 12 , __A = 12 , __A = 3072 , __A = "gelu" , __A = 0.1 , __A = 0.1 , __A = 512 , __A = 2 , __A = 0.02 , __A = 1E-1_2 , __A = False , **__A , ) -> Dict: super().__init__(pad_token_id=__A , **__A ) a =attention_window a =sep_token_id a =bos_token_id a =eos_token_id a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =hidden_act a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =initializer_range a =layer_norm_eps a =onnx_export class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A , __A = "default" , __A = None ) -> Dict: super().__init__(__A , __A , __A ) a =True @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: a =super().outputs if self.task == "default": a ={0: '''batch'''} return outputs @property def SCREAMING_SNAKE_CASE ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def SCREAMING_SNAKE_CASE ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , ) -> Mapping[str, Any]: a =super().generate_dummy_inputs( preprocessor=__A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a =torch.zeros_like(inputs['''input_ids'''] ) # make every second token global a =1 return inputs
357
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = RoFormerTokenizer __lowerCAmelCase = RoFormerTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[int]: return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__A ) def SCREAMING_SNAKE_CASE ( self , **__A ) -> List[Any]: return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__A ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a ='''永和服装饰品有限公司,今天天气非常好''' a ='''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.get_tokenizer() a , a =self.get_chinese_input_output_texts() a =tokenizer.tokenize(__A ) self.assertListEqual(__A , output_text.split() ) a =tokens + [tokenizer.unk_token] a =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.get_rust_tokenizer() a , a =self.get_chinese_input_output_texts() a =tokenizer.tokenize(__A ) self.assertListEqual(__A , output_text.split() ) a =tokens + [tokenizer.unk_token] a =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE ( self ) -> int: pass
215
0
import argparse import json import subprocess def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= [] __lowercase= ( F'curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) __lowercase= subprocess.run(A__ , shell=A__ , stdout=subprocess.PIPE ) __lowercase= output.stdout.decode('utf-8' ) __lowercase= json.loads(A__ ) __lowercase= status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A__ ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(A__ ) ) if len(A__ ) > 0: __lowercase= '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' return values.split(',' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowerCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
295
'''simple docstring''' def __lowerCamelCase ( A__ = 50 ) -> int: """simple docstring""" UpperCamelCase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
28
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''MCTCTFeatureExtractor''' lowerCamelCase_ = '''AutoTokenizer''' def __init__( self , lowercase , lowercase ): """simple docstring""" super().__init__(lowercase , lowercase ) A_ : Dict = self.feature_extractor A_ : Tuple = False def __call__( self , *lowercase , **lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A_ : str = kwargs.pop('raw_speech' ) else: A_ : List[str] = kwargs.pop('audio' , lowercase ) A_ : List[Any] = kwargs.pop('sampling_rate' , lowercase ) A_ : str = kwargs.pop('text' , lowercase ) if len(lowercase ) > 0: A_ : str = args[0] A_ : Tuple = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A_ : Optional[int] = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: A_ : List[Any] = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: A_ : Tuple = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) A_ : Optional[int] = kwargs.pop('input_features' , lowercase ) A_ : List[Any] = kwargs.pop('labels' , lowercase ) if len(lowercase ) > 0: A_ : str = args[0] A_ : Union[str, Any] = args[1:] if input_features is not None: A_ : List[Any] = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: A_ : List[str] = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: A_ : int = labels['input_ids'] return input_features def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def lowerCAmelCase_ ( self ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A_ : Optional[int] = True A_ : str = self.tokenizer yield A_ : Any = self.feature_extractor A_ : Dict = False
364
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=__A ): '''simple docstring''' lowerCamelCase_ = ['''onnx'''] def __init__( self , *lowercase , **lowercase ): """simple docstring""" requires_backends(self , ['onnx'] ) @classmethod def lowerCAmelCase_ ( cls , *lowercase , **lowercase ): """simple docstring""" requires_backends(cls , ['onnx'] ) @classmethod def lowerCAmelCase_ ( cls , *lowercase , **lowercase ): """simple docstring""" requires_backends(cls , ['onnx'] )
192
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = BlenderbotSmallTokenizer __magic_name__ = False def a_ ( self ): super().setUp() snake_case = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] snake_case = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def a_ ( self , **__snake_case ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , __snake_case ): snake_case = '''adapt act apte''' snake_case = '''adapt act apte''' return input_text, output_text def a_ ( self ): snake_case = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case = '''adapt act apte''' snake_case = ['''adapt''', '''act''', '''ap@@''', '''te'''] snake_case = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def a_ ( self ): snake_case = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] snake_case = '''I am a small frog.''' snake_case = tok([src_text] , padding=__snake_case , truncation=__snake_case )['''input_ids'''] snake_case = tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a_ ( self ): snake_case = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) snake_case = '''I am a small frog .''' snake_case = '''.''' snake_case = tok(__snake_case )['''input_ids'''] snake_case = tok(__snake_case )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
127
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowerCAmelCase ( UpperCamelCase__): _lowercase : torch.FloatTensor class __lowerCAmelCase ( nn.Module): def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=("DownEncoderBlock2D",) , lowerCAmelCase__=(6_4,) , lowerCAmelCase__=2 , lowerCAmelCase__=3_2 , lowerCAmelCase__="silu" , lowerCAmelCase__=True , ) -> Any: '''simple docstring''' super().__init__() a__ : Optional[int] =layers_per_block a__ : Tuple =torch.nn.Convad( lowerCAmelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) a__ : List[Any] =None a__ : List[Any] =nn.ModuleList([] ) # down a__ : Any =block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase__ ): a__ : Tuple =output_channel a__ : List[Any] =block_out_channels[i] a__ : Optional[Any] =i == len(lowerCAmelCase__ ) - 1 a__ : List[str] =get_down_block( lowerCAmelCase__ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase__ , resnet_groups=lowerCAmelCase__ , attention_head_dim=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , ) self.down_blocks.append(lowerCAmelCase__ ) # mid a__ : Dict =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , ) # out a__ : str =nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase__ , eps=1E-6 ) a__ : Tuple =nn.SiLU() a__ : Union[str, Any] =2 * out_channels if double_z else out_channels a__ : Optional[Any] =nn.Convad(block_out_channels[-1] , lowerCAmelCase__ , 3 , padding=1 ) a__ : Tuple =False def _lowercase ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Optional[Any] =x a__ : List[str] =self.conv_in(lowerCAmelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase__ ): def custom_forward(*lowerCAmelCase__ ): return module(*lowerCAmelCase__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: a__ : Optional[int] =torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) # middle a__ : List[Any] =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) else: for down_block in self.down_blocks: a__ : str =torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ ) # middle a__ : Dict =torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase__ ) else: # down for down_block in self.down_blocks: a__ : int =down_block(lowerCAmelCase__ ) # middle a__ : Optional[Any] =self.mid_block(lowerCAmelCase__ ) # post-process a__ : int =self.conv_norm_out(lowerCAmelCase__ ) a__ : Optional[int] =self.conv_act(lowerCAmelCase__ ) a__ : Optional[Any] =self.conv_out(lowerCAmelCase__ ) return sample class __lowerCAmelCase ( nn.Module): def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=("UpDecoderBlock2D",) , lowerCAmelCase__=(6_4,) , lowerCAmelCase__=2 , lowerCAmelCase__=3_2 , lowerCAmelCase__="silu" , lowerCAmelCase__="group" , ) -> Optional[Any]: '''simple docstring''' super().__init__() a__ : Optional[int] =layers_per_block a__ : Union[str, Any] =nn.Convad( lowerCAmelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) a__ : Optional[int] =None a__ : int =nn.ModuleList([] ) a__ : int =in_channels if norm_type == "spatial" else None # mid a__ : int =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , ) # up a__ : Any =list(reversed(lowerCAmelCase__ ) ) a__ : str =reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase__ ): a__ : Optional[Any] =output_channel a__ : str =reversed_block_out_channels[i] a__ : Dict =i == len(lowerCAmelCase__ ) - 1 a__ : Any =get_up_block( lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase__ , resnet_groups=lowerCAmelCase__ , attention_head_dim=lowerCAmelCase__ , temb_channels=lowerCAmelCase__ , resnet_time_scale_shift=lowerCAmelCase__ , ) self.up_blocks.append(lowerCAmelCase__ ) a__ : Union[str, Any] =output_channel # out if norm_type == "spatial": a__ : Any =SpatialNorm(block_out_channels[0] , lowerCAmelCase__ ) else: a__ : str =nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase__ , eps=1E-6 ) a__ : str =nn.SiLU() a__ : Union[str, Any] =nn.Convad(block_out_channels[0] , lowerCAmelCase__ , 3 , padding=1 ) a__ : List[Any] =False def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: '''simple docstring''' a__ : List[Any] =z a__ : Union[str, Any] =self.conv_in(lowerCAmelCase__ ) a__ : Any =next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase__ ): def custom_forward(*lowerCAmelCase__ ): return module(*lowerCAmelCase__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle a__ : Optional[int] =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase__ , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) a__ : str =sample.to(lowerCAmelCase__ ) # up for up_block in self.up_blocks: a__ : Union[str, Any] =torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , use_reentrant=lowerCAmelCase__ ) else: # middle a__ : Optional[int] =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] =sample.to(lowerCAmelCase__ ) # up for up_block in self.up_blocks: a__ : Optional[int] =torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ ) else: # middle a__ : Optional[int] =self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict =sample.to(lowerCAmelCase__ ) # up for up_block in self.up_blocks: a__ : Optional[int] =up_block(lowerCAmelCase__ , lowerCAmelCase__ ) # post-process if latent_embeds is None: a__ : List[str] =self.conv_norm_out(lowerCAmelCase__ ) else: a__ : int =self.conv_norm_out(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] =self.conv_act(lowerCAmelCase__ ) a__ : List[str] =self.conv_out(lowerCAmelCase__ ) return sample class __lowerCAmelCase ( nn.Module): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="random" , lowerCAmelCase__=False , lowerCAmelCase__=True ) -> Union[str, Any]: '''simple docstring''' super().__init__() a__ : Optional[int] =n_e a__ : Tuple =vq_embed_dim a__ : int =beta a__ : str =legacy a__ : str =nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) a__ : Optional[int] =remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) a__ : List[str] =self.used.shape[0] a__ : List[Any] =unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": a__ : str =self.re_embed a__ : Dict =self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: a__ : Any =n_e a__ : Optional[int] =sane_index_shape def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Any =inds.shape assert len(lowerCAmelCase__ ) > 1 a__ : Optional[Any] =inds.reshape(ishape[0] , -1 ) a__ : Tuple =self.used.to(lowerCAmelCase__ ) a__ : Union[str, Any] =(inds[:, :, None] == used[None, None, ...]).long() a__ : Tuple =match.argmax(-1 ) a__ : Optional[Any] =match.sum(2 ) < 1 if self.unknown_index == "random": a__ : Tuple =torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: a__ : str =self.unknown_index return new.reshape(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Any =inds.shape assert len(lowerCAmelCase__ ) > 1 a__ : Tuple =inds.reshape(ishape[0] , -1 ) a__ : Tuple =self.used.to(lowerCAmelCase__ ) if self.re_embed > self.used.shape[0]: # extra token a__ : List[Any] =0 # simply set to zero a__ : int =torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase__ ) return back.reshape(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] =z.permute(0 , 2 , 3 , 1 ).contiguous() a__ : Tuple =z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z a__ : Optional[Any] =torch.argmin(torch.cdist(lowerCAmelCase__ , self.embedding.weight ) , dim=1 ) a__ : List[Any] =self.embedding(lowerCAmelCase__ ).view(z.shape ) a__ : List[str] =None a__ : str =None # compute loss for embedding if not self.legacy: a__ : Union[str, Any] =self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: a__ : Optional[Any] =torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients a__ : List[Any] =z + (z_q - z).detach() # reshape back to match original input shape a__ : List[str] =z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: a__ : Dict =min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis a__ : Tuple =self.remap_to_used(lowerCAmelCase__ ) a__ : str =min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: a__ : Any =min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if self.remap is not None: a__ : Union[str, Any] =indices.reshape(shape[0] , -1 ) # add batch axis a__ : str =self.unmap_to_all(lowerCAmelCase__ ) a__ : List[Any] =indices.reshape(-1 ) # flatten again # get quantized latent vectors a__ : Optional[int] =self.embedding(lowerCAmelCase__ ) if shape is not None: a__ : Any =z_q.view(lowerCAmelCase__ ) # reshape back to match original input shape a__ : Union[str, Any] =z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] =parameters a__ , a__ : str =torch.chunk(lowerCAmelCase__ , 2 , dim=1 ) a__ : Any =torch.clamp(self.logvar , -30.0 , 20.0 ) a__ : Any =deterministic a__ : List[Any] =torch.exp(0.5 * self.logvar ) a__ : int =torch.exp(self.logvar ) if self.deterministic: a__ : Optional[Any] =torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowercase ( self , lowerCAmelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' a__ : Any =randn_tensor( self.mean.shape , generator=lowerCAmelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) a__ : Optional[Any] =self.mean + self.std * sample return x def _lowercase ( self , lowerCAmelCase__=None ) -> Tuple: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=[1, 2, 3] ) -> Dict: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) a__ : Tuple =np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.mean
148
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[int] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "depth_multiplier" ) ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.25 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ) -> Dict: '''simple docstring''' a__ : int =parent a__ : Optional[Any] =batch_size a__ : Tuple =num_channels a__ : Dict =image_size a__ : Union[str, Any] =depth_multiplier a__ : List[str] =min_depth a__ : Dict =tf_padding a__ : Any =int(last_hidden_size * depth_multiplier ) a__ : Tuple =output_stride a__ : Optional[Any] =hidden_act a__ : str =classifier_dropout_prob a__ : int =use_labels a__ : List[Any] =is_training a__ : List[str] =num_labels a__ : Dict =initializer_range a__ : Tuple =scope def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Any =None a__ : List[Any] =None if self.use_labels: a__ : Dict =ids_tensor([self.batch_size] , self.num_labels ) a__ : Tuple =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] =MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Any =self.num_labels a__ : Dict =MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[int] =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : List[str] =config_and_inputs a__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _lowercase : Optional[int] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : str = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] =MobileNetVaModelTester(self ) a__ : Optional[Any] =MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowercase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =model_class(lowerCAmelCase__ ) a__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] =[*signature.parameters.keys()] a__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : int =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): a__ : List[Any] =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =outputs.hidden_states a__ : Optional[int] =2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ , a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Union[str, Any] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[str] =MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( ): """simple docstring""" a__ : Optional[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : str =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(lowerCAmelCase__ ) a__ : Optional[Any] =self.default_image_processor a__ : Optional[int] =prepare_img() a__ : Optional[int] =image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a__ : int =model(**lowerCAmelCase__ ) # verify the logits a__ : str =torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : int =torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
148
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
322
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def A_ ( ): """simple docstring""" _a = ArgumentParser('''Diffusers CLI tool''', usage='''diffusers-cli <command> [<args>]''' ) _a = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_lowerCAmelCase ) # Let's go _a = parser.parse_args() if not hasattr(_lowerCAmelCase, '''func''' ): parser.print_help() exit(1 ) # Run _a = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
350
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> str: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_multiple_size _a = hidden_act _a = hidden_dropout _a = attention_dropout _a = weight_tying _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a , _a , _a = self.prepare_config_and_inputs() _a = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = GPTNeoXJapaneseModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _a = True _a = GPTNeoXJapaneseModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = True _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) _a = output_from_no_past['''hidden_states'''][0] _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : str = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () A_ : Tuple = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () A_ : List[str] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) A_ : Any = False A_ : Optional[Any] = False A_ : Tuple = False A_ : Optional[int] = False def _UpperCAmelCase ( self ) -> Optional[Any]: _a = GPTNeoXJapaneseModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> str: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: # This regression test was failing with PyTorch < 1.3 _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: _a = '''abeja/gpt-neox-japanese-2.7b''' _a = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _a = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _a = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) _a = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCAmelCase ) _a = [] for prompt in prompts: _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' ).input_ids _a = model.generate(__UpperCAmelCase , max_length=50 ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
153
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") lowercase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowercase ( lowerCAmelCase__ : str ) -> str: with open(lowerCAmelCase_ , '''rb''' ) as f: __a = Image.open(lowerCAmelCase_ ) return im.convert('''RGB''' ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Dict = field( default=_lowerCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __UpperCAmelCase : str = field( default=_lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __UpperCAmelCase : Dict = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the training data.'} ) __UpperCAmelCase : Dict = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __UpperCAmelCase : str = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __UpperCAmelCase : Dict = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCAmelCase : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __UpperCAmelCase ( self ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __UpperCAmelCase : Optional[Any] = field( default=_lowerCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCamelCase )} , ) __UpperCAmelCase : str = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCAmelCase : List[str] = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __UpperCAmelCase : Any = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCAmelCase : int = field(default=_lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __UpperCAmelCase : Union[str, Any] = field( default=_lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __UpperCAmelCase : int = field( default=_lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase ( lowerCAmelCase__ : List[Any] ) -> List[Any]: __a = torch.stack([example['''pixel_values'''] for example in examples] ) __a = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowercase ( ) -> Tuple: __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: __a = {} if data_args.train_dir is not None: __a = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: __a = os.path.join(data_args.validation_dir , '''**''' ) __a = load_dataset( '''imagefolder''' , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. __a = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: __a = dataset["""train"""].train_test_split(data_args.train_val_split ) __a = split["""train"""] __a = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __a = dataset["""train"""].features["""labels"""].names __a = {}, {} for i, label in enumerate(lowerCAmelCase_ ): __a = str(lowerCAmelCase_ ) __a = label # Load the accuracy metric from the datasets package __a = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __a = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __a = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __a = image_processor.size["""shortest_edge"""] else: __a = (image_processor.size["""height"""], image_processor.size["""width"""]) __a = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __a = Compose( [ RandomResizedCrop(lowerCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __a = Compose( [ Resize(lowerCAmelCase_ ), CenterCrop(lowerCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase__ : str ): __a = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(lowerCAmelCase__ : str ): __a = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __a = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __a = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase_ ) # Initalize our trainer __a = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __a = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCAmelCase_ ) trainer.save_metrics('''eval''' , lowerCAmelCase_ ) # Write model card and (optionally) push to hub __a = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) if __name__ == "__main__": main()
45
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Any = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """markuplm""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=0 ,a_=2 ,a_=256 ,a_=1_024 ,a_=216 ,a_=1_001 ,a_=32 ,a_=50 ,a_="absolute" ,a_=True ,a_=None ,**a_ ,) -> Union[str, Any]: super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ,) _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : Any = use_cache _UpperCAmelCase : List[Any] = classifier_dropout # additional properties _UpperCAmelCase : Dict = max_depth _UpperCAmelCase : Union[str, Any] = max_xpath_tag_unit_embeddings _UpperCAmelCase : Optional[int] = max_xpath_subs_unit_embeddings _UpperCAmelCase : List[Any] = tag_pad_id _UpperCAmelCase : Tuple = subs_pad_id _UpperCAmelCase : List[str] = xpath_unit_hidden_size
215
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = MODEL_FOR_MASKED_LM_MAPPING __SCREAMING_SNAKE_CASE = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCamelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCamelCase ( self ): A__ = pipeline(task='''fill-mask''',model='''sshleifer/tiny-distilroberta-base''',top_k=2,framework='''tf''' ) A__ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_8015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_5506, '''token_str''': ''' accuser'''}, ],) A__ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_8015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_5506, '''token_str''': ''' accuser''', }, ],) A__ = unmasker('''My name is <mask>''',targets=[''' Patrick''', ''' Clara''', ''' Teven'''],top_k=3 ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2941, '''token_str''': ''' Te'''}, ],) @require_torch def UpperCamelCase ( self ): A__ = pipeline(task='''fill-mask''',model='''sshleifer/tiny-distilroberta-base''',top_k=2,framework='''pt''' ) A__ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_5676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ],) A__ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_5676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ],) A__ = unmasker('''My name is <mask>''',targets=[''' Patrick''', ''' Clara''', ''' Teven'''],top_k=3 ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, ],) A__ = unmasker('''My name is <mask> <mask>''',top_k=2 ) self.assertEqual( nested_simplify(__a,decimals=6 ),[ [ { '''score''': 2.2E-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ],) @require_torch_gpu def UpperCamelCase ( self ): A__ = pipeline('''fill-mask''',model='''hf-internal-testing/tiny-random-distilbert''',device=0,framework='''pt''' ) # convert model to fp16 pipe.model.half() A__ = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__a,__a ) @slow @require_torch def UpperCamelCase ( self ): A__ = pipeline(task='''fill-mask''',model='''distilroberta-base''',top_k=2,framework='''pt''' ) self.run_large_test(__a ) @slow @require_tf def UpperCamelCase ( self ): A__ = pipeline(task='''fill-mask''',model='''distilroberta-base''',top_k=2,framework='''tf''' ) self.run_large_test(__a ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__a ),[ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1573, '''token_str''': ''' Chris'''}, ],) A__ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__a ),[ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_2790, '''token_str''': ''' Lyon''', }, ],) A__ = unmasker('''My name is <mask>''',targets=[''' Patrick''', ''' Clara''', ''' Teven'''],top_k=3 ) self.assertEqual( nested_simplify(__a ),[ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2941, '''token_str''': ''' Te'''}, ],) @require_torch def UpperCamelCase ( self ): A__ = pipeline(task='''fill-mask''',model='''sshleifer/tiny-distilroberta-base''',framework='''pt''' ) A__ = None A__ = None self.run_pipeline_test(__a,[] ) @require_tf def UpperCamelCase ( self ): A__ = pipeline(task='''fill-mask''',model='''sshleifer/tiny-distilroberta-base''',framework='''tf''' ) A__ = None A__ = None self.run_pipeline_test(__a,[] ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) A__ = FillMaskPipeline(model=__a,tokenizer=__a ) A__ = [ f"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = fill_masker.tokenizer A__ = fill_masker.model A__ = fill_masker( f"This is a {tokenizer.mask_token}",) self.assertEqual( __a,[ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ],) A__ = fill_masker([f"This is a {tokenizer.mask_token}"] ) self.assertEqual( __a,[ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ],) A__ = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."] ) self.assertEqual( __a,[ [ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ], [ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ], ],) with self.assertRaises(__a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__a ): fill_masker('''This is''' ) self.run_test_top_k(__a,__a ) self.run_test_targets(__a,__a ) self.run_test_top_k_targets(__a,__a ) self.fill_mask_with_duplicate_targets_and_top_k(__a,__a ) self.fill_mask_with_multiple_masks(__a,__a ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = tokenizer.get_vocab() A__ = sorted(vocab.keys() )[:2] # Pipeline argument A__ = FillMaskPipeline(model=__a,tokenizer=__a,targets=__a ) A__ = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( __a,[ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ],) A__ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs},__a ) A__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs},set(__a ) ) # Call argument A__ = FillMaskPipeline(model=__a,tokenizer=__a ) A__ = fill_masker(f"This is a {tokenizer.mask_token}",targets=__a ) self.assertEqual( __a,[ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ],) A__ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs},__a ) A__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs},set(__a ) ) # Score equivalence A__ = fill_masker(f"This is a {tokenizer.mask_token}",targets=__a ) A__ = [top_mask['''token_str'''] for top_mask in outputs] A__ = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__a ) == set(__a ): A__ = fill_masker(f"This is a {tokenizer.mask_token}",targets=__a ) A__ = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__a ),nested_simplify(__a ) ) # Raises with invalid with self.assertRaises(__a ): A__ = fill_masker(f"This is a {tokenizer.mask_token}",targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__a ): A__ = fill_masker(f"This is a {tokenizer.mask_token}",targets=[''''''] ) with self.assertRaises(__a ): A__ = fill_masker(f"This is a {tokenizer.mask_token}",targets='''''' ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = FillMaskPipeline(model=__a,tokenizer=__a,top_k=2 ) A__ = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( __a,[ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ],) A__ = FillMaskPipeline(model=__a,tokenizer=__a ) A__ = fill_masker(f"This is a {tokenizer.mask_token}",top_k=2 ) self.assertEqual( __a,[ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ],) self.assertEqual(nested_simplify(__a ),nested_simplify(__a ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = tokenizer.get_vocab() A__ = FillMaskPipeline(model=__a,tokenizer=__a ) # top_k=2, ntargets=3 A__ = sorted(vocab.keys() )[:3] A__ = fill_masker(f"This is a {tokenizer.mask_token}",top_k=2,targets=__a ) # If we use the most probably targets, and filter differently, we should still # have the same results A__ = [el['''token_str'''] for el in sorted(__a,key=lambda __lowerCamelCase : x["score"],reverse=__a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__a ).issubset(__a ): A__ = fill_masker(f"This is a {tokenizer.mask_token}",top_k=3,targets=__a ) # They should yield exactly the same result self.assertEqual(nested_simplify(__a ),nested_simplify(__a ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = FillMaskPipeline(model=__a,tokenizer=__a ) A__ = tokenizer.get_vocab() # String duplicates + id duplicates A__ = sorted(vocab.keys() )[:3] A__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A__ = fill_masker(f"My name is {tokenizer.mask_token}",targets=__a,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__a ),3 ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = FillMaskPipeline(model=__a,tokenizer=__a ) A__ = fill_masker( f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}",top_k=2 ) self.assertEqual( __a,[ [ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ], [ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ], [ {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, {'''sequence''': ANY(__a ), '''score''': ANY(__a ), '''token''': ANY(__a ), '''token_str''': ANY(__a )}, ], ],)
361
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
39
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] = False , ): """simple docstring""" super().__init__() UpperCamelCase = nn.Embedding(A__ , A__ ) UpperCamelCase = nn.Embedding(A__ , A__ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=A__ ) UpperCamelCase = TaConfig( vocab_size=A__ , d_model=A__ , num_heads=A__ , d_kv=A__ , d_ff=A__ , dropout_rate=A__ , feed_forward_proj=A__ , is_decoder=A__ , is_encoder_decoder=A__ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(A__ ): UpperCamelCase = TaBlock(A__ ) self.encoders.append(A__ ) UpperCamelCase = TaLayerNorm(A__ ) UpperCamelCase = nn.Dropout(p=A__ ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.token_embedder(A__ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(A__ , device=encoder_input_tokens.device ) x += self.position_encoding(A__ ) UpperCamelCase = self.dropout_pre(A__ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(A__ , A__ ) for lyr in self.encoders: UpperCamelCase = lyr(A__ , A__ )[0] UpperCamelCase = self.layer_norm(A__ ) return self.dropout_post(A__ ), encoder_inputs_mask
343
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[str] = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
0
import requests __snake_case = '''''' # <-- Put your OpenWeatherMap appid here! __snake_case = '''https://api.openweathermap.org/data/2.5/''' def lowerCAmelCase_ ( __lowerCAmelCase = "Chicago" , __lowerCAmelCase = APPID )-> dict: '''simple docstring''' return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def lowerCAmelCase_ ( __lowerCAmelCase = "Kolkata, India" , __lowerCAmelCase = APPID )-> dict: '''simple docstring''' return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def lowerCAmelCase_ ( __lowerCAmelCase = 55.68 , __lowerCAmelCase = 12.57 , __lowerCAmelCase = APPID )-> dict: '''simple docstring''' return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __snake_case = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
78
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __lowerCamelCase : Union[str, Any] = """CLIPImageProcessor""" __lowerCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case__ , ) UpperCAmelCase : int =kwargs.pop('''feature_extractor''' ) UpperCAmelCase : Tuple =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase : List[Any] =self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: UpperCAmelCase : Tuple =self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: UpperCAmelCase : List[Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.tokenizer.model_input_names UpperCAmelCase : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case__ , ) return self.image_processor
78
1
"""simple docstring""" import random class lowerCamelCase__ : @staticmethod def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = [ord(SCREAMING_SNAKE_CASE ) for i in text] snake_case : Optional[Any] = [] snake_case : str = [] for i in plain: snake_case : int = random.randint(1 , 300 ) snake_case : int = (i + k) * k cipher.append(SCREAMING_SNAKE_CASE ) key.append(SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): snake_case : Optional[int] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(SCREAMING_SNAKE_CASE ) ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A , __A = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
148
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : str = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_attention_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Any = vocab_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Any = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = num_choices def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_attention_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : str = config_and_inputs snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : List[Any] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=SCREAMING_SNAKE_CASE ) snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )[0] snake_case : List[Any] = 50_000 snake_case : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
1
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase ( _snake_case : str , _snake_case : complex , _snake_case : str = "x" , _snake_case : float = 10**-10 , _snake_case : int = 1 , ) ->complex: """simple docstring""" __snake_case : Optional[Any] = symbols(_snake_case ) __snake_case : Tuple = lambdify(_snake_case , _snake_case ) __snake_case : Optional[Any] = lambdify(_snake_case , diff(_snake_case , _snake_case ) ) __snake_case : List[str] = starting_point while True: if diff_function(_snake_case ) != 0: __snake_case : Union[str, Any] = prev_guess - multiplicity * func(_snake_case ) / diff_function( _snake_case ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __snake_case : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
367
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( _lowercase ): __magic_name__: Optional[Any] = "audio-spectrogram-transformer" def __init__( self : Dict , _A : Dict=768 , _A : Optional[Any]=12 , _A : Union[str, Any]=12 , _A : Optional[Any]=3072 , _A : int="gelu" , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : str=0.0_2 , _A : Union[str, Any]=1E-12 , _A : List[str]=16 , _A : Dict=True , _A : List[str]=10 , _A : Tuple=10 , _A : int=1024 , _A : Any=128 , **_A : Tuple , ) -> Optional[int]: """simple docstring""" super().__init__(**__a ) snake_case_ : Tuple = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Union[str, Any] = patch_size snake_case_ : Dict = qkv_bias snake_case_ : str = frequency_stride snake_case_ : Dict = time_stride snake_case_ : str = max_length snake_case_ : Any = num_mel_bins
327
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = KandinskyVaaControlnetPipeline UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ = False @property def snake_case_ (self ) -> Tuple: return 32 @property def snake_case_ (self ) -> Optional[int]: return 32 @property def snake_case_ (self ) -> int: return self.time_input_dim @property def snake_case_ (self ) -> Dict: return self.time_input_dim * 4 @property def snake_case_ (self ) -> List[str]: return 1_00 @property def snake_case_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase = UNetaDConditionModel(**__a ) return model @property def snake_case_ (self ) -> Dict: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type="epsilon" , thresholding=__a , ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ (self , __a , __a=0 ) -> Any: UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) # create hint UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case_ (self ) -> int: UpperCamelCase = "cpu" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**__a ) UpperCamelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = pipe(**self.get_dummy_inputs(__a ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Dict: UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCamelCase = torch.from_numpy(np.array(__a ) ).float() / 255.0 UpperCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__a ) UpperCamelCase = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) UpperCamelCase = "A robot, 4k photo" UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase = pipeline( image_embeds=__a , negative_image_embeds=__a , hint=__a , generator=__a , num_inference_steps=1_00 , output_type="np" , ) UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__a , __a )
153
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def UpperCamelCase ( __lowercase : Dict ,__lowercase : Any ): '''simple docstring''' A_ : Union[str, Any] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) A_ : Optional[int] = DatasetInfosDict.from_directory(__lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : DatasetInfo ): '''simple docstring''' A_ : Union[str, Any] = str(__lowercase ) dataset_info.write_to_directory(__lowercase ) A_ : str = DatasetInfo.from_directory(__lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowercase ,'dataset_info.json' ) ) def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[Any] = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) A_ : Tuple = dataset_info._to_yaml_dict() assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) A_ : Dict = yaml.safe_dump(__lowercase ) A_ : Tuple = yaml.safe_load(__lowercase ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase ( ): '''simple docstring''' A_ : Any = DatasetInfo() A_ : Optional[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : DatasetInfosDict ): '''simple docstring''' A_ : Union[str, Any] = str(__lowercase ) dataset_infos_dict.write_to_directory(__lowercase ) A_ : Optional[int] = DatasetInfosDict.from_directory(__lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A_ : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A_ : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowercase ,'README.md' ) )
192
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : Optional[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : Optional[int] = latents.to(lowercase ) A_ : List[Any] = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) A_ : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): A_ : Tuple = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): A_ : Dict = self.image_processor(lowercase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) A_ : List[str] = image.to(dtype=self.image_encoder.dtype , device=lowercase ) A_ : Tuple = self.image_encoder(lowercase )['last_hidden_state'] A_ : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A_ : List[str] = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: A_ : str = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 2_5 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 6_4 , lowercase = "pil" , lowercase = True , ): """simple docstring""" if isinstance(lowercase , PIL.Image.Image ): A_ : int = 1 elif isinstance(lowercase , torch.Tensor ): A_ : int = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A_ : List[str] = len(lowercase ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}''' ) A_ : Any = self._execution_device A_ : List[Any] = batch_size * num_images_per_prompt A_ : int = guidance_scale > 1.0 A_ : Optional[int] = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Dict = self.scheduler.timesteps A_ : int = self.prior.config.num_embeddings A_ : int = self.prior.config.embedding_dim A_ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A_ : Union[str, Any] = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : List[Any] = self.scheduler.scale_model_input(lowercase , lowercase ) A_ : Any = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance A_ , A_ : int = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A_ , A_ : List[Any] = noise_pred.chunk(2 ) A_ : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A_ : Optional[int] = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) A_ : str = [] for i, latent in enumerate(lowercase ): print() A_ : Optional[Any] = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(lowercase ) A_ : Dict = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) A_ : Dict = images.cpu().numpy() if output_type == "pil": A_ : str = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
192
1
def A_ ( A__ ) -> bool: if not isinstance(A__ , A__ ): a__ : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(A__ ) if number < 0: return False a__ : int = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
99
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowerCAmelCase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: lowerCAmelCase__ = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) lowerCAmelCase__ = ["key_proj", "value_proj", "query_proj"] lowerCAmelCase__ = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: lowerCAmelCase__ = key.split("." ) if attributes[0] == "lm_head": lowerCAmelCase__ = prophet lowerCAmelCase__ = prophet_old else: lowerCAmelCase__ = prophet.prophetnet lowerCAmelCase__ = prophet_old.model lowerCAmelCase__ = False for attribute in attributes: if attribute in mapping: lowerCAmelCase__ = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: lowerCAmelCase__ = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCAmelCase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCAmelCase__ = old_model.weight logger.info(F'{attribute} is initialized.' ) lowerCAmelCase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCAmelCase__ = old_model.bias logger.info(F'{attribute} is initialized' ) lowerCAmelCase__ = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , "in_proj_weight" ): lowerCAmelCase__ = old_model.in_proj_weight.shape[0] // 3 lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCAmelCase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCAmelCase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCAmelCase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCAmelCase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCAmelCase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCAmelCase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCAmelCase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowerCAmelCase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowerCAmelCase__ = True break if attribute.isdigit(): lowerCAmelCase__ = model[int(lowerCAmelCase_ )] lowerCAmelCase__ = old_model[int(lowerCAmelCase_ )] else: lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": lowerCAmelCase__ = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
359
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase = '__DUMMY_TRANSFORMERS_USER__' UpperCamelCase = 'Dummy User' UpperCamelCase = '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' UpperCamelCase = 'https://hub-ci.huggingface.co' UpperCamelCase = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' UpperCamelCase = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' UpperCamelCase = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( lowerCAmelCase_ : Dict ): """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : int ): """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCAmelCase_ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : str ): """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ): """simple docstring""" HfFolder.save_token(lowerCAmelCase_ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def _A ( ): """simple docstring""" return HfApi(endpoint=lowerCAmelCase_ ) @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi ): """simple docstring""" lowerCAmelCase__ = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" def _cleanup_repo(lowerCAmelCase_ : Optional[Any] ): hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def _A ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" @contextmanager def _temporary_repo(lowerCAmelCase_ : str ): try: yield repo_id finally: cleanup_repo(lowerCAmelCase_ ) return _temporary_repo @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = F'repo_txt_data-{int(time.time() * 1_0E3 )}' lowerCAmelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ = F'repo_zipped_txt_data-{int(time.time() * 1_0E3 )}' lowerCAmelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = F'repo_zipped_img_data-{int(time.time() * 1_0E3 )}' lowerCAmelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
221
0