code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = 0 UpperCAmelCase = len(lowercase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase = i + 1 else: UpperCAmelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
78
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""image_processor""", """tokenizer"""] __UpperCamelCase = """LayoutLMv2ImageProcessor""" __UpperCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self :Any , lowercase_ :int=None , lowercase_ :Union[str, Any]=None , **lowercase_ :Optional[Any] ) -> Dict: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) UpperCAmelCase = kwargs.pop('feature_extractor' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :str , lowercase_ :Optional[int] , lowercase_ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ :Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ :Optional[Union[List[int], List[List[int]]]] = None , lowercase_ :bool = True , lowercase_ :Union[bool, str, PaddingStrategy] = False , lowercase_ :Union[bool, str, TruncationStrategy] = None , lowercase_ :Optional[int] = None , lowercase_ :int = 0 , lowercase_ :Optional[int] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[bool] = None , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = True , lowercase_ :Optional[Union[str, TensorType]] = None , **lowercase_ :Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['words'] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values UpperCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowercase_ , encoded_inputs['overflow_to_sample_mapping'] ) UpperCAmelCase = images return encoded_inputs def UpperCAmelCase__ ( self :Dict , lowercase_ :List[Any] , lowercase_ :Any ) -> Optional[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowercase_ )} and {len(lowercase_ )}""" ) return images_with_overflow def UpperCAmelCase__ ( self :Any , *lowercase_ :int , **lowercase_ :Tuple ) -> Tuple: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , *lowercase_ :List[Any] , **lowercase_ :Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :int ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self :int ) -> Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
78
1
import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __snake_case : int =get_logger(__name__) class lowerCamelCase__ : '''simple docstring''' snake_case_ ="""dummy_data""" snake_case_ ="""datasets""" snake_case_ =False def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ,__lowerCamelCase = True ,__lowerCamelCase = None ,) -> List[Any]: """simple docstring""" lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Union[str, Any] = dataset_name lowerCAmelCase__ : List[Any] = cache_dir lowerCAmelCase__ : str = use_local_dummy_data lowerCAmelCase__ : List[Any] = config # download_callbacks take a single url as input lowerCAmelCase__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase__ : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase__ : Optional[Any] = str(__lowerCamelCase ) # to be downloaded lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Any = None @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: lowerCAmelCase__ : List[str] = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' ,self.version_name ) @property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return os.path.join(self.dummy_data_folder ,'''dummy_data.zip''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase__ : int = cached_path( __lowerCamelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCamelCase ,force_extract=__lowerCamelCase ) return os.path.join(__lowerCamelCase ,self.dummy_file_name ) @property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" if self._bucket_url is None: lowerCAmelCase__ : Tuple = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,'''/''' ) ) return self._bucket_url @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,'''/''' ).split('''/''' )[:-1] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,*__lowerCamelCase ) -> Any: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase__ : int = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase__ : List[str] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCamelCase ,__lowerCamelCase ): return self.create_dummy_data_dict(__lowerCamelCase ,__lowerCamelCase ) elif isinstance(__lowerCamelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCamelCase ,__lowerCamelCase ) else: return self.create_dummy_data_single(__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,*__lowerCamelCase ) -> Optional[int]: """simple docstring""" return self.download_and_extract(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Dict: """simple docstring""" return self.download_and_extract(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" return path def lowerCAmelCase__ (self ) -> int: """simple docstring""" return {} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCamelCase ,__lowerCamelCase ): for single_url in single_urls: download_callback(__lowerCamelCase ) else: lowerCAmelCase__ : Dict = single_urls download_callback(__lowerCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Optional[Any] = [os.path.join(__lowerCamelCase ,urllib.parse.quote_plus(Path(__lowerCamelCase ).name ) ) for x in single_urls] else: lowerCAmelCase__ : Tuple = single_urls lowerCAmelCase__ : Dict = os.path.join(__lowerCamelCase ,urllib.parse.quote_plus(Path(__lowerCamelCase ).name ) ) lowerCAmelCase__ : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCamelCase ,__lowerCamelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase__ : Dict = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase__ : str = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' ,__lowerCamelCase ) ) for url in data_url ) lowerCAmelCase__ : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase__ : Optional[Any] = [data_url[0]] * len(__lowerCamelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase__ : Dict = os.path.join(__lowerCamelCase ,urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(__lowerCamelCase ) return dummy_data_list def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(__lowerCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase__ : Dict = os.path.join(__lowerCamelCase ,urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(__lowerCamelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> int: """simple docstring""" pass def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" def _iter_archive_members(__lowerCamelCase ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase__ : List[Any] = Path(self.dummy_file ).parent lowerCAmelCase__ : Tuple = path.relative_to(__lowerCamelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase__ : Union[str, Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCamelCase ) lowerCAmelCase__ : Any = Path(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = _iter_archive_members(__lowerCamelCase ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(__lowerCamelCase ).as_posix(), file_path.open('''rb''' ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" if not isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCamelCase ): if os.path.basename(__lowerCamelCase ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCamelCase ): if os.path.basename(__lowerCamelCase ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(__lowerCamelCase ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(__lowerCamelCase ,__lowerCamelCase )
362
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Any=True ,lowerCamelCase_ : Tuple="pt"): '''simple docstring''' lowerCAmelCase__ : Tuple = {'''add_prefix_space''': True} if isinstance(lowerCamelCase_ ,lowerCamelCase_) and not line.startswith(''' ''') else {} lowerCAmelCase__ : Union[str, Any] = padding_side return tokenizer( [line] ,max_length=lowerCamelCase_ ,padding='''max_length''' if pad_to_max_length else None ,truncation=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ,) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Any=None ,): '''simple docstring''' lowerCAmelCase__ : List[Any] = input_ids.ne(lowerCamelCase_).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="train" ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase="" ,) -> List[str]: """simple docstring""" super().__init__() lowerCAmelCase__ : str = Path(__lowerCamelCase ).joinpath(type_path + '''.source''' ) lowerCAmelCase__ : int = Path(__lowerCamelCase ).joinpath(type_path + '''.target''' ) lowerCAmelCase__ : Tuple = self.get_char_lens(self.src_file ) lowerCAmelCase__ : Dict = max_source_length lowerCAmelCase__ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowerCAmelCase__ : Tuple = tokenizer lowerCAmelCase__ : List[Any] = prefix if n_obs is not None: lowerCAmelCase__ : Optional[Any] = self.src_lens[:n_obs] lowerCAmelCase__ : Any = src_lang lowerCAmelCase__ : Optional[Any] = tgt_lang def __len__(self ) -> str: """simple docstring""" return len(self.src_lens ) def __getitem__(self ,__lowerCamelCase ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCAmelCase__ : List[Any] = index + 1 # linecache starts at 1 lowerCAmelCase__ : Any = self.prefix + linecache.getline(str(self.src_file ) ,__lowerCamelCase ).rstrip('''\n''' ) lowerCAmelCase__ : Any = linecache.getline(str(self.tgt_file ) ,__lowerCamelCase ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,__lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase__ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer ) lowerCAmelCase__ : Dict = self.tokenizer.generator if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer lowerCAmelCase__ : Union[str, Any] = encode_line(__lowerCamelCase ,__lowerCamelCase ,self.max_source_length ,'''right''' ) lowerCAmelCase__ : Any = encode_line(__lowerCamelCase ,__lowerCamelCase ,self.max_target_length ,'''right''' ) lowerCAmelCase__ : List[str] = source_inputs['''input_ids'''].squeeze() lowerCAmelCase__ : str = target_inputs['''input_ids'''].squeeze() lowerCAmelCase__ : Tuple = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase__ (__lowerCamelCase ) -> List[str]: """simple docstring""" return [len(__lowerCamelCase ) for x in Path(__lowerCamelCase ).open().readlines()] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = torch.stack([x['''input_ids'''] for x in batch] ) lowerCAmelCase__ : Union[str, Any] = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCAmelCase__ : List[Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCAmelCase__ : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ : Dict = trim_batch(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = trim_batch(__lowerCamelCase ,__lowerCamelCase ,attention_mask=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __snake_case : Any =getLogger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : List[List]): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_)) def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : int = get_git_info() save_json(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,'''git_log.json''')) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Tuple=4 ,**lowerCamelCase_ : List[str]): '''simple docstring''' with open(lowerCamelCase_ ,'''w''') as f: json.dump(lowerCamelCase_ ,lowerCamelCase_ ,indent=lowerCamelCase_ ,**lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple): '''simple docstring''' with open(lowerCamelCase_) as f: return json.load(lowerCamelCase_) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : str = git.Repo(search_parent_directories=lowerCamelCase_) lowerCAmelCase__ : List[Any] = { '''repo_id''': str(lowerCamelCase_), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def lowerCAmelCase__ ( lowerCamelCase_ : Callable ,lowerCamelCase_ : Iterable): '''simple docstring''' return list(map(lowerCamelCase_ ,lowerCamelCase_)) def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Optional[Any]): '''simple docstring''' with open(lowerCamelCase_ ,'''wb''') as f: return pickle.dump(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' def remove_articles(lowerCamelCase_ : List[str]): return re.sub(r'''\b(a|an|the)\b''' ,''' ''' ,lowerCamelCase_) def white_space_fix(lowerCamelCase_ : Optional[int]): return " ".join(text.split()) def remove_punc(lowerCamelCase_ : List[str]): lowerCAmelCase__ : List[Any] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase_ : Optional[int]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_)))) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = normalize_answer(lowerCamelCase_).split() lowerCAmelCase__ : str = normalize_answer(lowerCamelCase_).split() lowerCAmelCase__ : str = Counter(lowerCamelCase_) & Counter(lowerCamelCase_) lowerCAmelCase__ : Dict = sum(common.values()) if num_same == 0: return 0 lowerCAmelCase__ : Optional[int] = 1.0 * num_same / len(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Any): '''simple docstring''' return normalize_answer(lowerCamelCase_) == normalize_answer(lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : List[str]): '''simple docstring''' assert len(lowerCamelCase_) == len(lowerCamelCase_) lowerCAmelCase__ : List[str] = 0 for hypo, pred in zip(lowerCamelCase_ ,lowerCamelCase_): em += exact_match_score(lowerCamelCase_ ,lowerCamelCase_) if len(lowerCamelCase_) > 0: em /= len(lowerCamelCase_) return {"em": em} def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' return model_prefix.startswith('''rag''') def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase__ : Optional[int] = '''dropout_rate''' for p in extra_params: if getattr(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_): if not hasattr(lowerCamelCase_ ,lowerCamelCase_) and not hasattr(lowerCamelCase_ ,equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowerCamelCase_)) delattr(lowerCamelCase_ ,lowerCamelCase_) continue lowerCAmelCase__ : Dict = p if hasattr(lowerCamelCase_ ,lowerCamelCase_) else equivalent_param[p] setattr(lowerCamelCase_ ,lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_)) delattr(lowerCamelCase_ ,lowerCamelCase_) return hparams, config
94
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A__ : """simple docstring""" def __init__( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = {} def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=1 ) -> Optional[int]: """simple docstring""" if self.graph.get(a__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(a__ ): _UpperCAmelCase : int = [] def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return list(self.graph ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> int: """simple docstring""" if self.graph.get(a__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any]=-2 , lowerCAmelCase__ : Optional[int]=-1 ) -> int: """simple docstring""" if s == d: return [] _UpperCAmelCase : Any = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a__ ) != 0: _UpperCAmelCase : Tuple = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a__ ) == 0: return visited def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict=-1 ) -> Dict: """simple docstring""" if c == -1: _UpperCAmelCase : Union[str, Any] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(a__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(a__ , a__ , 1 ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any]=-2 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = deque() _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : List[Any] = list(self.graph )[0] d.append(a__ ) visited.append(a__ ) while d: _UpperCAmelCase : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" return len(self.graph[u] ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict=-2 ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Dict = s _UpperCAmelCase : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : int = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a__ ) != 0: _UpperCAmelCase : List[str] = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a__ ) == 0: return sorted_nodes def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : List[Any] = -2 _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Any = len(a__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(a__ ) != 0: _UpperCAmelCase : Any = stack[len(a__ ) - 1] else: _UpperCAmelCase : List[str] = False indirect_parents.append(a__ ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : List[Any] = ss # check if se have reached the starting point if len(a__ ) == 0: return list(a__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Optional[Any] = -2 _UpperCAmelCase : Any = [] _UpperCAmelCase : Union[str, Any] = s _UpperCAmelCase : List[Any] = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : int = len(a__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Union[str, Any] = True if len(a__ ) != 0: _UpperCAmelCase : int = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(a__ ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(a__ ) == 0: return False def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Tuple=-2 , lowerCAmelCase__ : List[Any]=-1 ) -> int: """simple docstring""" _UpperCAmelCase : Dict = time() self.dfs(a__ , a__ ) _UpperCAmelCase : List[str] = time() return end - begin def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any]=-2 ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = time() self.bfs(a__ ) _UpperCAmelCase : int = time() return end - begin class A__ : """simple docstring""" def __init__( self : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = {} def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=1 ) -> Optional[Any]: """simple docstring""" if self.graph.get(a__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : Any = [[w, v]] # add the other way if self.graph.get(a__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : Union[str, Any] = [[w, u]] def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if self.graph.get(a__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a__ ) # the other way round if self.graph.get(a__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int=-2 , lowerCAmelCase__ : Union[str, Any]=-1 ) -> List[Any]: """simple docstring""" if s == d: return [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a__ ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(a__ ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(a__ ) == 0: return visited def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Tuple=-1 ) -> Dict: """simple docstring""" if c == -1: _UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(a__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(a__ , a__ , 1 ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any]=-2 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = deque() _UpperCAmelCase : List[str] = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] d.append(a__ ) visited.append(a__ ) while d: _UpperCAmelCase : List[str] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Dict ) -> str: """simple docstring""" return len(self.graph[u] ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = s _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Dict = len(a__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Any = True if len(a__ ) != 0: _UpperCAmelCase : int = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(a__ ) _UpperCAmelCase : str = s _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(a__ ) == 0: return list(a__ ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = s _UpperCAmelCase : int = False _UpperCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(a__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(a__ ) != 0: _UpperCAmelCase : Tuple = stack[len(a__ ) - 1] else: _UpperCAmelCase : Dict = False indirect_parents.append(a__ ) _UpperCAmelCase : Any = s _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(a__ ) == 0: return False def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return list(self.graph ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str]=-2 , lowerCAmelCase__ : List[str]=-1 ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = time() self.dfs(a__ , a__ ) _UpperCAmelCase : Dict = time() return end - begin def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int=-2 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = time() self.bfs(a__ ) _UpperCAmelCase : Optional[Any] = time() return end - begin
145
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=lowerCAmelCase__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=lowerCAmelCase__ , default=5 ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=lowerCAmelCase__ , default=1 ) parser.add_argument("""--freeze""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--learning_rate""" , type=lowerCAmelCase__ , default=5e-4 ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=lowerCAmelCase__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=lowerCAmelCase__ , default=1_0 ) parser.add_argument("""--weight_decay""" , type=lowerCAmelCase__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , default="""./results""" ) return parser.parse_args() __lowerCAmelCase : Dict =load("""accuracy""") def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase = eval_pred lowercase = np.argmax(lowerCAmelCase__ , axis=1 ) return metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__() lowercase = trainer def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" if control.should_evaluate: lowercase = deepcopy(__lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def UpperCAmelCase__ ( ) -> int: '''simple docstring''' lowercase = get_args() set_seed(args.seed ) lowercase = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) lowercase = dataset.train_test_split(test_size=0.2 ) lowercase = train_test["""test"""].train_test_split(test_size=0.5 ) lowercase = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) lowercase = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase = tokenizer.eos_token lowercase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase = False lowercase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(lowerCAmelCase__ :str ): lowercase = tokenizer(example["""src"""] , truncation=lowerCAmelCase__ , max_length=1_0_2_4 ) lowercase = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase = train_test_validation.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=train_test_validation["""train"""].column_names , ) lowercase = DataCollatorWithPadding(tokenizer=lowerCAmelCase__ ) lowercase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(lowerCAmelCase__ ) ) trainer.train() if __name__ == "__main__": main()
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
import argparse import os import re A_ : int = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict A_ : Any = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings A_ : int = re.compile(r'\s*\(\s*"(\S[^"]+)"') def UpperCamelCase (lowercase_: List[str] , lowercase_: bool = False ) -> Optional[Any]: with open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: A__ : Optional[Any] = f.read() A__ : Optional[Any] = content.split("""\n""" ) A__ : Optional[Any] = [] A__ : Union[str, Any] = 0 while line_idx < len(lowercase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: A__ : Union[str, Any] = len(re.search(r"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 A__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": A__ : Dict = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers A__ : List[str] = sorted(lowercase_ , key=lambda lowercase_ : _re_identifier.search(lowercase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase_ ) ) elif "\n".join(lowercase_ ) != content: return True def UpperCamelCase (lowercase_: bool = False ) -> List[Any]: A__ : List[str] = [os.path.join(lowercase_ , lowercase_ ) for f in os.listdir(lowercase_ ) if f.endswith(""".py""" )] A__ : List[Any] = [sort_auto_mapping(lowercase_ , overwrite=lowercase_ ) for fname in fnames] if not overwrite and any(lowercase_ ): A__ : int = [f for f, d in zip(lowercase_ , lowercase_ ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {', '.join(lowercase_ )}. Run `make style` to fix""" """ this.""" ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A_ : Union[str, Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
192
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A_ : List[str] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": A_ : Optional[int] = 'hopper-medium-v2' A_ : List[Any] = gym.make(env_name) A_ : str = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) A_ : List[Any] = env.reset() A_ : Optional[int] = 0 A_ : str = 0 A_ : Optional[Any] = 1000 A_ : Union[str, Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A_ : Tuple = pipeline(obs, planning_horizon=32) # execute action in environment A_ , A_ , A_ , A_ : Dict = env.step(denorm_actions) A_ : List[str] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) A_ : int = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
192
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[int]: """simple docstring""" A__ = int(lowercase_ ) # Initialize Result A__ = [] # Traverse through all denomination for denomination in reversed(lowercase_ ): # Find denominations while int(lowercase_ ) >= int(lowercase_ ): total_value -= int(lowercase_ ) answer.append(lowercase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _lowerCamelCase : Any = [] _lowerCamelCase : int = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _lowerCamelCase : Union[str, Any] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) _lowerCamelCase : Dict = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _lowerCamelCase : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] _lowerCamelCase : Optional[Any] = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') _lowerCamelCase : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
231
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : float) ->float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int | float, int | float]: """simple docstring""" A__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.abs(np.fft.fft(lowercase_ ) ) A__ = 20 * np.logaa(lowercase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds A__ = get_bounds(lowercase_ , lowercase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowercase_ ) plt.show() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.angle(np.fft.fft(lowercase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowercase_ , -2 * pi ) ) plt.show()
231
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Dict ) -> Any: if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class SCREAMING_SNAKE_CASE__ ( __A ): '''simple docstring''' _UpperCAmelCase : List[Any] = ['pixel_values'] def __init__( self : Optional[int] , lowercase : Any = True , lowercase : Dict = None , lowercase : int = PILImageResampling.BILINEAR , lowercase : str = True , lowercase : Optional[int] = None , lowercase : Tuple = True , lowercase : int = 1 / 255 , lowercase : Optional[int] = True , lowercase : Optional[int] = True , lowercase : List[Any] = None , lowercase : str = None , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _snake_case = size if size is not None else {'shortest_edge': 256} _snake_case = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(__UpperCAmelCase , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = offset _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : str , lowercase : List[Any] , lowercase : int , lowercase : Dict = PILImageResampling.BILINEAR , lowercase : Optional[Any] = None , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: _snake_case = get_resize_output_image_size(__UpperCAmelCase , size['shortest_edge'] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: _snake_case = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def A ( self : Optional[Any] , lowercase : Dict , lowercase : Optional[int] , lowercase : Tuple = None , **lowercase : Dict , ): '''simple docstring''' _snake_case = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def A ( self : Union[str, Any] , lowercase : str , lowercase : str , lowercase : Any = True , lowercase : List[Any] = None , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = image.astype(np.floataa ) if offset: _snake_case = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def A ( self : List[Any] , lowercase : str , lowercase : str , lowercase : str , lowercase : str = None , **lowercase : Optional[int] , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def A ( self : Dict , lowercase : int , lowercase : str = None , lowercase : Optional[Any] = None , lowercase : int = None , lowercase : str = None , lowercase : Dict = None , lowercase : Optional[int] = None , lowercase : Any = None , lowercase : str = None , lowercase : Optional[Any] = None , lowercase : List[str] = None , lowercase : Dict = None , lowercase : List[str] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. _snake_case = to_numpy_array(__UpperCAmelCase ) if do_resize: _snake_case = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: _snake_case = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: _snake_case = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: _snake_case = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) _snake_case = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def A ( self : List[Any] , lowercase : Tuple , lowercase : str = None , lowercase : List[Any] = None , lowercase : List[str] = None , lowercase : Optional[int] = None , lowercase : Optional[Any] = None , lowercase : Union[str, Any] = None , lowercase : Union[str, Any] = None , lowercase : Tuple = None , lowercase : str = None , lowercase : List[Any] = None , lowercase : Optional[Any] = None , lowercase : Optional[int] = None , lowercase : Union[str, Any] = ChannelDimension.FIRST , **lowercase : Tuple , ): '''simple docstring''' _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = offset if offset is not None else self.offset _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(__UpperCAmelCase , param_name='crop_size' ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _snake_case = make_batched(__UpperCAmelCase ) _snake_case = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] _snake_case = {'pixel_values': videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
282
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase = "main" # Default branch name __lowerCamelCase = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase__( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case__ ( self ) -> Union[str, Any]: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_tf def snake_case__ ( self ) -> str: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_flax def snake_case__ ( self ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,[] )
221
0
def UpperCAmelCase__ (UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" if not head: return True # split the list to two parts snake_case , snake_case = head.next, head while fast and fast.next: snake_case = fast.next.next snake_case = slow.next snake_case = slow.next snake_case = None # Don't forget here! But forget still works! # reverse the second part snake_case = None while second: snake_case = second.next snake_case = node snake_case = second snake_case = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case = node.next snake_case = head.next return True def UpperCAmelCase__ (UpperCamelCase_ ) -> str: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case = snake_case = snake_case = head while fast and fast.next: snake_case , snake_case = fast.next.next, slow.next # 2. Push the second half into the stack snake_case = [slow.val] while slow.next: snake_case = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case = cur.next return True def UpperCAmelCase__ (UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True snake_case = {} snake_case = 0 while head: if head.val in d: d[head.val].append(UpperCamelCase_ ) else: snake_case = [pos] snake_case = head.next pos += 1 snake_case = pos - 1 snake_case = 0 for v in d.values(): if len(UpperCamelCase_ ) % 2 != 0: middle += 1 else: snake_case = 0 for i in range(0 ,len(UpperCamelCase_ ) ): if v[i] + v[len(UpperCamelCase_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
368
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
213
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): lowerCamelCase__: str =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: Tuple =getattr(__a , __a ).shape else: lowerCamelCase__: List[str] =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: List[Any] =value elif weight_type == "weight_g": lowerCamelCase__: Tuple =value elif weight_type == "weight_v": lowerCamelCase__: List[str] =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: str =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Any =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: Tuple =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: Optional[int] =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[Any] ="unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowerCamelCase__: str =True if "*" in mapped_key: lowerCamelCase__: List[str] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: Tuple =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: str ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Dict ="weight" else: lowerCamelCase__: Any =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =full_name.split("conv_layers." )[-1] lowerCamelCase__: Tuple =name.split("." ) lowerCamelCase__: Any =int(items[0] ) lowerCamelCase__: Optional[int] =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Any =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCamelCase__: Optional[int] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: str =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> Optional[Any]: """simple docstring""" if config_path is not None: lowerCamelCase__: Dict =UniSpeechSatConfig.from_pretrained(__a ) else: lowerCamelCase__: Union[str, Any] =UniSpeechSatConfig() lowerCamelCase__: Any ="" if is_finetuned: lowerCamelCase__: Optional[int] =UniSpeechSatForCTC(__a ) else: lowerCamelCase__: Optional[int] =UniSpeechSatForPreTraining(__a ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCamelCase__: Optional[Any] =model[0].eval() recursively_load_weights(__a , __a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]="attention" ): """simple docstring""" a :Optional[int] = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] a :int = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=False ): """simple docstring""" if split_mlp_wi: a :int = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] a :Dict = (wi_a, wi_a) else: a :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] a :Dict = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __lowerCamelCase ( UpperCAmelCase_ : dict , *, UpperCAmelCase_ : int , UpperCAmelCase_ : bool ): """simple docstring""" a :str = traverse_util.flatten_dict(variables['''target'''] ) a :Any = {'''/'''.join(UpperCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a :Any = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase_ ) a :Optional[Any] = collections.OrderedDict() # Shared embeddings. a :Union[str, Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase_ ): # Block i, layer 0 (Self Attention). a :Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''pre_attention_layer_norm''' ) a , a , a , a :Optional[int] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''attention''' ) a :List[Any] = layer_norm a :str = k.T a :Dict = o.T a :int = q.T a :Optional[Any] = v.T # Block i, layer 1 (MLP). a :Tuple = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''pre_mlp_layer_norm''' ) a , a :List[Any] = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , UpperCAmelCase_ ) a :Any = layer_norm if split_mlp_wi: a :Any = wi[0].T a :Tuple = wi[1].T else: a :List[str] = wi.T a :List[Any] = wo.T a :Union[str, Any] = old[ '''encoder/relpos_bias/rel_embedding''' ].T a :Optional[Any] = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase_ ): # Block i, layer 0 (Self Attention). a :List[str] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) a , a , a , a :List[Any] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''self_attention''' ) a :List[Any] = layer_norm a :Tuple = k.T a :int = o.T a :Any = q.T a :Optional[int] = v.T # Block i, layer 1 (Cross Attention). a :str = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) a , a , a , a :Any = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''encoder_decoder_attention''' ) a :str = layer_norm a :Optional[Any] = k.T a :Any = o.T a :Dict = q.T a :Optional[Any] = v.T # Block i, layer 2 (MLP). a :Optional[int] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_mlp_layer_norm''' ) a , a :List[Any] = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , UpperCAmelCase_ ) a :Optional[int] = layer_norm if split_mlp_wi: a :int = wi[0].T a :Tuple = wi[1].T else: a :str = wi.T a :Dict = wo.T a :Any = old['''decoder/decoder_norm/scale'''] a :Optional[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a :Union[str, Any] = old['''decoder/logits_dense/kernel'''].T return new def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : bool ): """simple docstring""" a :List[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a :Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a :Tuple = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) a :Optional[Any] = state_dict['''shared.weight'''] return state_dict def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) a :Optional[int] = convert_tax_to_pytorch(UpperCAmelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase_ ) a :Tuple = make_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): """simple docstring""" a :List[Any] = TaConfig.from_json_file(UpperCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a :Any = TaEncoderModel(UpperCAmelCase_ ) else: a :List[str] = TaForConditionalGeneration(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase_ ) print('''Done''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) snake_case : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
94
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_=False )-> List[str]: '''simple docstring''' a : str = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): a : str = "segformer.encoder." + key if key.startswith("backbone" ): a : List[str] = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 a : List[Any] = key[key.find("patch_embed" ) + len("patch_embed" )] a : Optional[int] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(__snake_case )-1}''' ) if "norm" in key: a : int = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 a : Tuple = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] a : List[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(__snake_case )-1}''' ) if "layer_norm1" in key: a : Any = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: a : Any = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 a : Any = key[key.find("block" ) + len("block" )] a : str = key.replace(F'''block{idx}''' , F'''block.{int(__snake_case )-1}''' ) if "attn.q" in key: a : str = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: a : Dict = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: a : str = key.replace("attn" , "attention.self" ) if "fc1" in key: a : Dict = key.replace("fc1" , "dense1" ) if "fc2" in key: a : Tuple = key.replace("fc2" , "dense2" ) if "linear_pred" in key: a : Any = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: a : str = key.replace("linear_fuse.conv" , "linear_fuse" ) a : List[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 a : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] a : List[str] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(__snake_case )-1}''' ) if key.startswith("head" ): a : str = key.replace("head" , "classifier" ) a : Optional[int] = value return new_state_dict def lowercase ( A_ , A_ )-> Any: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) a : List[str] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) a : Optional[Any] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict a : int = kv_weight[ : config.hidden_sizes[i], : ] a : Tuple = kv_bias[: config.hidden_sizes[i]] a : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] a : Tuple = kv_bias[ config.hidden_sizes[i] : ] def lowercase ( )-> Optional[Any]: '''simple docstring''' a : str = "http://images.cocodataset.org/val2017/000000039769.jpg" a : int = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return image @torch.no_grad() def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : Dict = SegformerConfig() a : List[Any] = False # set attributes based on model_name a : List[Any] = "huggingface/label-files" if "segformer" in model_name: a : List[Any] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: a : List[Any] = 150 a : Any = "ade20k-id2label.json" a : str = (1, 150, 128, 128) elif "city" in model_name: a : Optional[Any] = 19 a : Any = "cityscapes-id2label.json" a : Tuple = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: a : List[Any] = True a : List[Any] = model_name[4:6] a : str = 1_000 a : List[str] = "imagenet-1k-id2label.json" a : Optional[int] = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes a : Optional[int] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) a : Any = {int(__snake_case ): v for k, v in idalabel.items()} a : Union[str, Any] = idalabel a : Any = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": a : int = [64, 128, 320, 512] a : List[Any] = 256 elif size == "b2": a : Tuple = [64, 128, 320, 512] a : List[Any] = 768 a : Union[str, Any] = [3, 4, 6, 3] elif size == "b3": a : List[Any] = [64, 128, 320, 512] a : Dict = 768 a : Tuple = [3, 4, 18, 3] elif size == "b4": a : Tuple = [64, 128, 320, 512] a : Optional[Any] = 768 a : int = [3, 8, 27, 3] elif size == "b5": a : List[Any] = [64, 128, 320, 512] a : Any = 768 a : List[str] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) a : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) # prepare image a : Union[str, Any] = prepare_img() a : Optional[Any] = image_processor(images=__snake_case , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: a : List[Any] = torch.load(__snake_case , map_location=torch.device("cpu" ) ) else: a : Tuple = torch.load(__snake_case , map_location=torch.device("cpu" ) )["state_dict"] # rename keys a : Tuple = rename_keys(__snake_case , encoder_only=__snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__snake_case , __snake_case ) # create HuggingFace model and load state dict if encoder_only: a : Tuple = False a : str = SegformerForImageClassification(__snake_case ) else: a : str = SegformerForSemanticSegmentation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # forward pass a : Optional[Any] = model(__snake_case ) a : Optional[int] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": a : Optional[Any] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": a : Optional[Any] = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": a : Optional[Any] = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": a : List[str] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": a : Union[str, Any] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": a : int = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": a : List[str] = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": a : Tuple = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": a : int = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": a : Any = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": a : Optional[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": a : Optional[int] = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": a : Optional[int] = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": a : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": a : Any = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: a : Union[str, Any] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowercase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
364
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): a : str = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , A_ , ) is not None ): a : List[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a : Tuple = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] a : str = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed a : int = True if not attribute_used: a : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a : Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: a : List[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a : str = True elif attribute.endswith("_token_id" ): a : str = True # configuration class specific cases if not case_allowed: a : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) a : Any = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] a : str = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a : Dict = {} if len(config_class.attribute_map ) > 0: a : int = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a : int = inspect.getsourcefile(A_ ) a : Union[str, Any] = os.path.dirname(A_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a : Optional[Any] = [os.path.join(A_ , A_ ) for fn in os.listdir(A_ ) if fn.startswith("modeling_" )] # Get the source code strings a : Tuple = [] for path in modeling_paths: if os.path.isfile(A_ ): with open(A_ ) as fp: modeling_sources.append(fp.read() ) a : Optional[Any] = [] for config_param, default_value in zip(A_ , A_ ): # `attributes` here is all the variant names for `config_param` a : str = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A_ , A_ , A_ , A_ ): unused_attributes.append(attributes[0] ) return sorted(A_ ) def lowercase ( )-> str: '''simple docstring''' a : List[Any] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A_ : inspect.isclass(A_ ) and issubclass(A_ , A_ ) and inspect.getmodule(A_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: a : Union[str, Any] = check_config_attributes_being_used(A_ ) if len(A_ ) > 0: a : Dict = unused_attributes if len(A_ ) > 0: a : Union[str, Any] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(A_ ) if __name__ == "__main__": check_config_attributes()
226
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ : Any = {'UserAgent': UserAgent().random} def UpperCamelCase__ ( A__ ) -> dict: snake_case__ : Tuple = script.contents[0] snake_case__ : int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __snake_case : def __init__( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = F"""https://www.instagram.com/{username}/""" snake_case__ : Optional[Any] = self.get_json() def __a ( self ) -> dict: '''simple docstring''' snake_case__ : Any = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text snake_case__ : Dict = BeautifulSoup(SCREAMING_SNAKE_CASE__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ) -> str: '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __a ( self ) -> str: '''simple docstring''' return self.user_data["username"] @property def __a ( self ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def __a ( self ) -> str: '''simple docstring''' return self.user_data["biography"] @property def __a ( self ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def __a ( self ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def __a ( self ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __a ( self ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __a ( self ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __a ( self ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def __a ( self ) -> bool: '''simple docstring''' return self.user_data["is_private"] def UpperCamelCase__ ( A__ = "github" ) -> None: import os if os.environ.get('CI' ): return # test failing on GitHub Actions snake_case__ : int = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : Union[str, Any] = InstagramUser('''github''') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
143
import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: a_ , a_ , a_ , a_ : Union[str, Any] = hidden_states.shape a_ : List[str] = jax.image.resize( SCREAMING_SNAKE_CASE__ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) a_ : Any = self.conv(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: a_ : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) a_ : str = self.conv(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int snake_case__ : int = None snake_case__ : float = 0.0 snake_case__ : bool = None snake_case__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = self.in_channels if self.out_channels is None else self.out_channels a_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) a_ : Any = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a_ : Optional[int] = nn.Dense(SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) a_ : Union[str, Any] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) a_ : int = nn.Dropout(self.dropout_prob ) a_ : Optional[Any] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a_ : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut a_ : List[Any] = None if use_nin_shortcut: a_ : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=True ) -> int: a_ : List[Any] = hidden_states a_ : Any = self.norma(SCREAMING_SNAKE_CASE__ ) a_ : Any = nn.swish(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE__ ) a_ : int = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE__ ) ) a_ : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , 1 ) a_ : Optional[int] = hidden_states + temb a_ : List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.swish(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.dropout(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.conva(SCREAMING_SNAKE_CASE__ ) if self.conv_shortcut is not None: a_ : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE__ ) return hidden_states + residual
32
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """spiece.model"""} lowerCamelCase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } lowerCamelCase_ = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } lowerCamelCase_ = """▁""" class a_ ( a_ ): '''simple docstring''' __a: Optional[Any] = VOCAB_FILES_NAMES __a: Tuple = PRETRAINED_VOCAB_FILES_MAP __a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' lowerCAmelCase_ = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' if self.remove_space: lowerCAmelCase_ = ' '.join(inputs.strip().split() ) else: lowerCAmelCase_ = inputs lowerCAmelCase_ = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase_ = unicodedata.normalize('NFKD' , lowercase_ ) lowerCAmelCase_ = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: lowerCAmelCase_ = outputs.lower() return outputs def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.preprocess_text(lowercase_ ) lowerCAmelCase_ = self.sp_model.encode(lowercase_ , out_type=lowercase_ ) lowerCAmelCase_ = [] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ = cur_pieces[1:] else: lowerCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' return self.sp_model.PieceToId(lowercase_ ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(lowercase_ ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [] lowerCAmelCase_ = '' lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(lowercase_ ) lowerCAmelCase_ = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations from collections import Counter from random import random class _lowerCAmelCase : def __init__( self ) -> Union[str, Any]: lowerCAmelCase_ = {} def __a ( self , _UpperCamelCase ) -> None: lowerCAmelCase_ = {} def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> None: if nodea not in self.connections: self.add_node(_UpperCamelCase ) if nodea not in self.connections: self.add_node(_UpperCamelCase ) lowerCAmelCase_ = probability def __a ( self ) -> list[str]: return list(self.connections ) def __a ( self , _UpperCamelCase ) -> str: lowerCAmelCase_ = 0 lowerCAmelCase_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : list[tuple[str, str, float]] , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = Counter(graph.get_nodes() ) lowerCAmelCase_ = start for _ in range(__lowerCAmelCase ): lowerCAmelCase_ = graph.transition(__lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
231
import requests _A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
231
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE_: List[str] ={ 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Any ='hopper-medium-v2' SCREAMING_SNAKE_CASE_: Optional[int] =gym.make(env_name) SCREAMING_SNAKE_CASE_: Tuple =ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) SCREAMING_SNAKE_CASE_: Optional[Any] =env.reset() SCREAMING_SNAKE_CASE_: List[str] =0 SCREAMING_SNAKE_CASE_: Tuple =0 SCREAMING_SNAKE_CASE_: Any =10_00 SCREAMING_SNAKE_CASE_: Optional[int] =[obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE_: Any =pipeline(obs, planning_horizon=32) # execute action in environment SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: Union[str, Any] =env.step(denorm_actions) SCREAMING_SNAKE_CASE_: Optional[int] =env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" f" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE_: Dict =next_observation except KeyboardInterrupt: pass print(f"Total reward: {total_reward}")
106
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __A : @property def _lowercase (self : int ): return self.get_dummy_input() @property def _lowercase (self : Any ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def _lowercase (self : Tuple , __a : List[str]=True , __a : Any=False , __a : List[Any]=False , __a : Any=False , ): UpperCAmelCase_ = 4 UpperCAmelCase_ = 32 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = torch.device(__a ) UpperCAmelCase_ = (batch_size, num_channels) + sizes UpperCAmelCase_ = randn_tensor(__a , generator=__a , device=__a ) UpperCAmelCase_ = {"hidden_states": hidden_states} if include_temb: UpperCAmelCase_ = 128 UpperCAmelCase_ = randn_tensor((batch_size, temb_channels) , generator=__a , device=__a ) if include_res_hidden_states_tuple: UpperCAmelCase_ = torch.manual_seed(1 ) UpperCAmelCase_ = (randn_tensor(__a , generator=__a , device=__a ),) if include_encoder_hidden_states: UpperCAmelCase_ = floats_tensor((batch_size, 32, 32) ).to(__a ) if include_skip_sample: UpperCAmelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=__a , device=__a ) return dummy_input def _lowercase (self : Tuple ): UpperCAmelCase_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": UpperCAmelCase_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def _lowercase (self : Tuple , __a : Any ): UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.block_class(**__a ) unet_block.to(__a ) unet_block.eval() with torch.no_grad(): UpperCAmelCase_ = unet_block(**__a ) if isinstance(__a , __a ): UpperCAmelCase_ = output[0] self.assertEqual(output.shape , self.output_shape ) UpperCAmelCase_ = output[0, -1, -3:, -3:] UpperCAmelCase_ = torch.tensor(__a ).to(__a ) assert torch_all_close(output_slice.flatten() , __a , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def _lowercase (self : Dict ): UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.block_class(**__a ) model.to(__a ) model.train() UpperCAmelCase_ = model(**__a ) if isinstance(__a , __a ): UpperCAmelCase_ = output[0] UpperCAmelCase_ = torch.device(__a ) UpperCAmelCase_ = randn_tensor(output.shape , device=__a ) UpperCAmelCase_ = torch.nn.functional.mse_loss(__a , __a ) loss.backward()
106
1
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ : def __init__( self , _a , _a=13 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=224 , _a=1_000 , _a=[3, 3, 6, 4] , _a=[48, 56, 112, 220] , ): lowercase : Union[str, Any] = parent lowercase : List[Any] = batch_size lowercase : Any = num_channels lowercase : List[str] = is_training lowercase : Optional[Any] = use_labels lowercase : Optional[int] = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : int = num_labels lowercase : Any = image_size lowercase : Any = layer_depths lowercase : Union[str, Any] = embed_dims def __magic_name__ ( self ): lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Optional[Any] = None if self.use_labels: lowercase : int = ids_tensor([self.batch_size] , self.num_labels ) lowercase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__UpperCamelCase , layer_scale_init_value=1E-5 , ) def __magic_name__ ( self , _a , _a , _a ): lowercase : List[str] = SwiftFormerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __magic_name__ ( self , _a , _a , _a ): lowercase : List[Any] = self.num_labels lowercase : str = SwiftFormerForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase : Tuple = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase : Optional[int] = SwiftFormerForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): (lowercase) : List[str] = self.prepare_config_and_inputs() lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__ ( lowercase_, lowercase_, unittest.TestCase ): __lowerCAmelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __magic_name__ ( self ): lowercase : List[Any] = SwiftFormerModelTester(self ) lowercase : Optional[int] = ConfigTester( self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __magic_name__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(__UpperCamelCase ) lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __magic_name__ ( self ): lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(__UpperCamelCase ) lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Tuple = [*signature.parameters.keys()] lowercase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __magic_name__ ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __magic_name__ ( self ): lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __magic_name__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : str = SwiftFormerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): def check_hidden_states_output(_a , _a , _a ): lowercase : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): lowercase : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) lowercase : Dict = outputs.hidden_states lowercase : Union[str, Any] = 8 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__UpperCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Dict = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __magic_name__ ( self ): def _config_zero_init(_a ): lowercase : Optional[Any] = copy.deepcopy(__UpperCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__UpperCamelCase , __UpperCamelCase , 1E-10 ) if isinstance(getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ): lowercase : Optional[Any] = _config_zero_init(getattr(__UpperCamelCase , __UpperCamelCase ) ) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return configs_no_init lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Union[str, Any] = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: lowercase : Tuple = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __magic_name__ ( self ): pass def __magic_name__ ( ) -> Optional[Any]: lowercase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def __magic_name__ ( self ): lowercase : Dict = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__UpperCamelCase ) lowercase : List[Any] = self.default_image_processor lowercase : Dict = prepare_img() lowercase : int = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase : Union[str, Any] = model(**__UpperCamelCase ) # verify the logits lowercase : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) lowercase : Optional[Any] = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
202
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'generated' def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = {} if truncation is not None: lowercase_ : int = truncation lowercase_ : Dict = generate_kwargs lowercase_ : List[Any] = {} if return_tensors is not None and return_type is None: lowercase_ : Union[str, Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase_ : str = return_type if clean_up_tokenization_spaces is not None: lowercase_ : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase_ : Union[str, Any] = self.tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowercase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] ,__UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) lowercase_ : str = ([prefix + arg for arg in args[0]],) lowercase_ : Union[str, Any] = True elif isinstance(args[0] ,__UpperCamelCase ): lowercase_ : Union[str, Any] = (prefix + args[0],) lowercase_ : Union[str, Any] = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase_ : List[Any] = self.tokenizer(*__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) if ( isinstance(args[0] ,__UpperCamelCase ) and all(isinstance(__UpperCamelCase ,__UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Any = self._parse_and_tokenize(__UpperCamelCase ,truncation=__UpperCamelCase ,**__UpperCamelCase ) return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.framework == "pt": lowercase_ , lowercase_ : Optional[int] = model_inputs['input_ids'].shape elif self.framework == "tf": lowercase_ , lowercase_ : Union[str, Any] = tf.shape(model_inputs['input_ids'] ).numpy() lowercase_ : str = generate_kwargs.get('min_length' ,self.model.config.min_length ) lowercase_ : List[Any] = generate_kwargs.get('max_length' ,self.model.config.max_length ) self.check_inputs(__UpperCamelCase ,generate_kwargs['min_length'] ,generate_kwargs['max_length'] ) lowercase_ : Tuple = self.model.generate(**__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : str = output_ids.shape[0] if self.framework == "pt": lowercase_ : List[Any] = output_ids.reshape(__UpperCamelCase ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowercase_ : List[Any] = tf.reshape(__UpperCamelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=ReturnType.TEXT ,__UpperCamelCase=False ) -> Dict: '''simple docstring''' lowercase_ : Dict = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase_ : List[Any] = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase_ : str = { f'''{self.return_name}_text''': self.tokenizer.decode( __UpperCamelCase ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ,) } records.append(__UpperCamelCase ) return records @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'summary' def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'translation' def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> int: '''simple docstring''' if getattr(self.tokenizer ,'_build_translation_inputs' ,__UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase ,return_tensors=self.framework ,truncation=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase ,truncation=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ : int = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: lowercase_ : str = src_lang if tgt_lang is not None: lowercase_ : Optional[Any] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase_ : Tuple = kwargs.get('task' ,self.task ) lowercase_ : List[str] = task.split('_' ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY lowercase_ : Union[str, Any] = items[1] lowercase_ : Tuple = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase )
213
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = args.log_outputs lowercase_ = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric lowercase_ = load_metric("""wer""" ) lowercase_ = load_metric("""cer""" ) # compute metrics lowercase_ = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) lowercase_ = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results lowercase_ = F'''WER: {wer_result}\nCER: {cer_result}''' print(SCREAMING_SNAKE_CASE_ ) with open(F'''{dataset_id}_eval_results.txt''' , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase_ = F'''log_{dataset_id}_predictions.txt''' lowercase_ = F'''log_{dataset_id}_targets.txt''' with open(SCREAMING_SNAKE_CASE_ , """w""" ) as p, open(SCREAMING_SNAKE_CASE_ , """w""" ) as t: # mapping function to write output def write_to_file(__lowerCAmelCase , __lowerCAmelCase ): p.write(F'''{i}''' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F'''{i}''' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(SCREAMING_SNAKE_CASE_ , with_indices=SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase_ = re.sub(SCREAMING_SNAKE_CASE_ , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase_ = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: lowercase_ = """ """.join(text.split(SCREAMING_SNAKE_CASE_ ) ) return text def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase_ = feature_extractor.sampling_rate # resample audio lowercase_ = dataset.cast_column("""audio""" , Audio(sampling_rate=SCREAMING_SNAKE_CASE_ ) ) # load eval pipeline if args.device is None: lowercase_ = 0 if torch.cuda.is_available() else -1 lowercase_ = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__lowerCAmelCase ): lowercase_ = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase_ = prediction["""text"""] lowercase_ = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples lowercase_ = dataset.map(SCREAMING_SNAKE_CASE_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase : Optional[int] = parser.parse_args() main(args)
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
'''simple docstring''' def lowercase__ ( __lowercase : float , __lowercase : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__lowercase ) , __lowercase ) return number - int(__lowercase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
53
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_ , '''width_multiplier''' ) ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : str , a_ : Any , a_ : Tuple=13 , a_ : Tuple=64 , a_ : Optional[int]=2 , a_ : List[str]=3 , a_ : Optional[Any]="swish" , a_ : Optional[Any]=3 , a_ : str=32 , a_ : Dict=0.1 , a_ : int=0.0_2 , a_ : Tuple=True , a_ : List[Any]=True , a_ : Optional[int]=10 , a_ : Optional[int]=None , a_ : Dict=0.2_5 , a_ : Tuple=0.0 , a_ : List[Any]=0.0 , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : List[Any] = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Any = make_divisible(5_12 * width_multiplier , divisor=8 ) __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Dict = conv_kernel_size __UpperCAmelCase : Optional[Any] = output_stride __UpperCAmelCase : Dict = classifier_dropout_prob __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : Optional[Any] = width_multiplier __UpperCAmelCase : List[str] = ffn_dropout __UpperCAmelCase : Dict = attn_dropout def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case__ ( self : Optional[Any] , a_ : Dict , a_ : List[Any] , a_ : Dict , a_ : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = MobileViTVaModel(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Union[str, Any] , a_ : Dict , a_ : Union[str, Any] , a_ : str , a_ : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : List[str] = MobileViTVaForImageClassification(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : List[Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : str , a_ : List[str] , a_ : Optional[Any] , a_ : List[str] , a_ : int ): '''simple docstring''' __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[Any] = MobileViTVaForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __UpperCAmelCase : List[str] = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = MobileViTVaModelTester(self ) __UpperCAmelCase : Union[str, Any] = MobileViTVaConfigTester(self , config_class=a_ , has_text_modality=a_ ) def snake_case__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def snake_case__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def snake_case__ ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def snake_case__ ( self : Dict ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' pass def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(a_ ) __UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case__ ( self : int ): '''simple docstring''' def check_hidden_states_output(a_ : List[Any] , a_ : List[Any] , a_ : Union[str, Any] ): __UpperCAmelCase : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(a_ , a_ ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : str = 5 self.assertEqual(len(a_ ) , a_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __UpperCAmelCase : Any = 2 for i in range(len(a_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(a_ , a_ , a_ ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @slow def snake_case__ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = MobileViTVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def a ( ): '''simple docstring''' __UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( a_ ) __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**a_ ) # verify the logits __UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __UpperCAmelCase : Any = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : int = model.to(a_ ) __UpperCAmelCase : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**a_ ) __UpperCAmelCase : int = outputs.logits # verify the logits __UpperCAmelCase : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , a_ ) __UpperCAmelCase : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=a_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : Optional[int] = model.to(a_ ) __UpperCAmelCase : List[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**a_ ) __UpperCAmelCase : Optional[Any] = outputs.logits.detach().cpu() __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(50, 60)] ) __UpperCAmelCase : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , a_ ) __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ ) __UpperCAmelCase : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , a_ )
226
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : Tuple = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase__ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase__ = FlaxBertModel(_UpperCamelCase ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCamelCase , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCamelCase , repo_id='test-model-flax' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCamelCase , 1E-3 , msg=F"{key} not identical" ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase__ = FlaxBertModel(_UpperCamelCase ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCamelCase , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _UpperCamelCase , repo_id='valid_org/test-model-flax-org' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_UpperCamelCase , 1E-3 , msg=F"{key} not identical" ) def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> int: """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = flatten_dict(modela.params ) lowerCAmelCase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCAmelCase__ = False return models_are_equal @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ = FlaxBertModel(_UpperCamelCase ) lowerCAmelCase__ = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) with self.assertRaises(_UpperCamelCase ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase , subfolder=_UpperCamelCase ) self.assertTrue(check_models_equal(_UpperCamelCase , _UpperCamelCase ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ = FlaxBertModel(_UpperCamelCase ) lowerCAmelCase__ = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_UpperCamelCase , _UpperCamelCase ) , max_shard_size='10KB' ) with self.assertRaises(_UpperCamelCase ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase , subfolder=_UpperCamelCase ) self.assertTrue(check_models_equal(_UpperCamelCase , _UpperCamelCase ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'bert' lowerCAmelCase__ = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(_UpperCamelCase ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase , subfolder=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'bert' lowerCAmelCase__ = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(_UpperCamelCase ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(_UpperCamelCase , subfolder=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
122
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
122
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : Any = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _lowerCamelCase : Any = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _lowerCamelCase : Optional[int] = """▁""" class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="[CLS]" , UpperCAmelCase__ : int="[SEP]" , UpperCAmelCase__ : int="<unk>" , UpperCAmelCase__ : Tuple="[SEP]" , UpperCAmelCase__ : List[str]="<pad>" , UpperCAmelCase__ : List[str]="[CLS]" , UpperCAmelCase__ : Union[str, Any]="[MASK]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Any , ) ->None: '''simple docstring''' A__ = ( AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ , normalized=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else mask_token ) A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return len(self.sp_model) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[int]) ->Dict: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : List[Any] , UpperCAmelCase__ : List[Any]) ->int: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int) ->int: '''simple docstring''' if self.remove_space: A__ = ''' '''.join(inputs.strip().split()) else: A__ = inputs A__ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: A__ = unicodedata.normalize('''NFKD''' , UpperCAmelCase__) A__ = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__)]) if self.do_lower_case: A__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' A__ = self.preprocess_text(UpperCAmelCase__) A__ = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) A__ = [] for piece in pieces: if len(UpperCAmelCase__) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: A__ = cur_pieces[1:] else: A__ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(UpperCAmelCase__) else: new_pieces.append(UpperCAmelCase__) return new_pieces def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int) ->str: '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Dict) ->List[Any]: '''simple docstring''' A__ = [] A__ = '''''' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = True A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) A__ = False out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) + [1] return [1] + ([0] * len(UpperCAmelCase__)) + [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
14
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' def __init__( self : int , *__snake_case : Optional[int] , **__snake_case : List[str] ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
177
import baseaa def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bytes ) -> str: return baseaa.baadecode(__UpperCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": _lowerCamelCase = 'Hello World!' _lowerCamelCase = baseaa_encode(test) print(encoded) _lowerCamelCase = baseaa_decode(encoded) print(decoded)
177
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[str] = old_name if "patch_embed" in old_name: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = old_name.split('''.''' ) if layer == "0": lowerCAmelCase__ : str = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowerCAmelCase__ : List[Any] = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowerCAmelCase__ : Optional[Any] = old_name.replace('''3''' , '''convolution2''' ) else: lowerCAmelCase__ : Optional[int] = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , A_ ): lowerCAmelCase__ : int = r'''\b\d{2}\b''' if bool(re.search(A_ , A_ ) ): lowerCAmelCase__ : Union[str, Any] = re.search(r'''\d\.\d\d.''' , A_ ).group() else: lowerCAmelCase__ : Tuple = re.search(r'''\d\.\d.''' , A_ ).group() if int(match[0] ) < 6: lowerCAmelCase__ : Tuple = old_name.replace(A_ , '''''' ) lowerCAmelCase__ : int = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowerCAmelCase__ : str = '''intermediate_stages.''' + trimmed_name else: lowerCAmelCase__ : Dict = old_name.replace(A_ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowerCAmelCase__ : str = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowerCAmelCase__ : List[Any] = str(int(match[2] ) - num_meta4D_last_stage ) lowerCAmelCase__ : Tuple = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowerCAmelCase__ : Any = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowerCAmelCase__ : str = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowerCAmelCase__ : int = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowerCAmelCase__ : int = trimmed_name.replace('''fc2''' , '''linear_out''' ) lowerCAmelCase__ : Any = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , A_ ): lowerCAmelCase__ : Tuple = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowerCAmelCase__ : Union[str, Any] = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCAmelCase__ : int = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCAmelCase__ : str = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowerCAmelCase__ : Tuple = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowerCAmelCase__ : Any = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowerCAmelCase__ : Tuple = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowerCAmelCase__ : Optional[int] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCAmelCase__ : Optional[int] = new_name.replace('''norm''' , '''layernorm''' ) lowerCAmelCase__ : Tuple = '''efficientformer.''' + new_name else: lowerCAmelCase__ : Dict = '''efficientformer.encoder.''' + new_name return new_name def __SCREAMING_SNAKE_CASE ( A_ , A_ ): for key in checkpoint.copy().keys(): lowerCAmelCase__ : List[Any] = checkpoint.pop(A_ ) lowerCAmelCase__ : List[str] = val return checkpoint def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(A_ , stream=A_ ).raw ) return image def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Tuple = torch.load(A_ , map_location='''cpu''' )['''model'''] lowerCAmelCase__ : int = EfficientFormerConfig.from_json_file(A_ ) lowerCAmelCase__ : Tuple = EfficientFormerForImageClassificationWithTeacher(A_ ) lowerCAmelCase__ : Dict = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowerCAmelCase__ : Dict = config.depths[-1] - config.num_metaad_blocks + 1 lowerCAmelCase__ : Any = convert_torch_checkpoint(A_ , A_ ) model.load_state_dict(A_ ) model.eval() lowerCAmelCase__ : List[str] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : Union[str, Any] = 2_56 lowerCAmelCase__ : List[str] = 2_24 lowerCAmelCase__ : int = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowerCAmelCase__ : Optional[int] = processor(images=A_ , return_tensors='''pt''' ).pixel_values # original processing pipeline lowerCAmelCase__ : Optional[int] = Compose( [ Resize(A_ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(A_ ), ToTensor(), Normalize(A_ , A_ ), ] ) lowerCAmelCase__ : List[str] = image_transforms(A_ ).unsqueeze(0 ) assert torch.allclose(A_ , A_ ) lowerCAmelCase__ : Dict = model(A_ ) lowerCAmelCase__ : int = outputs.logits lowerCAmelCase__ : Tuple = (1, 10_00) if "l1" in model_name: lowerCAmelCase__ : Optional[Any] = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , A_ , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCAmelCase__ : Optional[Any] = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , A_ , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCAmelCase__ : Dict = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(A_ ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='''Add model''' , use_temp_dir=A_ , ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='''Add image processor''' , use_temp_dir=A_ , ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __UpperCamelCase : str = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase__ ( a__: Optional[int] , a__: int , a__: Tuple , a__: List[str] , a__: Dict=True , a__: Optional[int]="pt" ) -> Any: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(a__ , a__ ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=a__ , padding='max_length' if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , ) def lowerCAmelCase__ ( a__: List[Any] , a__: Dict , a__: Union[str, Any]=None , ) -> List[str]: '''simple docstring''' _UpperCAmelCase = input_ids.ne(a__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '.source' ) _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '.target' ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.src_lens ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip('\n' ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip('\n' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer _UpperCAmelCase = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , 'right' ) _UpperCAmelCase = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , 'right' ) _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch] ) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch] ) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase__ :Tuple = getLogger(__name__) def lowerCAmelCase__ ( a__: List[List] ) -> Any: '''simple docstring''' return list(itertools.chain.from_iterable(a__ ) ) def lowerCAmelCase__ ( a__: str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(a__ , os.path.join(a__ , 'git_log.json' ) ) def lowerCAmelCase__ ( a__: Any , a__: List[str] , a__: Union[str, Any]=4 , **a__: int ) -> Optional[int]: '''simple docstring''' with open(a__ , 'w' ) as f: json.dump(a__ , a__ , indent=a__ , **a__ ) def lowerCAmelCase__ ( a__: List[Any] ) -> str: '''simple docstring''' with open(a__ ) as f: return json.load(a__ ) def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=a__ ) _UpperCAmelCase = { 'repo_id': str(a__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCAmelCase__ ( a__: Callable , a__: Iterable ) -> List: '''simple docstring''' return list(map(a__ , a__ ) ) def lowerCAmelCase__ ( a__: Any , a__: Dict ) -> Optional[int]: '''simple docstring''' with open(a__ , 'wb' ) as f: return pickle.dump(a__ , a__ ) def lowerCAmelCase__ ( a__: List[str] ) -> Dict: '''simple docstring''' def remove_articles(a__: Dict ): return re.sub(R'\b(a|an|the)\b' , ' ' , a__ ) def white_space_fix(a__: Any ): return " ".join(text.split() ) def remove_punc(a__: Any ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__: Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = normalize_answer(a__ ).split() _UpperCAmelCase = normalize_answer(a__ ).split() _UpperCAmelCase = Counter(a__ ) & Counter(a__ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(a__ ) _UpperCAmelCase = 1.0 * num_same / len(a__ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( a__: Optional[Any] , a__: Union[str, Any] ) -> List[str]: '''simple docstring''' return normalize_answer(a__ ) == normalize_answer(a__ ) def lowerCAmelCase__ ( a__: List[str] , a__: List[str] ) -> Dict: '''simple docstring''' assert len(a__ ) == len(a__ ) _UpperCAmelCase = 0 for hypo, pred in zip(a__ , a__ ): em += exact_match_score(a__ , a__ ) if len(a__ ) > 0: em /= len(a__ ) return {"em": em} def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCAmelCase__ ( a__: int , a__: List[Any] , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(a__ , a__ , a__ ): if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(a__ ) ) delattr(a__ , a__ ) continue _UpperCAmelCase = p if hasattr(a__ , a__ ) else equivalent_param[p] setattr(a__ , a__ , getattr(a__ , a__ ) ) delattr(a__ , a__ ) return hparams, config
185
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ :Tuple = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[Any] = ['''BeitFeatureExtractor'''] lowerCAmelCase__ :Optional[Any] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :int = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Tuple = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCAmelCase__ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
185
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase ( _snake_case : int="ro" , _snake_case : Dict="en" , _snake_case : int="wmt16" , _snake_case : List[str]=None ) ->None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __snake_case : Union[str, Any] = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __snake_case : Optional[Any] = datasets.load_dataset(_snake_case , _snake_case ) if save_dir is None: __snake_case : int = f"""{dataset}-{pair}""" __snake_case : Union[str, Any] = Path(_snake_case ) save_dir.mkdir(exist_ok=_snake_case ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __snake_case : Union[str, Any] = '''val''' if split == '''validation''' else split __snake_case : List[str] = save_dir.joinpath(f"""{fn}.source""" ) __snake_case : int = save_dir.joinpath(f"""{fn}.target""" ) __snake_case : Union[str, Any] = src_path.open('''w+''' ) __snake_case : Union[str, Any] = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __snake_case : List[str] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
102
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __magic_name__ ( *__lowercase : List[str] , **__lowercase : Any ) -> List[Any]: pass def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__ ( self : Any , __lowercase : str , __lowercase : int , __lowercase : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =pipeline( '''document-question-answering''' , model=__lowercase , tokenizer=__lowercase , image_processor=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =INVOICE_URL SCREAMING_SNAKE_CASE__ : Optional[int] =list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) SCREAMING_SNAKE_CASE__ : Optional[int] ='''What is the placebo?''' SCREAMING_SNAKE_CASE__ : Optional[Any] =[ { '''image''': load_image(__lowercase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__ ( self : Any , __lowercase : int , __lowercase : Dict ) -> int: SCREAMING_SNAKE_CASE__ : List[str] =dqa_pipeline(__lowercase , top_k=2 ) self.assertEqual( __lowercase , [ [ {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) SCREAMING_SNAKE_CASE__ : str =INVOICE_URL SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''How many cats are there?''' SCREAMING_SNAKE_CASE__ : int =[ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] SCREAMING_SNAKE_CASE__ : int =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE__ : Dict ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ : Optional[Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE__ : Optional[int] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : Any =dqa_pipeline(image=__lowercase , question=__lowercase , words=__lowercase , boxes=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) SCREAMING_SNAKE_CASE__ : List[str] =INVOICE_URL SCREAMING_SNAKE_CASE__ : int ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : Tuple =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ : str =INVOICE_URL SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : List[Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : Tuple =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) SCREAMING_SNAKE_CASE__ : int =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , ) SCREAMING_SNAKE_CASE__ : str =INVOICE_URL SCREAMING_SNAKE_CASE__ : int ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ : List[Any] =list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ : int =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ : int =INVOICE_URL SCREAMING_SNAKE_CASE__ : Tuple ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : List[Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ : Dict =list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) SCREAMING_SNAKE_CASE__ : List[str] =INVOICE_URL SCREAMING_SNAKE_CASE__ : int ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__ ( self : int ) -> Tuple: pass
352
'''simple docstring''' from scipy.stats import pearsonr import datasets a_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __magic_name__ ( self : List[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : str=False ) -> int: if return_pvalue: SCREAMING_SNAKE_CASE__ : List[str] =pearsonr(__lowercase , __lowercase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowercase , __lowercase )[0] )}
222
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = """time_series_transformer""" A__ : List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "student_t" , __UpperCamelCase = "nll" , __UpperCamelCase = 1 , __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7] , __UpperCamelCase = "mean" , __UpperCamelCase = 0 , __UpperCamelCase = 0 , __UpperCamelCase = 0 , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 3_2 , __UpperCamelCase = 3_2 , __UpperCamelCase = 2 , __UpperCamelCase = 2 , __UpperCamelCase = 2 , __UpperCamelCase = 2 , __UpperCamelCase = True , __UpperCamelCase = "gelu" , __UpperCamelCase = 6_4 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 1_0_0 , __UpperCamelCase = 0.02 , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = prediction_length UpperCamelCase_ = context_length or prediction_length UpperCamelCase_ = distribution_output UpperCamelCase_ = loss UpperCamelCase_ = input_size UpperCamelCase_ = num_time_features UpperCamelCase_ = lags_sequence UpperCamelCase_ = scaling UpperCamelCase_ = num_dynamic_real_features UpperCamelCase_ = num_static_real_features UpperCamelCase_ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) UpperCamelCase_ = cardinality else: UpperCamelCase_ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) UpperCamelCase_ = embedding_dimension else: UpperCamelCase_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase_ = num_parallel_samples # Transformer architecture configuration UpperCamelCase_ = input_size * len(__UpperCamelCase ) + self._number_of_features UpperCamelCase_ = d_model UpperCamelCase_ = encoder_attention_heads UpperCamelCase_ = decoder_attention_heads UpperCamelCase_ = encoder_ffn_dim UpperCamelCase_ = decoder_ffn_dim UpperCamelCase_ = encoder_layers UpperCamelCase_ = decoder_layers UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = decoder_layerdrop UpperCamelCase_ = activation_function UpperCamelCase_ = init_std UpperCamelCase_ = use_cache super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
122
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ ( ) -> tuple[list[int], int]: UpperCamelCase_ = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase_ = randint(-5000 , 5000 ) return (arr, r) _A = make_dataset() def lowerCamelCase__ ( a__ : list[int] , a__ : int ) -> tuple[int, ...]: for triplet in permutations(a__ , 3 ): if sum(a__ ) == target: return tuple(sorted(a__ ) ) return (0, 0, 0) def lowerCamelCase__ ( a__ : list[int] , a__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase_ = len(a__ ) for i in range(n - 1 ): UpperCamelCase_ , UpperCamelCase_ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ ( ) -> tuple[float, float]: UpperCamelCase_ = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ UpperCamelCase_ = """ triplet_sum1(*dataset) """ UpperCamelCase_ = """ triplet_sum2(*dataset) """ UpperCamelCase_ = repeat(setup=a__ , stmt=a__ , repeat=5 , number=1_0000 ) UpperCamelCase_ = repeat(setup=a__ , stmt=a__ , repeat=5 , number=1_0000 ) return (min(a__ ), min(a__ )) if __name__ == "__main__": from doctest import testmod testmod() _A = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
122
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __a = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
'''simple docstring''' import re from filelock import FileLock try: import nltk __a = True except (ImportError, ModuleNotFoundError): __a = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __snake_case( _lowerCAmelCase ) -> str: re.sub("""<n>""" , """""" , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
43
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: List[str] = WavaVecaForSequenceClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) lowercase__: str = downstream_dict['''projector.weight'''] lowercase__: Optional[int] = downstream_dict['''projector.bias'''] lowercase__: Dict = downstream_dict['''model.post_net.linear.weight'''] lowercase__: str = downstream_dict['''model.post_net.linear.bias'''] return model def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowercase__: Optional[int] = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) lowercase__: str = downstream_dict['''model.linear.weight'''] lowercase__: int = downstream_dict['''model.linear.bias'''] return model def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: int = WavaVecaForXVector.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) lowercase__: str = downstream_dict['''connector.weight'''] lowercase__: List[str] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__: Optional[int] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowercase__: List[str] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowercase__: Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] lowercase__: Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] lowercase__: Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] lowercase__: Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] lowercase__: str = downstream_dict['''objective.W'''] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: str = torch.load(__UpperCAmelCase , map_location='''cpu''' ) lowercase__: str = checkpoint['''Downstream'''] lowercase__: int = WavaVecaConfig.from_pretrained(__UpperCAmelCase ) lowercase__: int = WavaVecaFeatureExtractor.from_pretrained( __UpperCAmelCase , return_attention_mask=__UpperCAmelCase , do_normalize=__UpperCAmelCase ) lowercase__: Union[str, Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): lowercase__: Dict = convert_classification(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif arch.endswith('''ForAudioFrameClassification''' ): lowercase__: Dict = convert_diarization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif arch.endswith('''ForXVector''' ): lowercase__: Dict = convert_xvector(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowercase__: Any = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
177
"""simple docstring""" from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[str]: lowercase__: str = [] lowercase__: str = 1_1 lowercase__: str = int('''1''' + '''0''' * digit_len ) for num in range(__UpperCAmelCase , __UpperCAmelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__UpperCAmelCase , __UpperCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 lowercase__: Dict = 1_0 return solutions def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 2 ) -> int: lowercase__: List[str] = 1.0 for fraction in fraction_list(__UpperCAmelCase ): lowercase__: List[str] = Fraction(__UpperCAmelCase ) result *= frac.denominator / frac.numerator return int(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
177
1
class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> List[str]: __lowerCAmelCase = name __lowerCAmelCase = value __lowerCAmelCase = weight def __repr__( self : Union[str, Any] ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase ( self : int ) -> Optional[int]: return self.value def lowercase ( self : Optional[Any] ) -> Union[str, Any]: return self.name def lowercase ( self : List[Any] ) -> Tuple: return self.weight def lowercase ( self : int ) -> Dict: return self.value / self.weight def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = sorted(lowerCAmelCase_, key=lowerCAmelCase_, reverse=lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase , __lowerCAmelCase = 0.0, 0.0 for i in range(len(lowerCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
367
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """encodec""" def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase_ : Optional[Any]=2_4_0_0_0 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=1_2_8 , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[int]=[8, 5, 4, 2] , lowerCAmelCase_ : Optional[Any]="weight_norm" , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict="reflect" , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Dict=1.0 , lowerCAmelCase_ : str=1_0_2_4 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ) -> Union[str, Any]: __lowerCAmelCase = target_bandwidths __lowerCAmelCase = sampling_rate __lowerCAmelCase = audio_channels __lowerCAmelCase = normalize __lowerCAmelCase = chunk_length_s __lowerCAmelCase = overlap __lowerCAmelCase = hidden_size __lowerCAmelCase = num_filters __lowerCAmelCase = num_residual_layers __lowerCAmelCase = upsampling_ratios __lowerCAmelCase = norm_type __lowerCAmelCase = kernel_size __lowerCAmelCase = last_kernel_size __lowerCAmelCase = residual_kernel_size __lowerCAmelCase = dilation_growth_rate __lowerCAmelCase = use_causal_conv __lowerCAmelCase = pad_mode __lowerCAmelCase = compress __lowerCAmelCase = num_lstm_layers __lowerCAmelCase = trim_right_ratio __lowerCAmelCase = codebook_size __lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase_ ) @property def lowercase ( self : Union[str, Any] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase ( self : Optional[Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowercase ( self : Any ) -> int: __lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowercase ( self : str ) -> int: return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
207
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Union[str, Any] = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
185
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A__ : Optional[int] = logging.get_logger(__name__) A__ : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } A__ : Tuple = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) -> Tuple: for attribute in key.split('.' ): __lowerCamelCase : List[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: __lowerCamelCase : Any = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: __lowerCamelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCamelCase : Tuple = value elif weight_type == "weight_g": __lowerCamelCase : Optional[int] = value elif weight_type == "weight_v": __lowerCamelCase : str = value elif weight_type == "bias": __lowerCamelCase : List[Any] = value else: __lowerCamelCase : List[str] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Dict = fairseq_model.state_dict() __lowerCamelCase : List[str] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase : int = True if "*" in mapped_key: __lowerCamelCase : Optional[int] = name.split(UpperCAmelCase_ )[0].split('.' )[-2] __lowerCamelCase : List[str] = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: __lowerCamelCase : Dict = 'weight_g' elif "weight_v" in name: __lowerCamelCase : Any = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCamelCase : Any = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase : List[Any] = 'weight' else: __lowerCamelCase : str = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Tuple: __lowerCamelCase : List[str] = full_name.split('conv_layers.' )[-1] __lowerCamelCase : List[Any] = name.split('.' ) __lowerCamelCase : Any = int(items[0] ) __lowerCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCamelCase : Union[str, Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCamelCase : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowerCamelCase : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCamelCase : List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]=None ) -> Optional[int]: # load the pre-trained checkpoints __lowerCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCamelCase : Union[str, Any] = WavLMOrig(UpperCAmelCase_ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCamelCase : Optional[int] = WavLMConfig.from_pretrained(UpperCAmelCase_ ) else: __lowerCamelCase : Any = WavLMConfig() __lowerCamelCase : Optional[int] = WavLMModel(UpperCAmelCase_ ) recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ ) hf_wavlm.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") A__ : List[str] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
185
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: _a : Tuple = tempfile.mkdtemp() _a : List[str] = 5 # Realm tok _a : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Optional[int] = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _a : str = os.path.join(_a , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : List[str] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_a , exist_ok=_a ) def __lowercase ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __lowercase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> List[str]: _a : int = RealmConfig(num_block_records=self.num_block_records ) return config def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __lowercase ( self ) -> Dict: _a : Any = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_a , ) return block_records def __lowercase ( self ) -> Optional[int]: _a : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowercase ( self ) -> Optional[int]: _a : Dict = self.get_config() _a : Tuple = self.get_dummy_retriever() _a : Dict = retriever.tokenizer _a : Union[str, Any] = np.array([0, 3] , dtype='''long''' ) _a : Any = tokenizer(['''Test question'''] ).input_ids _a : int = tokenizer( ['''the fourth'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _a : str = config.reader_seq_len _a , _a , _a , _a : Any = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = self.get_config() _a : Union[str, Any] = self.get_dummy_retriever() _a : Tuple = retriever.tokenizer _a : List[str] = np.array([0, 3, 5] , dtype='''long''' ) _a : int = tokenizer(['''Test question'''] ).input_ids _a : List[str] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _a : Union[str, Any] = config.reader_seq_len _a , _a , _a , _a : List[Any] = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' ) self.assertEqual([False, True, True] , _a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a ) def __lowercase ( self ) -> int: _a : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _a : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _a : Tuple = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _a : str = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _lowerCamelCase : Tuple = get_tests_dir('fixtures') class lowercase ( unittest.TestCase): def a_ ( self : int ): """simple docstring""" A_ : str = mock.Mock() A_ : Tuple = 5_00 A_ : str = {} A_ : Union[str, Any] = HTTPError A_ : Union[str, Any] = {} # Download this model to make sure it's in the cache. A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=A_ ) as mock_head: A_ : int = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self : int ): """simple docstring""" A_ : Optional[int] = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def a_ ( self : List[Any] ): """simple docstring""" with self.assertRaises(A_ ): # config is in subfolder, the following should not work without specifying the subfolder A_ : List[str] = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Any = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(A_ ) @is_staging_test class lowercase ( unittest.TestCase): @classmethod def a_ ( cls : Any ): """simple docstring""" A_ : Tuple = TOKEN HfFolder.save_token(A_ ) @classmethod def a_ ( cls : List[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def a_ ( self : int ): """simple docstring""" A_ : List[Any] = ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Union[str, Any] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='''test-image-processor''' , push_to_hub=A_ , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : Optional[int] = ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=A_ , use_auth_token=self._token ) A_ : str = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def a_ ( self : List[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : Any = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=A_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
167
from __future__ import annotations import os from collections.abc import Mapping _UpperCAmelCase : Tuple = tuple[int, int] class lowercase : def __init__( self , A_ , A_ ) -> None: """simple docstring""" UpperCamelCase = vertices UpperCamelCase = { (min(A_ ), max(A_ )): weight for edge, weight in edges.items() } def __UpperCamelCase ( self , A_ , A_ ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase = weight def __UpperCamelCase ( self ) -> Graph: """simple docstring""" UpperCamelCase = Graph({min(self.vertices )} , {} ) UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase = edge UpperCamelCase = weight subgraph.add_edge(A_ , A_ ) return subgraph def A ( lowercase = "p107_network.txt" ) -> int: '''simple docstring''' UpperCamelCase = os.path.abspath(os.path.dirname(lowercase ) ) UpperCamelCase = os.path.join(lowercase , lowercase ) UpperCamelCase = {} UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 with open(lowercase ) as f: UpperCamelCase = f.read().strip().split('\n' ) UpperCamelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase ) ): for edgea in range(lowercase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase = Graph(set(range(len(lowercase ) ) ) , lowercase ) UpperCamelCase = graph.prims_algorithm() UpperCamelCase = sum(graph.edges.values() ) UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase_ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase) if return_labels: if model_class in get_values(__lowercase): lowerCamelCase__: Union[str, Any] =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Any=None , ) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Dict =seq_length lowerCamelCase__: List[str] =is_training lowerCamelCase__: List[Any] =use_input_mask lowerCamelCase__: Optional[int] =use_token_type_ids lowerCamelCase__: Any =use_labels lowerCamelCase__: List[str] =vocab_size lowerCamelCase__: Any =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: Dict =intermediate_size lowerCamelCase__: str =hidden_act lowerCamelCase__: List[Any] =hidden_dropout_prob lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__: List[str] =max_position_embeddings lowerCamelCase__: List[str] =type_vocab_size lowerCamelCase__: Dict =type_sequence_label_size lowerCamelCase__: str =initializer_range lowerCamelCase__: int =num_labels lowerCamelCase__: int =num_choices lowerCamelCase__: List[str] =scope lowerCamelCase__: Any =embedding_size def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: str =None if self.use_input_mask: lowerCamelCase__: List[str] =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: Union[str, Any] =None if self.use_token_type_ids: lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCamelCase__: int =None lowerCamelCase__: str =None lowerCamelCase__: Any =None if self.use_labels: lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size] , self.num_choices) lowerCamelCase__: str =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Dict =TFMobileBertModel(config=__lowercase) lowerCamelCase__: List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: Dict =model(__lowercase) lowerCamelCase__: Union[str, Any] =[input_ids, input_mask] lowerCamelCase__: Optional[Any] =model(__lowercase) lowerCamelCase__: str =model(__lowercase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: int =TFMobileBertForMaskedLM(config=__lowercase) lowerCamelCase__: Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: Union[str, Any] =model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int =TFMobileBertForNextSentencePrediction(config=__lowercase) lowerCamelCase__: Any ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: Optional[int] =model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] =TFMobileBertForPreTraining(config=__lowercase) lowerCamelCase__: int ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: Optional[Any] =model(__lowercase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.num_labels lowerCamelCase__: Dict =TFMobileBertForSequenceClassification(config=__lowercase) lowerCamelCase__: Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: List[Any] =model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_choices lowerCamelCase__: Optional[Any] =TFMobileBertForMultipleChoice(config=__lowercase) lowerCamelCase__: Dict =tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) lowerCamelCase__: Union[str, Any] =tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) lowerCamelCase__: Union[str, Any] =tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) lowerCamelCase__: Any ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase__: Optional[int] =model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =self.num_labels lowerCamelCase__: Optional[int] =TFMobileBertForTokenClassification(config=__lowercase) lowerCamelCase__: Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: Optional[Any] =model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: int =TFMobileBertForQuestionAnswering(config=__lowercase) lowerCamelCase__: List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__: Any =model(__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() ( lowerCamelCase__ ): List[str] =config_and_inputs lowerCamelCase__: str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =TFMobileBertModelTest.TFMobileBertModelTester(self) lowerCamelCase__: str =ConfigTester(self , config_class=__lowercase , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowercase) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowercase) @slow def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: lowerCamelCase__: List[str] =TFMobileBertModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") lowerCamelCase__: Any =tf.constant([[0, 1, 2, 3, 4, 5]]) lowerCamelCase__: int =model(__lowercase)[0] lowerCamelCase__: Optional[Any] =[1, 6, 30_522] self.assertEqual(output.shape , __lowercase) lowerCamelCase__: Dict =tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1E-4)
10
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = TextToVideoSDPipeline a__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS a__ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a__ : int = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase__ ( self) -> Optional[Any]: torch.manual_seed(0) __UpperCamelCase :str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase :Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __UpperCamelCase :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __UpperCamelCase :Optional[Any] = CLIPTextModel(__lowercase) __UpperCamelCase :Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __UpperCamelCase :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> Optional[int]: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :List[Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Tuple = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Optional[int] = self.get_dummy_components() __UpperCamelCase :Dict = TextToVideoSDPipeline(**__lowercase) __UpperCamelCase :Any = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowercase) __UpperCamelCase :int = '''np''' __UpperCamelCase :List[str] = sd_pipe(**__lowercase).frames __UpperCamelCase :Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __UpperCamelCase :str = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase__ ( self) -> Tuple: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=3E-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase , expected_max_diff=1E-2) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Union[str, Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def UpperCamelCase__ ( self) -> Dict: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''') def UpperCamelCase__ ( self) -> str: pass def UpperCamelCase__ ( self) -> List[str]: return super().test_progress_bar() @slow @skip_mps class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''') __UpperCamelCase :List[str] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Optional[Any] = '''Spiderman is surfing''' __UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=25 , output_type='''pt''').frames __UpperCamelCase :Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2 def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''') __UpperCamelCase :Union[str, Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') __UpperCamelCase :str = pipe.to('''cuda''') __UpperCamelCase :Union[str, Any] = '''Spiderman is surfing''' __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :List[Any] = pipe(__lowercase , generator=__lowercase , num_inference_steps=2 , output_type='''pt''').frames __UpperCamelCase :Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2
43
0
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> List[str]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = len(set_a.intersection(SCREAMING_SNAKE_CASE_ ) ) if alternative_union: UpperCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = len(set_a.union(SCREAMING_SNAKE_CASE_ ) ) return intersection / union if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): UpperCamelCase_ = [element for element in set_a if element in set_b] if alternative_union: UpperCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) / union else: UpperCamelCase_ = set_a + [element for element in set_b if element not in set_a] return len(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return None if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = {"""a""", """b""", """c""", """d""", """e"""} SCREAMING_SNAKE_CASE :Union[str, Any] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
60
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE :Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None )-> Any: UpperCamelCase_ = None UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase_ = os.path.abspath("examples" ) for item in os.listdir(_lowercase ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ) and ".py" in item_path: with self.subTest( tested_script=_lowercase , feature_script=_lowercase , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase_ = compare_against_test( os.path.join(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase ) UpperCamelCase_ = "\n".join(_lowercase ) if special_strings is not None: for string in special_strings: UpperCamelCase_ = diff.replace(_lowercase , "" ) self.assertEqual(_lowercase , "" ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.one_complete_example("complete_nlp_example.py" , _lowercase ) self.one_complete_example("complete_nlp_example.py" , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) self.one_complete_example("complete_cv_example.py" , _lowercase , _lowercase , _lowercase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = False @classmethod def UpperCAmelCase_ ( cls )-> List[str]: super().setUpClass() UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls )-> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) else: self.assertIn("epoch 0:" , _lowercase ) self.assertIn("epoch 1:" , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_lowercase ) UpperCamelCase_ = re.findall("({.+})" , _lowercase ) UpperCamelCase_ = [r for r in results if "accuracy" in r][-1] UpperCamelCase_ = ast.literal_eval(_lowercase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowercase , "tracking" ) ) ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
60
1
import qiskit def a( A : int , A : Optional[Any] ) -> Optional[int]: """simple docstring""" a = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register a = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator a = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": _lowercase: Tuple = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
227
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A__ : Tuple = logging.get_logger(__name__) A__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : int=None, lowerCamelCase : int=None, *lowerCamelCase : List[Any], **lowerCamelCase : Any ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) if config is None: assert isinstance(self.model, lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config, lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: lowercase__ = ['''bias''', '''LayerNorm.weight'''] lowercase__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase__ = AdamW lowercase__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCamelCase, optim=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = optimizer_cls(lowerCamelCase, **lowerCamelCase ) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: lowercase__ = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=lowerCamelCase ) return scheduler def lowercase__ ( self : List[Any] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models lowercase__ , lowercase__ = model(**lowerCamelCase, labels=lowerCamelCase, use_cache=lowerCamelCase )[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = torch.nn.functional.log_softmax(lowerCamelCase, dim=-1 ) lowercase__ , lowercase__ = self.loss_fn(lowerCamelCase, lowerCamelCase, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = inputs.pop('''labels''' ) lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return loss def lowercase__ ( self : str, lowerCamelCase : nn.Module, lowerCamelCase : Dict[str, Union[torch.Tensor, Any]], lowerCamelCase : bool, lowerCamelCase : Optional[List[str]] = None, ): '''simple docstring''' lowercase__ = self._prepare_inputs(lowerCamelCase ) lowercase__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], **lowerCamelCase, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) lowercase__ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Any ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F""" padded to `max_length`={max_length}""" ) lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) lowercase__ = tensor return padded_tensor
207
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( lowercase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(lowercase__ , np.ndarray ): return list(tensor.shape ) lowerCAmelCase_ :int = tf.shape(lowercase__ ) if tensor.shape == tf.TensorShape(lowercase__ ): return dynamic lowerCAmelCase_ :str = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowercase__ )] def _snake_case ( lowercase__ : tf.Tensor , lowercase__ : Optional[int] = None , lowercase__ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=lowercase__ , name=lowercase__ ) def _snake_case ( lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : str=1E-5 , lowercase__ : Dict=-1 ) -> List[str]: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowercase__ , lowercase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = tf.nn.moments(lowercase__ , axes=[axis] , keepdims=lowercase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCAmelCase_ :str = [1] * inputs.shape.rank lowerCAmelCase_ :Union[str, Any] = shape_list(lowercase__ )[axis] lowerCAmelCase_ :str = tf.reshape(lowercase__ , lowercase__ ) lowerCAmelCase_ :Optional[int] = tf.reshape(lowercase__ , lowercase__ ) # Compute layer normalization using the batch_normalization # function. lowerCAmelCase_ :str = tf.nn.batch_normalization( lowercase__ , lowercase__ , lowercase__ , offset=lowercase__ , scale=lowercase__ , variance_epsilon=lowercase__ , ) return outputs def _snake_case ( lowercase__ : List[str] , lowercase__ : str=0 , lowercase__ : Tuple=-1 ) -> List[str]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCAmelCase_ :List[str] = tf.shape(lowercase__ ) lowerCAmelCase_ :Dict = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCAmelCase_ :Union[str, Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowercase__ , lowercase__ ) def _snake_case ( lowercase__ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(lowercase__ , tf.Tensor ): lowerCAmelCase_ :Optional[int] = tf.convert_to_tensor(lowercase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCAmelCase_ :List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCAmelCase_ :Union[str, Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCAmelCase_ :Tuple = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _snake_case ( lowercase__ : tf.Tensor , lowercase__ : int , lowercase__ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( lowercase__ , tf.cast(lowercase__ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(lowercase__ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _snake_case ( lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ :int = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCAmelCase_ :Dict = [x for x in data if len(lowercase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) lowerCAmelCase_ :Optional[int] = np.asarray(lowercase__ ) lowerCAmelCase_ :List[Any] = 1 lowerCAmelCase_ :Union[str, Any] = np.array_split(lowercase__ , lowercase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCAmelCase_ :int = np.array_split(lowercase__ , lowercase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowercase__ ): lowerCAmelCase_ :Optional[Any] = chunk_data else: lowerCAmelCase_ :Tuple = data def _snake_case ( lowercase__ : List[str] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' if name in group.attrs: lowerCAmelCase_ :List[str] = [n.decode("""utf8""" ) if hasattr(lowercase__ , """decode""" ) else n for n in group.attrs[name]] else: lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Dict = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(lowercase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def _snake_case ( lowercase__ : int ) -> Optional[Any]: '''simple docstring''' def _expand_single_ad_tensor(lowercase__ : Union[str, Any] ): if isinstance(lowercase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowercase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowercase__ )
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
1
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): __A = tempfile.mkdtemp() __A = 5 # Realm tok __A = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,"realm_tokenizer" ) os.makedirs(A ,exist_ok=A ) __A = os.path.join(A ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A = os.path.join(self.tmpdirname ,"realm_block_records" ) os.makedirs(A ,exist_ok=A ) def UpperCamelCase_ ( self : int ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"realm_tokenizer" ) ) def UpperCamelCase_ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : int ): __A = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase_ ( self : Union[str, Any] ): __A = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def UpperCamelCase_ ( self : List[Any] ): __A = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] ,dtype=A ,) return block_records def UpperCamelCase_ ( self : Tuple ): __A = RealmRetriever( block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,) return retriever def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_config() __A = self.get_dummy_retriever() __A = retriever.tokenizer __A = np.array([0, 3] ,dtype="long" ) __A = tokenizer(["Test question"] ).input_ids __A = tokenizer( ["the fourth"] ,add_special_tokens=A ,return_token_type_ids=A ,return_attention_mask=A ,).input_ids __A = config.reader_seq_len __A , __A , __A , __A = retriever( A ,A ,answer_ids=A ,max_length=A ,return_tensors="np" ) self.assertEqual(len(A ) ,2 ) self.assertEqual(len(A ) ,2 ) self.assertEqual(len(A ) ,2 ) self.assertEqual(concat_inputs.input_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] ,) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] ,) def UpperCamelCase_ ( self : Dict ): __A = self.get_config() __A = self.get_dummy_retriever() __A = retriever.tokenizer __A = np.array([0, 3, 5] ,dtype="long" ) __A = tokenizer(["Test question"] ).input_ids __A = tokenizer( ["the fourth", "longer longer"] ,add_special_tokens=A ,return_token_type_ids=A ,return_attention_mask=A ,).input_ids __A = config.reader_seq_len __A , __A , __A , __A = retriever( A ,A ,answer_ids=A ,max_length=A ,return_tensors="np" ) self.assertEqual([False, True, True] ,A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) ) # Test local path __A = retriever.from_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) ) self.assertEqual(retriever.block_records[0] ,B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: __A = os.path.join( os.path.join(self.tmpdirname ,"realm_block_records" ) ,_REALM_BLOCK_RECORDS_FILENAME ) __A = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] ,B"This is the first record" )
15
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=4 , ): lowercase_ :Dict = parent lowercase_ :int = batch_size lowercase_ :List[Any] = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Union[str, Any] = use_attention_mask lowercase_ :int = use_token_type_ids lowercase_ :Union[str, Any] = use_labels lowercase_ :Any = vocab_size lowercase_ :int = hidden_size lowercase_ :List[str] = num_hidden_layers lowercase_ :Union[str, Any] = num_attention_heads lowercase_ :Dict = intermediate_size lowercase_ :Tuple = hidden_act lowercase_ :List[str] = hidden_dropout_prob lowercase_ :Tuple = attention_probs_dropout_prob lowercase_ :Union[str, Any] = max_position_embeddings lowercase_ :List[str] = type_vocab_size lowercase_ :List[Any] = type_sequence_label_size lowercase_ :int = initializer_range lowercase_ :Optional[Any] = num_choices def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_attention_mask: lowercase_ :Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ :Tuple = None if self.use_token_type_ids: lowercase_ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase ( self ): lowercase_ :Tuple = self.prepare_config_and_inputs() lowercase_ :Optional[Any] = config_and_inputs lowercase_ :Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] =True lowercase : List[Any] =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase ( self ): for model_class_name in self.all_model_classes: lowercase_ :Optional[int] = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=UpperCamelCase_ ) lowercase_ :Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase ( self ): lowercase_ :int = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase_ :Optional[int] = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase_ :Optional[Any] = model(UpperCamelCase_ )[0] lowercase_ :Optional[int] = 5_0000 lowercase_ :int = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) lowercase_ :Optional[Any] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
352
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[Any] ="""gpt_bigcode""" lowercase : Dict =["""past_key_values"""] lowercase : List[Any] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=5_0257 , UpperCamelCase_=1024 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=None , UpperCamelCase_="gelu_pytorch_tanh" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ): lowercase_ :Any = vocab_size lowercase_ :List[str] = n_positions lowercase_ :Union[str, Any] = n_embd lowercase_ :Dict = n_layer lowercase_ :Optional[int] = n_head lowercase_ :List[str] = n_inner lowercase_ :List[str] = activation_function lowercase_ :Optional[int] = resid_pdrop lowercase_ :Union[str, Any] = embd_pdrop lowercase_ :Any = attn_pdrop lowercase_ :Optional[Any] = layer_norm_epsilon lowercase_ :str = initializer_range lowercase_ :Optional[Any] = scale_attn_weights lowercase_ :Any = use_cache lowercase_ :Union[str, Any] = attention_softmax_in_fpaa lowercase_ :int = scale_attention_softmax_in_fpaa lowercase_ :Union[str, Any] = multi_query lowercase_ :List[str] = bos_token_id lowercase_ :Optional[int] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=SCREAMING_SNAKE_CASE_ , speech_processor=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ = "auto" ): if slice_size == "auto": UpperCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1_60_00 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = self.speech_processor.feature_extractor( SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , sampling_rate=SCREAMING_SNAKE_CASE_ ).input_features.to(self.device ) UpperCamelCase__ = self.speech_model.generate(SCREAMING_SNAKE_CASE_ , max_length=48_00_00 ) UpperCamelCase__ = self.speech_processor.tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , normalize=SCREAMING_SNAKE_CASE_ )[ 0 ] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(SCREAMING_SNAKE_CASE_ )}." ) # get prompt text embeddings UpperCamelCase__ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = text_embeddings.shape UpperCamelCase__ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ = 42 if negative_prompt is None: UpperCamelCase__ = [""""""] * batch_size elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=" F" {type(SCREAMING_SNAKE_CASE_ )}." ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: UpperCamelCase__ = negative_prompt UpperCamelCase__ = text_input_ids.shape[-1] UpperCamelCase__ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ = uncond_embeddings.shape[1] UpperCamelCase__ = uncond_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase__ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase__ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 / 0.1_8215 * latents UpperCamelCase__ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
178
from __future__ import annotations from collections import Counter from random import random class __A: """simple docstring""" def __init__(self ): UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = probability def UpperCAmelCase_ (self ): return list(self.connections ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = 0 UpperCamelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __magic_name__ ( __a : str , __a : list[tuple[str, str, float]] , __a : int ): '''simple docstring''' UpperCamelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) UpperCamelCase__ = Counter(graph.get_nodes() ) UpperCamelCase__ = start for _ in range(__a ): UpperCamelCase__ = graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
178
1
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets snake_case__ : Tuple = datasets.logging.get_logger(__name__) snake_case__ : Any = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' snake_case__ : Any = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' snake_case__ : Dict = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple ): if self.config_name == "default": lowerCAmelCase : Tuple = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: lowerCAmelCase : Tuple = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=False ): if gpus is None: lowerCAmelCase : Optional[int] = 1 if torch.cuda.is_available() else 0 lowerCAmelCase : str = {'''src''': sources, '''mt''': predictions, '''ref''': references} lowerCAmelCase : Optional[int] = [dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) for t in zip(*data.values() )] lowerCAmelCase, lowerCAmelCase : Tuple = self.scorer.predict(UpperCamelCase_ , gpus=UpperCamelCase_ , progress_bar=UpperCamelCase_ ) return {"mean_score": mean_score, "scores": scores}
60
"""simple docstring""" snake_case__ : str = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] snake_case__ : Optional[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] snake_case__ : Any = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] snake_case__ : Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] snake_case__ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] snake_case__ : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] snake_case__ : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] snake_case__ : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
60
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter a :Optional[Any] = logging.get_logger(__name__) a :Dict[Optional[str], Type[Formatter]] = {} a :Dict[Optional[str], str] = {} a :Dict[Optional[str], Exception] = {} def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) SCREAMING_SNAKE_CASE__ : int = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) SCREAMING_SNAKE_CASE__ : Tuple = format_type def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): SCREAMING_SNAKE_CASE__ : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: a :int = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: a :Tuple = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: a :Dict = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _lowercase ( __lowerCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _lowercase ( __lowerCAmelCase , **__lowerCAmelCase ) -> Formatter: SCREAMING_SNAKE_CASE__ : List[Any] = get_format_type_from_alias(__lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
56
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): a :Optional[int] = True from torch.cuda.amp import autocast a :str = logging.getLogger(__name__) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _SCREAMING_SNAKE_CASE :Optional[bool] = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""}) _SCREAMING_SNAKE_CASE :Optional[bool] = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=0.99_99_95 , metadata={"""help""": """Decay of gumbel temperature during training."""}) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE__ : Optional[int] = logging.WARNING if model_args.verbose_logging: SCREAMING_SNAKE_CASE__ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): SCREAMING_SNAKE_CASE__ : int = logging.INFO logger.setLevel(__lowerCAmelCase ) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :str = field( default=UpperCamelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) _SCREAMING_SNAKE_CASE :bool = field( default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=UpperCamelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""}) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :WavaVecaForPreTraining _SCREAMING_SNAKE_CASE :WavaVecaFeatureExtractor _SCREAMING_SNAKE_CASE :Union[bool, str] = "longest" _SCREAMING_SNAKE_CASE :Optional[int] = None _SCREAMING_SNAKE_CASE :Optional[int] = None def __call__( self , _a ) -> Dict[str, torch.Tensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feature_extractor.pad( _a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) SCREAMING_SNAKE_CASE__ : Any = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula SCREAMING_SNAKE_CASE__ : List[Any] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) SCREAMING_SNAKE_CASE__ : List[str] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : List[str] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices SCREAMING_SNAKE_CASE__ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_a , min_masks=2 , ) return batch class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , *_a , _a=1 , _a=0 , _a=1.0 , **_a ) -> str: """simple docstring""" super().__init__(*_a , **_a ) SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : Dict = max_gumbel_temp SCREAMING_SNAKE_CASE__ : str = min_gumbel_temp SCREAMING_SNAKE_CASE__ : Optional[Any] = gumbel_temp_decay def _a ( self , _a , _a ) -> torch.Tensor: """simple docstring""" model.train() SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_inputs(_a ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.compute_loss(_a , _a ) else: SCREAMING_SNAKE_CASE__ : str = self.compute_loss(_a , _a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE__ : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE__ : Dict = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE__ : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_a ).backward() elif self.use_apex: with amp.scale_loss(_a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _lowercase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = parser.parse_args_into_dataclasses() configure_logger(__lowerCAmelCase , __lowerCAmelCase ) # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE__ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE__ : Any = DatasetDict() SCREAMING_SNAKE_CASE__ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE__ : str = DatasetDict() SCREAMING_SNAKE_CASE__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCAmelCase ) def prepare_dataset(__lowerCAmelCase ): # check that all files have the correct sampling rate SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays SCREAMING_SNAKE_CASE__ : Union[str, Any] = datasets.map( __lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long SCREAMING_SNAKE_CASE__ : List[str] = vectorized_datasets.filter( lambda __lowerCAmelCase : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCAmelCase ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` SCREAMING_SNAKE_CASE__ : str = vectorized_datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaForPreTraining(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = DataCollatorForWavaVecaPretraining(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = WavaVecaPreTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=__lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
56
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) UpperCAmelCase_ = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic UpperCAmelCase_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowerCAmelCase_ ( snake_case_ : tf.Tensor , snake_case_ : Optional[int] = None , snake_case_ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Optional[Any]=1E-5 , snake_case_ : str=-1 ) -> int: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized UpperCAmelCase_ , UpperCAmelCase_ = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase_ = [1] * inputs.shape.rank UpperCAmelCase_ = shape_list(snake_case_ )[axis] UpperCAmelCase_ = tf.reshape(snake_case_ , snake_case_ ) UpperCAmelCase_ = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase_ = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any]=0 , snake_case_ : Any=-1 ) -> List[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase_ = tf.shape(snake_case_ ) UpperCAmelCase_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(snake_case_ , tf.Tensor ): UpperCAmelCase_ = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCAmelCase_ ( snake_case_ : tf.Tensor , snake_case_ : int , snake_case_ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase_ = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) UpperCAmelCase_ = np.asarray(snake_case_ ) UpperCAmelCase_ = 1 UpperCAmelCase_ = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase_ = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): UpperCAmelCase_ = chunk_data else: UpperCAmelCase_ = data def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : str ) -> Tuple: '''simple docstring''' if name in group.attrs: UpperCAmelCase_ = [n.decode("utf8" ) if hasattr(snake_case_ , "decode" ) else n for n in group.attrs[name]] else: UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(snake_case_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCAmelCase_ ( snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' def _expand_single_ad_tensor(snake_case_ : Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
def UpperCAmelCase_ (_lowerCAmelCase : int = 50 ): __UpperCamelCase : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
355
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : Dict = {"vocab_file": "spm_char.model"} lowercase : Tuple = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } lowercase : Union[str, Any] = { "microsoft/speecht5_asr": 1024, "microsoft/speecht5_tts": 1024, "microsoft/speecht5_vc": 1024, } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Dict = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' __UpperCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) __UpperCamelCase : List[Any] = vocab_file __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' __UpperCamelCase : Any = self.__dict__.copy() __UpperCamelCase : Union[str, Any] = None return state def __setstate__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : List[Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> str: '''simple docstring''' return self.sp_model.piece_to_id(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = self.sp_model.IdToPiece(__UpperCamelCase ) return token def __lowerCamelCase ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token __UpperCamelCase : Any = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) __UpperCamelCase : str = [1] if token_ids_a is None: return ([0] * len(__UpperCamelCase )) + suffix_ones return ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase : Optional[Any] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: __UpperCamelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
171
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "t5" lowercase__ = ["past_key_values"] lowercase__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Dict ,lowercase_ : List[Any]=3_2_1_2_8 ,lowercase_ : List[str]=5_1_2 ,lowercase_ : List[str]=6_4 ,lowercase_ : str=2_0_4_8 ,lowercase_ : Any=6 ,lowercase_ : Any=None ,lowercase_ : Any=8 ,lowercase_ : List[Any]=3_2 ,lowercase_ : Dict=1_2_8 ,lowercase_ : List[Any]=0.1 ,lowercase_ : Any=1E-6 ,lowercase_ : Any=1.0 ,lowercase_ : List[Any]="relu" ,lowercase_ : List[str]=True ,lowercase_ : List[Any]=True ,lowercase_ : Union[str, Any]=0 ,lowercase_ : Tuple=1 ,**lowercase_ : Optional[int] ,): lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Union[str, Any] = d_model lowerCAmelCase__ : int = d_kv lowerCAmelCase__ : str = d_ff lowerCAmelCase__ : Optional[Any] = num_layers lowerCAmelCase__ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ : Dict = num_heads lowerCAmelCase__ : Optional[Any] = relative_attention_num_buckets lowerCAmelCase__ : Optional[Any] = relative_attention_max_distance lowerCAmelCase__ : Any = dropout_rate lowerCAmelCase__ : Optional[Any] = layer_norm_epsilon lowerCAmelCase__ : Dict = initializer_factor lowerCAmelCase__ : str = feed_forward_proj lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : Optional[Any] = self.feed_forward_proj.split('''-''' ) lowerCAmelCase__ : Tuple = act_info[-1] lowerCAmelCase__ : List[Any] = act_info[0] == '''gated''' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase__ : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=lowercase_ ,eos_token_id=lowercase_ ,is_encoder_decoder=lowercase_ ,**lowercase_ ,) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @property def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowerCAmelCase__ : Tuple = '''past_encoder_sequence + sequence''' lowerCAmelCase__ : List[Any] = {0: '''batch'''} lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase_ ,direction='''inputs''' ) return common_inputs @property def __lowerCAmelCase ( self : Any ): return 1_3
106
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") UpperCAmelCase, UpperCAmelCase : Optional[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") UpperCAmelCase : Dict = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: UpperCAmelCase : str = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase : str = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE_ : str = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: int , UpperCamelCase: Union[str, Any]=13 , UpperCamelCase: List[Any]=7 , UpperCamelCase: Any=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: str=True , UpperCamelCase: Optional[int]=99 , UpperCamelCase: Optional[Any]=32 , UpperCamelCase: Tuple=5 , UpperCamelCase: Optional[int]=4 , UpperCamelCase: int=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=0.1 , UpperCamelCase: Tuple=5_12 , UpperCamelCase: List[str]=16 , UpperCamelCase: List[str]=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: List[str]=False , UpperCamelCase: int=True , UpperCamelCase: Union[str, Any]="None" , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=4 , UpperCamelCase: List[str]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.get_config() A__ = 3_00 return config def UpperCamelCase ( self: List[Any] , UpperCamelCase: str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase ( self: Tuple , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = DebertaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase , token_type_ids=UpperCamelCase )[0] A__ = model(UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: str ): """simple docstring""" A__ = self.num_labels A__ = DebertaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int ): """simple docstring""" A__ = self.num_labels A__ = DebertaForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Tuple , UpperCamelCase: Any ): """simple docstring""" A__ = DebertaForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = DebertaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DebertaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) A__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
69
0
def __UpperCAmelCase ( a_): snake_case_ = [0 for i in range(len(a_))] # initialize interval's left pointer and right pointer snake_case_ , snake_case_ = 0, 0 for i in range(1 , len(a_)): # case when current index is inside the interval if i <= right_pointer: snake_case_ = min(right_pointer - i + 1 , z_result[i - left_pointer]) snake_case_ = min_edge while go_next(a_ , a_ , a_): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case_ , snake_case_ = i, i + z_result[i] - 1 return z_result def __UpperCAmelCase ( a_ , a_ , a_): return i + z_result[i] < len(a_) and s[z_result[i]] == s[i + z_result[i]] def __UpperCAmelCase ( a_ , a_): snake_case_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case_ = z_function(pattern + input_str) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(a_): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
178
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline _SCREAMING_SNAKE_CASE = ["""prompt"""] _SCREAMING_SNAKE_CASE = ["""prompt""", """negative_prompt"""] _SCREAMING_SNAKE_CASE = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE = False @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return 3_2 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return 3_2 @property def SCREAMING_SNAKE_CASE__ ( self : int ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : int ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return 1_0_0 @property def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase_ : str = { 'num_attention_heads': 2, 'attention_head_dim': 1_2, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } lowerCAmelCase_ : Optional[Any] = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase_ : List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowerCAmelCase_ : Optional[Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE_ ) return model @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , do_resize=SCREAMING_SNAKE_CASE_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , ) return image_processor def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Optional[int] = self.dummy_prior lowerCAmelCase_ : Optional[int] = self.dummy_image_encoder lowerCAmelCase_ : Union[str, Any] = self.dummy_text_encoder lowerCAmelCase_ : Optional[Any] = self.dummy_tokenizer lowerCAmelCase_ : str = self.dummy_image_processor lowerCAmelCase_ : List[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=10.0 , ) lowerCAmelCase_ : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = 'cpu' lowerCAmelCase_ : str = self.get_dummy_components() lowerCAmelCase_ : str = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : List[Any] = output.image_embeds lowerCAmelCase_ : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowerCAmelCase_ : Optional[int] = image[0, -1_0:] lowerCAmelCase_ : int = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowerCAmelCase_ : Any = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : int = torch_device == 'cpu' lowerCAmelCase_ : int = True lowerCAmelCase_ : Any = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = torch_device == 'cpu' lowerCAmelCase_ : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE_ , test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , )
289
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int ): # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[Any] = False while not completed: if counter == 1: self.reset() lowerCAmelCase_ : Any = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = self.update(SCREAMING_SNAKE_CASE_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Tuple ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : str ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCAmelCase_ : Union[str, Any] = token_ids lowerCAmelCase_ : Union[str, Any] = len(self.token_ids ) lowerCAmelCase_ : Union[str, Any] = -1 # the index of the currently fulfilled step lowerCAmelCase_ : Dict = False def SCREAMING_SNAKE_CASE__ ( self : int ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.fulfilled_idx += 1 lowerCAmelCase_ : Optional[int] = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : List[str] = completed else: # failed to make progress. lowerCAmelCase_ : Optional[Any] = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = 0 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple=False ): lowerCAmelCase_ : Any = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : int = self.seqlen lowerCAmelCase_ : Dict = self.fulfilled_idx lowerCAmelCase_ : Optional[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): lowerCAmelCase_ : Tuple = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] ) lowerCAmelCase_ : Optional[Any] = {} for token_ids in nested_token_ids: lowerCAmelCase_ : Union[str, Any] = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ): if token_id not in level: lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Tuple = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) lowerCAmelCase_ : Union[str, Any] = root def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : str = self.trie for current_token in current_seq: lowerCAmelCase_ : Optional[int] = start[current_token] lowerCAmelCase_ : Dict = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : Any = self.next_tokens(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 0 def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Tuple = list(root.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Any = self.count_leaves(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) != leaf_count class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCAmelCase_ : Dict = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = nested_token_ids lowerCAmelCase_ : Tuple = self.trie.max_height lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : int = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : Optional[int] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.current_seq.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = True else: lowerCAmelCase_ : List[str] = True self.reset() lowerCAmelCase_ : Dict = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase_ : List[str] = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : int = False lowerCAmelCase_ : Optional[Any] = [] def SCREAMING_SNAKE_CASE__ ( self : str ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict=False ): lowerCAmelCase_ : Dict = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : Dict = self.seqlen lowerCAmelCase_ : Optional[Any] = self.current_seq lowerCAmelCase_ : List[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Constraint] ): lowerCAmelCase_ : Optional[int] = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase_ : Optional[int] = max([c.seqlen for c in constraints] ) lowerCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = None lowerCAmelCase_ : Optional[int] = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase_ : List[Any] = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : Dict = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = self.add(SCREAMING_SNAKE_CASE_ ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = False, False if self.completed: lowerCAmelCase_ : Any = True lowerCAmelCase_ : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Any = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase_ : str = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase_ : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : str = pending_constraint.update(SCREAMING_SNAKE_CASE_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = None if not complete and stepped: lowerCAmelCase_ : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase_ : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase_ : Optional[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=True ): lowerCAmelCase_ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase_ : Any = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase_ : List[str] = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
289
1
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(__UpperCAmelCase ), magnitude * sin(__UpperCAmelCase )] return [magnitude * cos(radians(__UpperCAmelCase ) ), magnitude * sin(radians(__UpperCAmelCase ) )] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 10**-1 ) -> bool: '''simple docstring''' snake_case_ = cross(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = sum(__UpperCAmelCase ) return abs(__UpperCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works a : Tuple = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) a : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a : Union[str, Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a : List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a : List[Any] = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) a : str = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
56
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Any = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = DPTConfig() if "large" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = [5, 11, 17, 23] snake_case_ = [256, 512, 1024, 1024] snake_case_ = (1, 384, 384) if "ade" in checkpoint_url: snake_case_ = True snake_case_ = 150 snake_case_ = '''huggingface/label-files''' snake_case_ = '''ade20k-id2label.json''' snake_case_ = json.load(open(cached_download(hf_hub_url(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ) ), '''r''' ) ) snake_case_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = [1, 150, 480, 480] return config, expected_shape def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case_ = name.replace('''pretrained.model''', '''dpt.encoder''' ) if "pretrained.model" in name: snake_case_ = name.replace('''pretrained.model''', '''dpt.embeddings''' ) if "patch_embed" in name: snake_case_ = name.replace('''patch_embed''', '''patch_embeddings''' ) if "pos_embed" in name: snake_case_ = name.replace('''pos_embed''', '''position_embeddings''' ) if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "proj" in name and "project" not in name: snake_case_ = name.replace('''proj''', '''projection''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''', '''layer''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''', '''layernorm_after''' ) if "scratch.output_conv" in name: snake_case_ = name.replace('''scratch.output_conv''', '''head''' ) if "scratch" in name: snake_case_ = name.replace('''scratch''', '''neck''' ) if "layer1_rn" in name: snake_case_ = name.replace('''layer1_rn''', '''convs.0''' ) if "layer2_rn" in name: snake_case_ = name.replace('''layer2_rn''', '''convs.1''' ) if "layer3_rn" in name: snake_case_ = name.replace('''layer3_rn''', '''convs.2''' ) if "layer4_rn" in name: snake_case_ = name.replace('''layer4_rn''', '''convs.3''' ) if "refinenet" in name: snake_case_ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case_ = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: snake_case_ = name.replace('''out_conv''', '''projection''' ) if "resConfUnit1" in name: snake_case_ = name.replace('''resConfUnit1''', '''residual_layer1''' ) if "resConfUnit2" in name: snake_case_ = name.replace('''resConfUnit2''', '''residual_layer2''' ) if "conv1" in name: snake_case_ = name.replace('''conv1''', '''convolution1''' ) if "conv2" in name: snake_case_ = name.replace('''conv2''', '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: snake_case_ = name.replace('''pretrained''', '''dpt''' ) if "bn" in name: snake_case_ = name.replace('''bn''', '''batch_norm''' ) if "head" in name: snake_case_ = name.replace('''head''', '''head.head''' ) if "encoder.norm" in name: snake_case_ = name.replace('''encoder.norm''', '''layernorm''' ) if "auxlayer" in name: snake_case_ = name.replace('''auxlayer''', '''auxiliary_head.head''' ) return name def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) snake_case_ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[: config.hidden_size, :] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(__UpperCAmelCase, stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ ,snake_case_ = get_dpt_config(__UpperCAmelCase ) # load original state_dict from URL snake_case_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase, map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(__UpperCAmelCase ) snake_case_ = val # read in qkv matrices read_in_q_k_v(__UpperCAmelCase, __UpperCAmelCase ) # load HuggingFace model snake_case_ = DPTForSemanticSegmentation(__UpperCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # Check outputs on an image snake_case_ = 480 if '''ade''' in checkpoint_url else 384 snake_case_ = DPTImageProcessor(size=__UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(__UpperCAmelCase, return_tensors='''pt''' ) # forward pass snake_case_ = model(**__UpperCAmelCase ).logits if '''ade''' in checkpoint_url else model(**__UpperCAmelCase ).predicted_depth # Assert logits snake_case_ = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: snake_case_ = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__UpperCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3], __UpperCAmelCase, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], __UpperCAmelCase ) ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase, __UpperCAmelCase ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=__UpperCAmelCase, ) image_processor.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase, __UpperCAmelCase ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=__UpperCAmelCase, ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) a : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
56
1
'''simple docstring''' def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[Any], a_: List[str], a_: int, a_: Tuple, a_: Any ): if index == r: for j in range(__SCREAMING_SNAKE_CASE ): print(data[j], end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase : List[Any] = arr[i] combination_util(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, index + 1, __SCREAMING_SNAKE_CASE, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __UpperCAmelCase ( a_: List[Any], a_: List[str], a_: Optional[Any] ): _UpperCAmelCase : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, 0, __SCREAMING_SNAKE_CASE, 0 ) if __name__ == "__main__": # Driver code to check the function above __a = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __a :int = None __a :Dict = logging.get_logger(__name__) __a :Dict = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a :Optional[Any] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } __a :List[str] = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __a :int = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class _a ( lowerCAmelCase__ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Tuple = ['input_ids', 'attention_mask'] _lowerCamelCase : Tuple = MBartTokenizer _lowerCamelCase : List[Any] = [] _lowerCamelCase : str = [] def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : str="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : str=None , UpperCAmelCase : Dict=None , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[int] , ): A_ = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) A_ = vocab_file A_ = False if not self.vocab_file else True A_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) A_ = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ = src_lang if src_lang is not None else """en_XX""" A_ = self.convert_tokens_to_ids(self._src_lang ) A_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self : List[Any] ): return self._src_lang @src_lang.setter def __A ( self : int , UpperCAmelCase : Union[str, Any] ): A_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : str = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A_ = src_lang A_ = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) A_ = self.convert_tokens_to_ids(_lowerCamelCase ) A_ = tgt_lang_id return inputs def __A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = "en_XX" , UpperCAmelCase : int = None , UpperCAmelCase : Optional[int] = "ro_RO" , **UpperCAmelCase : List[Any] , ): A_ = src_lang A_ = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __A ( self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self : str , UpperCAmelCase : Tuple ): A_ = self.convert_tokens_to_ids(_lowerCamelCase ) A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self : Optional[int] , UpperCAmelCase : Union[str, Any] ): A_ = self.convert_tokens_to_ids(_lowerCamelCase ) A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return A_ = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
312
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Dict = embed_dim UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : Dict = num_heads UpperCAmelCase__ : Any = window_size UpperCAmelCase__ : str = mlp_ratio UpperCAmelCase__ : str = qkv_bias UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : Dict = drop_path_rate UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Union[str, Any] = use_absolute_embeddings UpperCAmelCase__ : Optional[int] = patch_norm UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Tuple = encoder_stride UpperCAmelCase__ : Optional[int] = out_features UpperCAmelCase__ : str = out_indices def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels def _a (self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Dict = model(_lowerCamelCase ) UpperCAmelCase__ : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): UpperCAmelCase__ : Union[str, Any] = ["""stem"""] UpperCAmelCase__ : List[Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = MaskFormerSwinModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a (self ): """simple docstring""" return def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _a (self ): """simple docstring""" pass def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCAmelCase__ : str = outputs.hidden_states UpperCAmelCase__ : str = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length UpperCAmelCase__ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : str = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has""" F""" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) UpperCAmelCase__ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) @require_torch class lowerCamelCase ( unittest.TestCase , lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = MaskFormerSwinModelTester(self ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase__ : Tuple = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() UpperCAmelCase__ : int = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase__ : List[str] = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase__ : List[str] = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
171
0
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins _lowerCAmelCase : Dict = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : str )-> Optional[int]: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> Any: '''simple docstring''' config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=A__ ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Optional[int] )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = tmp_path_factory.getbasetemp() / "cache" UpperCAmelCase__ : Dict = test_hf_cache_home / "datasets" UpperCAmelCase__ : List[str] = test_hf_cache_home / "metrics" UpperCAmelCase__ : int = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(A__ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(A__ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(A__ ) ) UpperCAmelCase__ : List[Any] = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(A__ ) ) UpperCAmelCase__ : List[Any] = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(A__ ) ) @pytest.fixture(autouse=A__ , scope="session" ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=A__ ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , A__ ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Optional[int]: '''simple docstring''' monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , A__ )
358
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : str = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'lilt' def __init__( self , a=3_05_22 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-12 , a=0 , a="absolute" , a=None , a=4 , a=10_24 , **a , ): super().__init__(pad_token_id=a , **a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = classifier_dropout UpperCamelCase__ = channel_shrink_ratio UpperCamelCase__ = max_ad_position_embeddings
80
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: while a != 0: snake_case_ , snake_case_ = b % a, a return b def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: if gcd(UpperCAmelCase , UpperCAmelCase ) != 1: snake_case_ = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = 1, 0, a snake_case_ , snake_case_ , snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
69
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Union[str, Any] = KandinskyImgaImgPipeline snake_case__ : List[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] snake_case__ : str = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] snake_case__ : Optional[int] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case__ : List[str] = False @property def _A ( self : Tuple ): return 32 @property def _A ( self : Any ): return 32 @property def _A ( self : Tuple ): return self.time_input_dim @property def _A ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def _A ( self : str ): return 100 @property def _A ( self : Any ): UpperCamelCase :Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _A ( self : Dict ): torch.manual_seed(0 ) UpperCamelCase :Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCamelCase :List[Any] = MultilingualCLIP(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = text_encoder.eval() return text_encoder @property def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :Optional[int] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase :Union[str, Any] = UNetaDConditionModel(**__lowerCamelCase ) return model @property def _A ( self : List[str] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :int = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Any ): UpperCamelCase :Optional[Any] = self.dummy_text_encoder UpperCamelCase :List[str] = self.dummy_tokenizer UpperCamelCase :str = self.dummy_unet UpperCamelCase :Optional[int] = self.dummy_movq UpperCamelCase :Tuple = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCamelCase :List[Any] = DDIMScheduler(**__lowerCamelCase ) UpperCamelCase :int = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _A ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int=0 ): UpperCamelCase :Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) UpperCamelCase :Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCamelCase ) # create init_image UpperCamelCase :List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) UpperCamelCase :Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase :str = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("""RGB""" ).resize((256, 256) ) if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :int = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :int = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _A ( self : Dict ): UpperCamelCase :Union[str, Any] = """cpu""" UpperCamelCase :Tuple = self.get_dummy_components() UpperCamelCase :Union[str, Any] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :Any = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :str = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) UpperCamelCase :int = output.images UpperCamelCase :List[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] UpperCamelCase :Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase :int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase :Union[str, Any] = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Optional[int] ): UpperCamelCase :Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) UpperCamelCase :List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCamelCase :List[Any] = """A red cartoon frog, 4k""" UpperCamelCase :int = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) UpperCamelCase :int = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) UpperCamelCase :Tuple = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase :Optional[Any] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase :Any = pipeline( __lowerCamelCase , image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) UpperCamelCase :Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
351
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ : Optional[Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" UpperCamelCase :List[str] = [] for i in range(len(__magic_name__ ) ): UpperCamelCase :Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase :Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__magic_name__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__magic_name__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(__magic_name__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase :str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__magic_name__ ) return next_generation def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> list[Image.Image]: """simple docstring""" UpperCamelCase :int = [] for _ in range(__magic_name__ ): # Create output image UpperCamelCase :int = Image.new("""RGB""" , (len(cells[0] ), len(__magic_name__ )) ) UpperCamelCase :Tuple = img.load() # Save cells to image for x in range(len(__magic_name__ ) ): for y in range(len(cells[0] ) ): UpperCamelCase :Union[str, Any] = 255 - cells[y][x] * 255 UpperCamelCase :int = (colour, colour, colour) # Save image images.append(__magic_name__ ) UpperCamelCase :Any = new_generation(__magic_name__ ) return images if __name__ == "__main__": UpperCAmelCase_ : Any = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
62
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = len(lowercase ) for i in range(1 ,lowercase ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(lowercase ,lowercase ,-1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": UpperCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
289
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase__ = logging.get_logger(__name__) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = UNetaDModel _snake_case : List[str] = 'sample' @property def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : List[Any] ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Optional[Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = UNetaDModel _snake_case : Optional[Any] = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = 4 _UpperCAmelCase = 4 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Optional[Any] ): return (4, 32, 32) @property def lowerCAmelCase_ ( self : Dict ): return (4, 32, 32) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : str ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model_accelerate.to(__lowerCAmelCase ) model_accelerate.eval() _UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) _UpperCAmelCase = model_accelerate(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase , low_cpu_mem_usage=__lowerCAmelCase ) model_normal_load.to(__lowerCAmelCase ) model_normal_load.eval() _UpperCAmelCase = model_normal_load(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__lowerCAmelCase ) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) ) class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[Any] = UNetaDModel _snake_case : str = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Any ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = self.dummy_input _UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(__lowerCAmelCase ) _UpperCAmelCase = noise _UpperCAmelCase = model(**__lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (256, 256) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : List[str] ): # not required for this model pass
289
1
'''simple docstring''' import string def UpperCamelCase_ ( A__ : str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): lowerCAmelCase_ : Tuple = """""" for symbol in message: if symbol in string.ascii_uppercase: lowerCAmelCase_ : List[Any] = string.ascii_uppercase.find(A__ ) lowerCAmelCase_ : int = num - key if num < 0: lowerCAmelCase_ : Tuple = num + len(string.ascii_uppercase ) lowerCAmelCase_ : int = translated + string.ascii_uppercase[num] else: lowerCAmelCase_ : Union[str, Any] = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Any = input("""Encrypted message: """ ) lowerCAmelCase_ : Optional[Any] = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase_ ( A__ : np.ndarray , A__ : np.ndarray , A__ : np.ndarray , A__ : int , A__ : int ): '''simple docstring''' lowerCAmelCase_ : List[Any] = cva.getAffineTransform(A__ , A__ ) return cva.warpAffine(A__ , A__ , (rows, cols) ) if __name__ == "__main__": # read original image __A : Dict = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __A : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Dict = gray_img.shape # set different points to rotate image __A : List[str] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Tuple = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : List[Any] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : Optional[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Dict = plt.figure(1) __A : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
89
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Tuple = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Optional[int] = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: lowercase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
20
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __A : Tuple = logging.get_logger(__name__) __A : Tuple = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _a ( lowerCamelCase__): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : int=None , __UpperCamelCase : Any=None , *__UpperCamelCase : Dict , **__UpperCamelCase : List[Any] )->str: super().__init__(*lowercase__ , **lowercase__ ) if config is None: assert isinstance(self.model , lowercase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , lowercase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ''' padding..''' ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowercase__ ( self : int , __UpperCamelCase : int )->List[Any]: if self.optimizer is None: _UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] _UpperCAmelCase = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {'''scale_parameter''': False, '''relative_step''': False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=lowercase__ , optim=lowercase__ , **lowercase__ , ) else: _UpperCAmelCase = optimizer_cls(lowercase__ , **lowercase__ ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(lowercase__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowercase__ ) return scheduler def lowercase__ ( self : List[Any] )->Dict: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] )->List[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**lowercase__ , use_cache=lowercase__ )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**lowercase__ , labels=lowercase__ , use_cache=lowercase__ )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**lowercase__ , use_cache=lowercase__ )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(lowercase__ , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(lowercase__ , lowercase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = inputs.pop('''labels''' ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) return loss def lowercase__ ( self : int , __UpperCamelCase : nn.Module , __UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] , __UpperCamelCase : bool , __UpperCamelCase : Optional[List[str]] = None , )->Union[str, Any]: _UpperCAmelCase = self._prepare_inputs(lowercase__ ) _UpperCAmelCase = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **lowercase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs['''max_length'''] ) _UpperCAmelCase = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] )->Tuple: # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F' padded to `max_length`={max_length}' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" from collections import deque class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a ): __a = process_name # process name __a = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __a = arrival_time __a = burst_time # remaining burst time __a = 0 # total time of the process wait in ready queue __a = 0 # time from arrival time to completion time class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , ): # total number of mlfq's queues __a = number_of_queues # time slice of queues that round robin algorithm applied __a = time_slices # unfinished process is in this ready_queue __a = queue # current time __a = current_time # finished process is in this sequence queue __a = deque() def __UpperCAmelCase ( self ): __a = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __UpperCAmelCase ( self , _a ): __a = [] for i in range(len(_a ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __UpperCAmelCase ( self , _a ): __a = [] for i in range(len(_a ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __UpperCAmelCase ( self , _a ): __a = [] for i in range(len(_a ) ): completion_times.append(queue[i].stop_time ) return completion_times def __UpperCAmelCase ( self , _a ): return [q.burst_time for q in queue] def __UpperCAmelCase ( self , _a ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __UpperCAmelCase ( self , _a ): __a = deque() # sequence deque of finished process while len(_a ) != 0: __a = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_a ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __a = 0 # set the process's turnaround time because it is finished __a = self.current_time - cp.arrival_time # set the completion time __a = self.current_time # add the process to queue that has finished queue finished.append(_a ) self.finish_queue.extend(_a ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __UpperCAmelCase ( self , _a , _a ): __a = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_a ) ): __a = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_a ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __a = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_a ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __a = 0 # set the finish time __a = self.current_time # update the process' turnaround time because it is finished __a = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_a ) self.finish_queue.extend(_a ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __UpperCAmelCase ( self ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __a , __a = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowercase_ = Process("P1", 0, 5_3) lowercase_ = Process("P2", 0, 1_7) lowercase_ = Process("P3", 0, 6_8) lowercase_ = Process("P4", 0, 2_4) lowercase_ = 3 lowercase_ = [1_7, 2_5] lowercase_ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowercase_ = Process("P1", 0, 5_3) lowercase_ = Process("P2", 0, 1_7) lowercase_ = Process("P3", 0, 6_8) lowercase_ = Process("P4", 0, 2_4) lowercase_ = 3 lowercase_ = [1_7, 2_5] lowercase_ = deque([Pa, Pa, Pa, Pa]) lowercase_ = MLFQ(number_of_queues, time_slices, queue, 0) lowercase_ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
45
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = BlenderbotSmallTokenizer A = False def a_ (self ) -> List[str]: super().setUp() __UpperCamelCase : Optional[Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __UpperCamelCase : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __UpperCamelCase : Any = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __UpperCamelCase : int = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def a_ (self , **_UpperCAmelCase ) -> Dict: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a_ (self , _UpperCAmelCase ) -> str: __UpperCamelCase : List[Any] = "adapt act apte" __UpperCamelCase : Dict = "adapt act apte" return input_text, output_text def a_ (self ) -> int: __UpperCamelCase : List[str] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase : str = "adapt act apte" __UpperCamelCase : List[str] = ["adapt", "act", "ap@@", "te"] __UpperCamelCase : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Dict = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCamelCase : Any = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def a_ (self ) -> int: __UpperCamelCase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] __UpperCamelCase : Dict = "I am a small frog." __UpperCamelCase : Any = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["input_ids"] __UpperCamelCase : Optional[Any] = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a_ (self ) -> List[Any]: __UpperCamelCase : Dict = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __UpperCamelCase : Tuple = "I am a small frog ." __UpperCamelCase : List[str] = "." __UpperCamelCase : Any = tok(_UpperCAmelCase )["input_ids"] __UpperCamelCase : Optional[Any] = tok(_UpperCAmelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
298
0
__snake_case : Union[str, Any] ='Input must be a string of 8 numbers plus letter' __snake_case : int ='TRWAGMYFPDXBNJZSQVHLCKE' def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : Dict = f"""Expected string as input, found {type(lowerCamelCase_).__name__}""" raise TypeError(lowerCamelCase_) lowerCAmelCase__ : Tuple = spanish_id.replace('''-''' ,'''''').upper() if len(lowerCamelCase_) != 9: raise ValueError(lowerCamelCase_) try: lowerCAmelCase__ : Union[str, Any] = int(spanish_id_clean[0:8]) lowerCAmelCase__ : Optional[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase_) from ex if letter.isdigit(): raise ValueError(lowerCamelCase_) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
94
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=7 ,__lowerCamelCase=3 ,__lowerCamelCase=18 ,__lowerCamelCase=30 ,__lowerCamelCase=4_00 ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase=False ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=[0.5, 0.5, 0.5] ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : List[Any] = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Union[str, Any] = do_resize lowerCAmelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} lowerCAmelCase__ : List[str] = do_thumbnail lowerCAmelCase__ : str = do_align_axis lowerCAmelCase__ : Optional[Any] = do_pad lowerCAmelCase__ : Tuple = do_normalize lowerCAmelCase__ : List[Any] = image_mean lowerCAmelCase__ : List[str] = image_std def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =DonutImageProcessor if is_vision_available() else None def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = DonutImageProcessingTester(self ) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : int = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Dict = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
94
1
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Dict = generate_pascal_triangle(SCREAMING_SNAKE_CASE__ ) for row_idx in range(SCREAMING_SNAKE_CASE__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) lowercase__ : Tuple = [] for current_row_idx in range(SCREAMING_SNAKE_CASE__ ): lowercase__ : Any = populate_current_row(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) triangle.append(SCREAMING_SNAKE_CASE__ ) return triangle def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase__ , lowercase__ : Union[str, Any] = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE__ ): calculate_current_element( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_row def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" lowercase__ : str = triangle[current_row_idx - 1][current_col_idx - 1] lowercase__ : int = triangle[current_row_idx - 1][current_col_idx] lowercase__ : Optional[Any] = above_to_left_elt + above_to_right_elt def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) lowercase__ : int = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE__ ): lowercase__ : str = [0] + result[-1] + [0] lowercase__ : int = row_index + 1 # Calculate the number of distinct elements in a row lowercase__ : Tuple = sum(divmod(SCREAMING_SNAKE_CASE__ , 2 ) ) lowercase__ : List[str] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase__ : List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase__ : List[str] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE__ ) return result def __lowerCamelCase ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase__ , lowerCamelCase__ ) -> None: lowercase__ : Optional[Any] = F"""{func.__name__}({value})""" lowercase__ : Optional[int] = timeit(F"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
130
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf_8' ) as f: __UpperCamelCase =csv.reader(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] for dataset in encoded_datasets: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCamelCase =np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =mc_label __UpperCamelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCamelCase =['_start_', '_delimiter_', '_classify_'] __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : str ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info('Encoding dataset...' ) __UpperCamelCase =load_rocstories_dataset(args.train_dataset ) __UpperCamelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCamelCase =(train_dataset, eval_dataset) __UpperCamelCase =tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer __UpperCamelCase =model.config.n_positions // 2 - 2 __UpperCamelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCamelCase =pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =tensor_datasets[0], tensor_datasets[1] __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =SequentialSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCamelCase =args.max_steps __UpperCamelCase =args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCamelCase =list(model.named_parameters() ) __UpperCamelCase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __UpperCamelCase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __UpperCamelCase =AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCamelCase =get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(SCREAMING_SNAKE_CASE__ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCamelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCamelCase ='Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCamelCase =model.module if hasattr(SCREAMING_SNAKE_CASE__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() __UpperCamelCase , __UpperCamelCase =0, 0 __UpperCamelCase , __UpperCamelCase =0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc='Evaluating' ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch with torch.no_grad(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =mc_logits.detach().cpu().numpy() __UpperCamelCase =mc_labels.to('cpu' ).numpy() __UpperCamelCase =accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCamelCase =eval_loss / nb_eval_steps __UpperCamelCase =eval_accuracy / nb_eval_examples __UpperCamelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCamelCase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __UpperCamelCase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
62
0
"""simple docstring""" import argparse import os import re import packaging.version lowercase__ = """examples/""" lowercase__ = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowercase__ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } lowercase__ = """README.md""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: """simple docstring""" with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase_ : Tuple = f.read() lowerCAmelCase_ : Tuple = REPLACE_PATTERNS[pattern] lowerCAmelCase_ : Dict = replace.replace("VERSION" , lowercase__ ) lowerCAmelCase_ : Any = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase__ ) def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="examples" ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=False ) -> Optional[Any]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def __lowerCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase_ : int = """🤗 Transformers currently provides the following architectures""" lowerCAmelCase_ : List[Any] = """1. Want to contribute a new model?""" with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase_ : str = f.readlines() # Find the start of the list. lowerCAmelCase_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): lowerCAmelCase_ : List[str] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase__ ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: lowerCAmelCase_ : int = f.read() lowerCAmelCase_ : List[Any] = REPLACE_PATTERNS["""init"""][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def __lowerCamelCase ( __UpperCamelCase=False ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: lowerCAmelCase_ : Optional[Any] = default_version.base_version elif patch: lowerCAmelCase_ : Optional[int] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCAmelCase_ : Union[str, Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCAmelCase_ : Union[str, Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(lowercase__ ) == 0: lowerCAmelCase_ : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def __lowerCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase_ : Dict = get_version() lowerCAmelCase_ : Dict = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCAmelCase_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. lowerCAmelCase_ : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(lowercase__ ) == 0: lowerCAmelCase_ : Dict = dev_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowercase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
356
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowercase__ = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
161
0
'''simple docstring''' from __future__ import annotations import numpy as np def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[np.ndarray, np.ndarray]: _a , _a : List[Any] = np.shape(lowerCAmelCase_ ) if rows != columns: _a : Any = ( '\'table\' has to be of square shaped array but got a ' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(lowerCAmelCase_ ) _a : str = np.zeros((rows, columns) ) _a : Dict = np.zeros((rows, columns) ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): _a : Any = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase_ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _a : Union[str, Any] = (table[i][j] - total) / upper[j][j] _a : int = 1 for j in range(lowerCAmelCase_ , lowerCAmelCase_ ): _a : Tuple = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase_ ) ) _a : List[Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( _UpperCamelCase ): @require_torch def __lowercase ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Optional[int] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : List[str] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : List[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : List[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : Any ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : Optional[int] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : str = self.get_env() _a : Optional[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _a : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _a : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _a : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Dict = self.get_env() _a : int = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network _a : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : int ): _a : Optional[Any] = '\nfrom transformers import pipeline\n ' _a : str = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _a : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _a : List[Any] = self.get_env() _a : Dict = '1' _a : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _a : str = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def __lowercase ( self : int ): _a : Optional[int] = '\nfrom transformers import AutoModel\n ' _a : List[Any] = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _a : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Tuple = self.get_env() _a : List[str] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : Optional[Any] = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
89
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : int ="encoder-decoder" UpperCamelCase__ : List[Any] =True def __init__( self :str , **_lowercase :Any) -> List[Any]: super().__init__(**_lowercase) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ = kwargs.pop('''encoder''') UpperCAmelCase_ = encoder_config.pop('''model_type''') UpperCAmelCase_ = kwargs.pop('''decoder''') UpperCAmelCase_ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = True @classmethod def __a ( cls :int , _lowercase :PretrainedConfig , _lowercase :PretrainedConfig , **_lowercase :str) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') UpperCAmelCase_ = True UpperCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase) def __a ( self :List[Any]) -> int: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.encoder.to_dict() UpperCAmelCase_ = self.decoder.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( __snake_case ): _UpperCAmelCase :int = ['image_processor', 'tokenizer'] _UpperCAmelCase :Optional[Any] = 'CLIPImageProcessor' _UpperCAmelCase :List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' UpperCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) UpperCamelCase : int = kwargs.pop("feature_extractor" ) UpperCamelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , **A_ ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCamelCase : int = self.tokenizer(A_ , return_tensors=A_ , **A_ ) if images is not None: UpperCamelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: UpperCamelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.tokenizer.model_input_names UpperCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def __UpperCamelCase( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
52
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class lowercase_ (SCREAMING_SNAKE_CASE__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 'swinv2' SCREAMING_SNAKE_CASE : str = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str ,lowercase__ : Union[str, Any]=2_2_4 ,lowercase__ : Tuple=4 ,lowercase__ : Union[str, Any]=3 ,lowercase__ : int=9_6 ,lowercase__ : Dict=[2, 2, 6, 2] ,lowercase__ : List[str]=[3, 6, 1_2, 2_4] ,lowercase__ : str=7 ,lowercase__ : Tuple=4.0 ,lowercase__ : List[str]=True ,lowercase__ : Union[str, Any]=0.0 ,lowercase__ : Tuple=0.0 ,lowercase__ : Any=0.1 ,lowercase__ : str="gelu" ,lowercase__ : Dict=False ,lowercase__ : int=0.0_2 ,lowercase__ : Dict=1e-5 ,lowercase__ : int=3_2 ,**lowercase__ : str ,): super().__init__(**_SCREAMING_SNAKE_CASE ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) __lowercase = (0, 0, 0, 0)
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''GLPNFeatureExtractor'''] lowerCAmelCase__ = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool snake_case : Union[str, Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) SCREAMING_SNAKE_CASE__ = 'translator' SCREAMING_SNAKE_CASE__ = AutoTokenizer SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE__ = LANGUAGE_CODES SCREAMING_SNAKE_CASE__ = ['text', 'text', 'text'] SCREAMING_SNAKE_CASE__ = ['text'] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) a :str = self.lang_to_code[src_lang] a :Optional[Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _lowerCamelCase , return_tensors='''pt''' , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.model.generate(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_lowerCamelCase )
94
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'ClapFeatureExtractor' SCREAMING_SNAKE_CASE__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): a :Dict = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: a :Optional[int] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if audios is not None: a :Tuple = self.feature_extractor( _lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and audios is not None: a :Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.tokenizer.model_input_names a :str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
94
1
from heapq import heappop, heappush import numpy as np def A(__a: np.ndarray , __a: tuple[int, int] , __a: tuple[int, int] , __a: bool , ): lowerCAmelCase_ , lowerCAmelCase_ = grid.shape lowerCAmelCase_ = [-1, 1, 0, 0] lowerCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCAmelCase_ , lowerCAmelCase_ = [(0, source)], set() lowerCAmelCase_ = np.full((rows, cols) , np.inf ) lowerCAmelCase_ = 0 lowerCAmelCase_ = np.empty((rows, cols) , dtype=__a ) lowerCAmelCase_ = None while queue: ((lowerCAmelCase_) , (lowerCAmelCase_)) = heappop(__a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) lowerCAmelCase_ , lowerCAmelCase_ = predecessors[x, y] path.append(__a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__a ) ): lowerCAmelCase_ , lowerCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__a , (dist + 1, (nx, ny)) ) lowerCAmelCase_ = dist + 1 lowerCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
22
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Any = 1_024 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 4_096 SCREAMING_SNAKE_CASE__ : Tuple = 24 SCREAMING_SNAKE_CASE__ : Any = 16 SCREAMING_SNAKE_CASE__ : Any = [5, 11, 17, 23] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [256, 512, 1_024, 1_024] SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = 150 SCREAMING_SNAKE_CASE__ : int = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ : int = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE__ : Tuple = json.load(open(cached_download(hf_hub_url(_snake_case ,_snake_case ,repo_type="""dataset""" ) ) ,"""r""" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = {int(_snake_case ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = idalabel SCREAMING_SNAKE_CASE__ : List[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Optional[Any] = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_snake_case ,_snake_case ) def lowercase_ ( _snake_case ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""pretrained.model""" ,"""dpt.encoder""" ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""pretrained.model""" ,"""dpt.embeddings""" ) if "patch_embed" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace("""patch_embed""" ,"""patch_embeddings""" ) if "pos_embed" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace("""pos_embed""" ,"""position_embeddings""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE__ : int = name.replace("""proj""" ,"""projection""" ) if "blocks" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""blocks""" ,"""layer""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ : Any = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""norm2""" ,"""layernorm_after""" ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""scratch.output_conv""" ,"""head""" ) if "scratch" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""scratch""" ,"""neck""" ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""layer1_rn""" ,"""convs.0""" ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""layer2_rn""" ,"""convs.1""" ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE__ : Any = name.replace("""layer3_rn""" ,"""convs.2""" ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""layer4_rn""" ,"""convs.3""" ) if "refinenet" in name: SCREAMING_SNAKE_CASE__ : List[str] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE__ : List[Any] = name.replace(f'''refinenet{layer_idx}''' ,f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""out_conv""" ,"""projection""" ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""resConfUnit1""" ,"""residual_layer1""" ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""resConfUnit2""" ,"""residual_layer2""" ) if "conv1" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""conv1""" ,"""convolution1""" ) if "conv2" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""conv2""" ,"""convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""pretrained.act_postprocess1.0.project.0""" ,"""neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE__ : Dict = name.replace("""pretrained.act_postprocess2.0.project.0""" ,"""neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" ,"""neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" ,"""neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace("""pretrained.act_postprocess1.3""" ,"""neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""" ,"""neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace("""pretrained.act_postprocess2.3""" ,"""neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace("""pretrained.act_postprocess2.4""" ,"""neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""pretrained.act_postprocess3.3""" ,"""neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE__ : List[Any] = name.replace("""pretrained.act_postprocess4.3""" ,"""neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace("""pretrained.act_postprocess4.4""" ,"""neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace("""pretrained""" ,"""dpt""" ) if "bn" in name: SCREAMING_SNAKE_CASE__ : Tuple = name.replace("""bn""" ,"""batch_norm""" ) if "head" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace("""head""" ,"""head.head""" ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE__ : str = name.replace("""encoder.norm""" ,"""layernorm""" ) if "auxlayer" in name: SCREAMING_SNAKE_CASE__ : int = name.replace("""auxlayer""" ,"""auxiliary_head.head""" ) return name def lowercase_ ( _snake_case ,_snake_case ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : List[str] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : str = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE__ : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : Dict = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ : str = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ) return im @torch.no_grad() def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = get_dpt_config(_snake_case ) # load original state_dict from URL SCREAMING_SNAKE_CASE__ : Optional[int] = torch.hub.load_state_dict_from_url(_snake_case ,map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_snake_case ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_snake_case ,_snake_case ) # load HuggingFace model SCREAMING_SNAKE_CASE__ : Optional[Any] = DPTForSemanticSegmentation(_snake_case ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE__ : Tuple = 480 if """ade""" in checkpoint_url else 384 SCREAMING_SNAKE_CASE__ : str = DPTImageProcessor(size=_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = prepare_img() SCREAMING_SNAKE_CASE__ : Dict = image_processor(_snake_case ,return_tensors="""pt""" ) # forward pass SCREAMING_SNAKE_CASE__ : Optional[int] = model(**_snake_case ).logits if """ade""" in checkpoint_url else model(**_snake_case ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] ,_snake_case ,atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] ,_snake_case ) ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=_snake_case ,) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=_snake_case ,) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) UpperCAmelCase__ : Any = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
25
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> np.ndarray: """simple docstring""" __A = cva.getAffineTransform(UpperCAmelCase , UpperCAmelCase ) return cva.warpAffine(UpperCAmelCase , UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image a__ : str = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value a__ : str = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a__ , a__ : Optional[int] = gray_img.shape # set different points to rotate image a__ : List[str] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) a__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) a__ : int = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) a__ : str = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list a__ : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a__ : List[str] = plt.figure(1) a__ : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
161
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _a = parser.parse_args() if args.model_type == "roberta": _a = RobertaForMaskedLM.from_pretrained(args.model_name) _a = "roberta" elif args.model_type == "gpt2": _a = GPTaLMHeadModel.from_pretrained(args.model_name) _a = "transformer" _a = model.state_dict() _a = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _a = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _a = f"""{prefix}.embeddings.{w}.weight""" _a = state_dict[param_name] for w in ["weight", "bias"]: _a = f"""{prefix}.embeddings.LayerNorm.{w}""" _a = state_dict[param_name] # Transformer Blocks # _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _a = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] _a = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _a = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[f"""lm_head.dense.{w}"""] _a = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _a = state_dict[f"""{prefix}.ln_f.{w}"""] _a = state_dict["lm_head.weight"] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
350
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __a ( __lowerCamelCase ): return x[0] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_letter_count(__lowerCamelCase ) UpperCAmelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) UpperCAmelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=__lowerCamelCase ) UpperCAmelCase_ : Any = "".join(freq_to_letter[freq] ) UpperCAmelCase_ : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase, reverse=__lowerCamelCase ) UpperCAmelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Any = get_frequency_order(__lowerCamelCase ) UpperCAmelCase_ : int = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowercase = sorted(string.lower() ) return len(a_ ) == len(set(a_ ) ) if __name__ == "__main__": UpperCAmelCase = input('''Enter a string ''').strip() UpperCAmelCase = is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
195
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE : Optional[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE : List[Any] = { """google/electra-small-generator""": 5_1_2, """google/electra-base-generator""": 5_1_2, """google/electra-large-generator""": 5_1_2, """google/electra-small-discriminator""": 5_1_2, """google/electra-base-discriminator""": 5_1_2, """google/electra-large-discriminator""": 5_1_2, } __SCREAMING_SNAKE_CASE : Dict = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class lowerCamelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowercase__ : Any = VOCAB_FILES_NAMES lowercase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = ElectraTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case__ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(snake_case__ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**snake_case__ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Tuple = 'gpt_neox_japanese' def __init__( self , lowerCamelCase__=3_2_0_0_0 , lowerCamelCase__=2_5_6_0 , lowerCamelCase__=3_2 , lowerCamelCase__=3_2 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=1.0_0 , lowerCamelCase__=1_0_0_0_0 , lowerCamelCase__=2_0_4_8 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=3_1_9_9_6 , lowerCamelCase__=3_1_9_9_9 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , **lowerCamelCase__ , ): super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_multiple_size _lowerCamelCase = hidden_act _lowerCamelCase = rotary_pct _lowerCamelCase = rotary_emb_base _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = use_cache _lowerCamelCase = attention_dropout _lowerCamelCase = hidden_dropout
73
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( __a , unittest.TestCase ): __a : Any = KandinskyVaaImgaImgPipeline __a : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """image"""] __a : int = [ """image_embeds""", """negative_image_embeds""", """image""", ] __a : Any = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __a : Union[str, Any] = False @property def A ( self : List[Any] ): '''simple docstring''' return 32 @property def A ( self : Dict ): '''simple docstring''' return 32 @property def A ( self : str ): '''simple docstring''' return self.time_input_dim @property def A ( self : Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : Optional[int] ): '''simple docstring''' return 100 @property def A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**lowercase ) return model @property def A ( self : Any ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase = DDIMScheduler(**lowercase ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : Optional[int] , lowercase : int , lowercase : List[Any]=0 ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowercase ) ).convert('''RGB''' ).resize((256, 256) ) if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase = '''A red cartoon frog, 4k''' UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) UpperCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = pipeline( image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase )
34
import functools def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: UpperCamelCase : Optional[int] = len(_lowerCAmelCase ) UpperCamelCase : List[str] = len(_lowerCAmelCase ) @functools.cache def min_distance(_lowerCAmelCase , _lowerCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCamelCase : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCAmelCase ) , 1 + min_distance(_lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import sys __A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = N ) -> int: lowercase__: Any = -sys.maxsize - 1 for i in range(len(__UpperCAmelCase ) - 1_2 ): lowercase__: Optional[int] = 1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: lowercase__: List[Any] = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase_ ( __lowercase : Sequence[float] , __lowercase : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _UpperCAmelCase = 0 if allow_empty_subarrays else float("-inf" ) _UpperCAmelCase = 0.0 for num in arr: _UpperCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _UpperCAmelCase = max(__lowercase , __lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __SCREAMING_SNAKE_CASE :Optional[int] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
22
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) class A_ : _lowerCamelCase : str _lowerCamelCase : str = None @staticmethod def lowercase ( ): raise NotImplementedError def lowercase ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : str , **snake_case_ : List[Any] ): raise NotImplementedError def lowercase ( self : Any , snake_case_ : int ): raise NotImplementedError def lowercase ( self : List[str] ): if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def lowercase ( cls : List[Any] ): return f'`pip install {cls.pip_package or cls.name}`' class A_ ( lowerCAmelCase_ ): _lowerCamelCase : int = """optuna""" @staticmethod def lowercase ( ): return is_optuna_available() def lowercase ( self : List[str] , snake_case_ : Any , snake_case_ : int , snake_case_ : str , **snake_case_ : Tuple ): return run_hp_search_optuna(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : int , snake_case_ : Optional[int] ): return default_hp_space_optuna(snake_case_ ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = """ray""" _lowerCamelCase : Tuple = """'ray[tune]'""" @staticmethod def lowercase ( ): return is_ray_available() def lowercase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : str , **snake_case_ : List[str] ): return run_hp_search_ray(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : Any , snake_case_ : str ): return default_hp_space_ray(snake_case_ ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : int = """sigopt""" @staticmethod def lowercase ( ): return is_sigopt_available() def lowercase ( self : Any , snake_case_ : int , snake_case_ : int , snake_case_ : str , **snake_case_ : Dict ): return run_hp_search_sigopt(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : Dict , snake_case_ : Optional[Any] ): return default_hp_space_sigopt(snake_case_ ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = """wandb""" @staticmethod def lowercase ( ): return is_wandb_available() def lowercase ( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : str , **snake_case_ : Optional[Any] ): return run_hp_search_wandb(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : Any , snake_case_ : Union[str, Any] ): return default_hp_space_wandb(snake_case_ ) __SCREAMING_SNAKE_CASE :Dict = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCAmelCase_ ( ) -> str: '''simple docstring''' _UpperCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowercase ) > 0: _UpperCAmelCase = available_backends[0].name if len(__lowercase ) > 1: logger.info( f'{len(__lowercase )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
22
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[List[PIL.Image.Image], np.ndarray] snake_case__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : np.ndarray snake_case__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Optional[int] = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
1
import unittest import numpy as np def a__ ( A_, A_, A_, A_ = None, ): '''simple docstring''' __magic_name__ = np.shape(A_ ) __magic_name__ = np.shape(A_ ) __magic_name__ = np.shape(A_ ) if shape_a[0] != shape_b[0]: __magic_name__ = ( """Expected the same number of rows for A and B. """ f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(A_ ) if shape_b[1] != shape_c[1]: __magic_name__ = ( """Expected the same number of columns for B and C. """ f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(A_ ) __magic_name__ = pseudo_inv if a_inv is None: try: __magic_name__ = np.linalg.inv(A_ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : int ) -> None: """simple docstring""" __magic_name__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __magic_name__ = np.array([[0, 3], [3, 0], [2, 3]] ) __magic_name__ = np.array([[2, 1], [6, 3]] ) __magic_name__ = schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = np.block([[a, b], [b.T, c]] ) __magic_name__ = np.linalg.det(UpperCamelCase__ ) __magic_name__ = np.linalg.det(UpperCamelCase__ ) __magic_name__ = np.linalg.det(UpperCamelCase__ ) self.assertAlmostEqual(UpperCamelCase__ , det_a * det_s ) def _lowercase ( self : List[Any] ) -> None: """simple docstring""" __magic_name__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __magic_name__ = np.array([[0, 3], [3, 0], [2, 3]] ) __magic_name__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : int ) -> None: """simple docstring""" __magic_name__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __magic_name__ = np.array([[0, 3], [3, 0], [2, 3]] ) __magic_name__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
88
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] lowercase__ = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : Any = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase_ : Tuple = int(re.match(r".*layer_(\d*).*" , __UpperCamelCase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 lowerCAmelCase_ : Any = re.search(r"[^\d](\d+)$" , str(__UpperCamelCase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) lowerCAmelCase_ : Union[str, Any] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" if bloom_config_file == "": lowerCAmelCase_ : Optional[int] = BloomConfig() else: lowerCAmelCase_ : List[Any] = BloomConfig.from_json_file(__UpperCamelCase ) if shard_model: lowerCAmelCase_ : Union[str, Any] = os.listdir(__UpperCamelCase ) lowerCAmelCase_ : str = sorted(filter(lambda __UpperCamelCase : s.startswith("layer" ) and "model_00" in s , __UpperCamelCase ) ) lowerCAmelCase_ : Dict = {"weight_map": {}, "metadata": {}} lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Dict = BloomConfig() for j, file in enumerate(__UpperCamelCase ): print("Processing file: {}".format(__UpperCamelCase ) ) lowerCAmelCase_ : Any = None for i in range(__UpperCamelCase ): # load all TP files lowerCAmelCase_ : Tuple = file.replace("model_00" , f'''model_0{i}''' ) lowerCAmelCase_ : Dict = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) , map_location="cpu" ) # Rename keys in the transformers names lowerCAmelCase_ : Tuple = list(temp.keys() ) for key in keys: lowerCAmelCase_ : List[str] = temp.pop(__UpperCamelCase ) if tensors is None: lowerCAmelCase_ : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : Dict = torch.cat([tensors[key], temp[key]] , dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Optional[int] = tensors[key] / pretraining_tp torch.save( __UpperCamelCase , os.path.join( __UpperCamelCase , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(__UpperCamelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase_ : str = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) , str(len(__UpperCamelCase ) ).zfill(5 ) ) lowerCAmelCase_ : str = BloomConfig() lowerCAmelCase_ : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME lowerCAmelCase_ : Tuple = total_size with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCamelCase , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f: lowerCAmelCase_ : str = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + "\n" f.write(__UpperCamelCase ) else: lowerCAmelCase_ : int = BloomModel(__UpperCamelCase ) lowerCAmelCase_ : Any = os.listdir(__UpperCamelCase ) lowerCAmelCase_ : str = sorted(filter(lambda __UpperCamelCase : s.startswith("layer" ) and "model_00" in s , __UpperCamelCase ) ) lowerCAmelCase_ : Tuple = None for i, file in enumerate(__UpperCamelCase ): lowerCAmelCase_ : int = None for i in range(__UpperCamelCase ): # load all TP files lowerCAmelCase_ : Optional[Any] = file.replace("model_00" , f'''model_0{i}''' ) lowerCAmelCase_ : Optional[Any] = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) , map_location="cpu" ) # Rename keys in the transformers names lowerCAmelCase_ : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase_ : List[Any] = temp.pop(__UpperCamelCase ) if tensors is None: lowerCAmelCase_ : Tuple = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : List[Any] = torch.cat([tensors[key], temp[key]] , dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : List[str] = tensors[key] / pretraining_tp lowerCAmelCase_ : List[Any] = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: lowerCAmelCase_ : Union[str, Any] = set(other_keys.missing_keys ) else: lowerCAmelCase_ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) lowerCAmelCase_ : int = pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowerCAmelCase_ : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: lowerCAmelCase_ : Tuple = model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) lowercase__ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
369
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = """lilt""" def __init__( self : Any , a_ : List[str]=3_05_22 , a_ : List[Any]=7_68 , a_ : Tuple=12 , a_ : Tuple=12 , a_ : str=30_72 , a_ : Union[str, Any]="gelu" , a_ : Union[str, Any]=0.1 , a_ : List[Any]=0.1 , a_ : List[Any]=5_12 , a_ : List[str]=2 , a_ : int=0.02 , a_ : Optional[int]=1e-1_2 , a_ : Any=0 , a_ : str="absolute" , a_ : List[Any]=None , a_ : Optional[int]=4 , a_ : str=10_24 , **a_ : Union[str, Any] , ): super().__init__(pad_token_id=a_ , **a_ ) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Tuple = position_embedding_type lowerCAmelCase_ : Union[str, Any] = classifier_dropout lowerCAmelCase_ : Optional[Any] = channel_shrink_ratio lowerCAmelCase_ : Dict = max_ad_position_embeddings
161
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_lowerCAmelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
23
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a ={ """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a ="""ETAOINSHRDLCUMWFGYPBVKJXQZ""" a ="""ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> dict[str, int]: __lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: return x[0] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : List[str] = get_letter_count(lowerCamelCase__ ) __lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCamelCase__ ) __lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = ''.join(freq_to_letter[freq] ) __lowerCamelCase : int = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCamelCase__ , reverse=lowerCamelCase__ ) __lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : str = get_frequency_order(lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
73
0
"""simple docstring""" snake_case_ = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
358
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case_ = 3 def _lowerCAmelCase ( lowercase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase = random.randrange(3 , lowercase_ ) if pow(lowercase_ , 2 , lowercase_ ) == 1: continue if pow(lowercase_ , lowercase_ , lowercase_ ) == 1: continue return g def _lowerCAmelCase ( lowercase_ ): print('Generating prime p...' ) UpperCAmelCase = rabin_miller.generate_large_prime(lowercase_ ) # select large prime number. UpperCAmelCase = primitive_root(lowercase_ ) # one primitive root on modulo p. UpperCAmelCase = random.randrange(3 , lowercase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase = cryptomath.find_mod_inverse(pow(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) UpperCAmelCase = (key_size, e_a, e_a, p) UpperCAmelCase = (key_size, d) return public_key, private_key def _lowerCAmelCase ( lowercase_ , lowercase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase = generate_key(lowercase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def _lowerCAmelCase ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
181
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : str , lowercase : Optional[int] , lowercase : List[str]=13 , lowercase : List[str]=7 , lowercase : Dict=True , lowercase : Optional[Any]=True , lowercase : List[str]=True , lowercase : Union[str, Any]=True , lowercase : List[str]=99 , lowercase : Optional[int]=16 , lowercase : Optional[int]=36 , lowercase : Union[str, Any]=6 , lowercase : Dict=6 , lowercase : Dict=6 , lowercase : Any=37 , lowercase : Tuple="gelu" , lowercase : Tuple=0.1 , lowercase : Tuple=0.1 , lowercase : Any=512 , lowercase : Dict=16 , lowercase : Union[str, Any]=2 , lowercase : List[str]=0.02 , lowercase : Any=3 , lowercase : Dict=4 , lowercase : Tuple=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = embedding_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_hidden_groups UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Any ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A ( self : List[str] , lowercase : str , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = AlbertModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , lowercase : Any , lowercase : Any , lowercase : int , lowercase : Dict , lowercase : int , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = AlbertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , sentence_order_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A ( self : str , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : int , lowercase : Dict , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = AlbertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : int , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = AlbertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = AlbertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , lowercase : List[Any] , lowercase : str , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = AlbertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = AlbertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowercase_ , lowercase_ , unittest.TestCase ): __a : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __a : Dict = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __a : int = True def A ( self : Union[str, Any] , lowercase : Dict , lowercase : Any , lowercase : Any=False ): '''simple docstring''' UpperCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : int ): '''simple docstring''' UpperCAmelCase = AlbertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*lowercase ) @slow def A ( self : Tuple ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = AlbertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = AlbertModel.from_pretrained('''albert-base-v2''' ) UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase , attention_mask=lowercase )[0] UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
34
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
from math import factorial def snake_case_(_UpperCamelCase = 100 ) -> Any: """simple docstring""" return sum(map(a_ , str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
367
from math import factorial def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_UpperCamelCase ) // (factorial(_UpperCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
278
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A = 'pt' elif is_tf_available(): _A = 'tf' else: _A = 'jax' class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ByTaTokenizer UpperCAmelCase__ : List[Any] = False def _a ( self ) -> Any: super().setUp() __UpperCamelCase =ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> Any: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _a ( self , **A_ ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ , A_=False , A_=20 , A_=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCamelCase =[] for i in range(len(A_ ) ): try: __UpperCamelCase =tokenizer.decode([i] , clean_up_tokenization_spaces=A_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCamelCase =list(filter(lambda A_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , A_ ) ) __UpperCamelCase =list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A_ ) , A_ ) ) if max_length is not None and len(A_ ) > max_length: __UpperCamelCase =toks[:max_length] if min_length is not None and len(A_ ) < min_length and len(A_ ) > 0: while len(A_ ) < min_length: __UpperCamelCase =toks + toks # toks_str = [t[1] for t in toks] __UpperCamelCase =[t[0] for t in toks] # Ensure consistency __UpperCamelCase =tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) if " " not in output_txt and len(A_ ) > 1: __UpperCamelCase =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A_ ) ) if with_prefix_space: __UpperCamelCase =' ' + output_txt __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) return output_txt, output_ids def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.ta_base_tokenizer __UpperCamelCase =tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __UpperCamelCase =tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _a ( self ) -> Any: __UpperCamelCase =self.ta_base_tokenizer __UpperCamelCase ='Unicode €.' __UpperCamelCase =tokenizer(A_ ) __UpperCamelCase =[88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , A_ ) # decoding __UpperCamelCase =tokenizer.decode(A_ ) self.assertEqual(A_ , 'Unicode €.</s>' ) __UpperCamelCase =tokenizer('e è é ê ë' ) __UpperCamelCase =[104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , A_ ) # decoding __UpperCamelCase =tokenizer.decode(A_ ) self.assertEqual(A_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _a ( self ) -> Any: __UpperCamelCase =self.ta_base_tokenizer __UpperCamelCase =['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __UpperCamelCase =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __UpperCamelCase =tokenizer(A_ , padding=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) if FRAMEWORK != "jax": __UpperCamelCase =list(batch.input_ids.numpy()[0] ) else: __UpperCamelCase =list(batch.input_ids.tolist()[0] ) self.assertListEqual(A_ , A_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _a ( self ) -> List[str]: __UpperCamelCase =self.ta_base_tokenizer __UpperCamelCase =['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase =tokenizer(A_ , padding=A_ , return_tensors=A_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , A_ ) self.assertIn('attention_mask' , A_ ) self.assertNotIn('decoder_input_ids' , A_ ) self.assertNotIn('decoder_attention_mask' , A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.ta_base_tokenizer __UpperCamelCase =[ 'Summary of the text.', 'Another summary.', ] __UpperCamelCase =tokenizer( text_target=A_ , max_length=32 , padding='max_length' , truncation=A_ , return_tensors=A_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.ta_base_tokenizer __UpperCamelCase =['A long paragraph for summarization. </s>'] __UpperCamelCase =['Summary of the text. </s>'] # fmt: off __UpperCamelCase =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __UpperCamelCase =[86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __UpperCamelCase =tokenizer(A_ , text_target=A_ ) self.assertEqual(A_ , batch['input_ids'][0] ) self.assertEqual(A_ , batch['labels'][0] ) def _a ( self ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =' He is very happy, UNwant\u00E9d,running' __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) __UpperCamelCase =tokenizer.__class__.from_pretrained(A_ ) __UpperCamelCase =after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) shutil.rmtree(A_ ) __UpperCamelCase =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __UpperCamelCase =tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) __UpperCamelCase =tokenizer.__class__.from_pretrained(A_ ) __UpperCamelCase =after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCamelCase =tokenizer.__class__.from_pretrained(A_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A_ ) with open(os.path.join(A_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase =json.load(A_ ) with open(os.path.join(A_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase =json.load(A_ ) __UpperCamelCase =[f'<extra_id_{i}>' for i in range(125 )] __UpperCamelCase =added_tokens_extra_ids + [ 'an_additional_special_token' ] __UpperCamelCase =added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(A_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(A_ , A_ ) with open(os.path.join(A_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(A_ , A_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCamelCase =tokenizer_class.from_pretrained( A_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCamelCase =added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=A_ )] __UpperCamelCase =tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _a ( self ) -> List[Any]: __UpperCamelCase =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A_ ) __UpperCamelCase =tokenizer_class.from_pretrained(A_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def _a ( self ) -> int: pass def _a ( self ) -> Tuple: pass def _a ( self ) -> Tuple: pass def _a ( self ) -> List[Any]: pass def _a ( self ) -> List[str]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __UpperCamelCase =self.get_tokenizers(fast=A_ , do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase =['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __UpperCamelCase =tokenizer.convert_tokens_to_string(A_ ) self.assertIsInstance(A_ , A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase =[ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __UpperCamelCase =0 __UpperCamelCase =tokenizer.convert_ids_to_tokens( A_ , skip_special_tokens=A_ ) for attr in attributes_list: setattr(A_ , attr + '_id' , A_ ) self.assertEqual(getattr(A_ , A_ ) , A_ ) self.assertEqual(getattr(A_ , attr + '_id' ) , A_ ) setattr(A_ , attr + '_id' , A_ ) self.assertEqual(getattr(A_ , A_ ) , A_ ) self.assertEqual(getattr(A_ , attr + '_id' ) , A_ ) setattr(A_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(A_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(A_ , 'additional_special_tokens_ids' ) , [] ) setattr(A_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(A_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(A_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
62
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase : Dict = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): snake_case_ = [image] snake_case_ = [trans(img.convert('RGB' ) ) for img in image] snake_case_ = torch.stack(UpperCamelCase__ ) return image class lowercase ( lowercase_ ): def __init__( self , snake_case , snake_case ): super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case , scheduler=snake_case ) def a ( self , snake_case ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self , snake_case , snake_case , snake_case ): # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , snake_case ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None ): if not isinstance(snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}''' ) snake_case_ = image.to(device=snake_case , dtype=snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(snake_case )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(snake_case , generator=snake_case , device=snake_case , dtype=snake_case ) # get latents print('add noise to latents at timestep' , snake_case ) snake_case_ = self.scheduler.add_noise(snake_case , snake_case , snake_case ) snake_case_ = init_latents return latents @torch.no_grad() def __call__( self , snake_case = None , snake_case = 0.8 , snake_case = 1 , snake_case = None , snake_case = 0.0 , snake_case = 50 , snake_case = None , snake_case = "pil" , snake_case = True , ): self.check_inputs(snake_case ) # 2. Preprocess image snake_case_ = preprocess(snake_case ) # 3. set timesteps self.scheduler.set_timesteps(snake_case , device=self.device ) snake_case_ , snake_case_ = self.get_timesteps(snake_case , snake_case , self.device ) snake_case_ = timesteps[:1].repeat(snake_case ) # 4. Prepare latent variables snake_case_ = self.prepare_latents(snake_case , snake_case , snake_case , self.unet.dtype , self.device , snake_case ) snake_case_ = latents # 5. Denoising loop for t in self.progress_bar(snake_case ): # 1. predict noise model_output snake_case_ = self.unet(snake_case , snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( snake_case , snake_case , snake_case , eta=snake_case , use_clipped_model_output=snake_case , generator=snake_case , ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=snake_case )
350
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = '''roformer''' def __init__( self , snake_case=5_0000 , snake_case=None , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1536 , snake_case=2 , snake_case=0.02 , snake_case=1e-1_2 , snake_case=0 , snake_case=False , snake_case=True , **snake_case , ): super().__init__(pad_token_id=snake_case , **snake_case ) snake_case_ = vocab_size snake_case_ = hidden_size if embedding_size is None else embedding_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = rotary_value snake_case_ = use_cache class lowercase ( lowercase_ ): @property def a ( self ): if self.task == "multiple-choice": snake_case_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case_ = {0: 'batch', 1: 'sequence'} snake_case_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
200
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
84
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCAmelCase )] ) __A = np.array(UpperCAmelCase ) __A = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCAmelCase ) ) , x.transpose() ) , UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = (1, 2, 1) __A = (1, 1, 0, 7) __A = SARIMAX( UpperCAmelCase , exog=UpperCAmelCase , order=UpperCAmelCase , seasonal_order=UpperCAmelCase ) __A = model.fit(disp=UpperCAmelCase , maxiter=6_0_0 , method='nm' ) __A = model_fit.predict(1 , len(UpperCAmelCase ) , exog=[test_match] ) return result[0] def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCAmelCase , UpperCAmelCase ) __A = regressor.predict(UpperCAmelCase ) return y_pred[0] def snake_case ( UpperCAmelCase )-> float: """simple docstring""" train_user.sort() __A = np.percentile(UpperCAmelCase , 2_5 ) __A = np.percentile(UpperCAmelCase , 7_5 ) __A = qa - qa __A = qa - (iqr * 0.1) return low_lim def snake_case ( UpperCAmelCase , UpperCAmelCase )-> bool: """simple docstring""" __A = 0 __A = 0 for i in list_vote: if i > actual_result: __A = not_safe + 1 else: if abs(abs(UpperCAmelCase ) - abs(UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) a__ : List[str] = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] a__ : Optional[int] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) a__ : List[Any] = Normalizer().fit_transform(data_input_df.values) # split data a__ : Dict = normalize_df[:, 2].tolist() a__ : Optional[int] = normalize_df[:, 0].tolist() a__ : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) a__ : Tuple = normalize_df[:, [1, 2]].tolist() a__ : Dict = x[: len(x) - 1] a__ : Any = x[len(x) - 1 :] # for linear regression & sarimax a__ : Tuple = total_date[: len(total_date) - 1] a__ : List[Any] = total_user[: len(total_user) - 1] a__ : List[Any] = total_match[: len(total_match) - 1] a__ : List[str] = total_date[len(total_date) - 1 :] a__ : List[str] = total_user[len(total_user) - 1 :] a__ : Tuple = total_match[len(total_match) - 1 :] # voting system with forecasting a__ : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data a__ : List[str] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
161
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A_ ( snake_case__ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
364
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[Any] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) snake_case__ : List[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) snake_case__ : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) snake_case__ : List[Any] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) snake_case__ : List[str] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) snake_case__ : Dict = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) snake_case__ : Optional[int] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) snake_case__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ : List[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : int = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case__ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case__ : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case__ : List[str] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case__ : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): lowerCAmelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case__ : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
250
0
import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase__ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCamelCase__ = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names UpperCamelCase__ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCamelCase__ = """allenai""" def _a ( SCREAMING_SNAKE_CASE_ : str ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R"@@$" , "" , lowerCAmelCase__ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , lowerCAmelCase__ ), v) for k, v in d.items() ) __lowerCAmelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ): # prep assert os.path.exists(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = basename(lowerCAmelCase__ ) __lowerCAmelCase = dirname(lowerCAmelCase__ ) __lowerCAmelCase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __lowerCAmelCase = cls.hub_models() __lowerCAmelCase = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} __lowerCAmelCase = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""" ) __lowerCAmelCase = hub_utils.from_pretrained( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , archive_map=lowerCAmelCase__ , **lowerCAmelCase__ ) __lowerCAmelCase = vars(chkpt["args"]["model"] ) __lowerCAmelCase = args['''source_lang'''] __lowerCAmelCase = args['''target_lang'''] __lowerCAmelCase = dirname(lowerCAmelCase__ ) __lowerCAmelCase = basename(lowerCAmelCase__ ) # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase__ , F"""dict.{src_lang}.txt""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase__ , F"""dict.{tgt_lang}.txt""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase__ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase__ ) __lowerCAmelCase = os.path.join(lowerCAmelCase__ , "vocab-src.json" ) print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __lowerCAmelCase = True for k in src_vocab.keys(): if not k.islower(): __lowerCAmelCase = False break __lowerCAmelCase = Dictionary.load(lowerCAmelCase__ ) __lowerCAmelCase = rewrite_dict_keys(tgt_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase__ ) __lowerCAmelCase = os.path.join(lowerCAmelCase__ , "vocab-tgt.json" ) print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __lowerCAmelCase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): break with open(lowerCAmelCase__ , encoding="utf-8" ) as fin: __lowerCAmelCase = fin.read() __lowerCAmelCase = re.sub(R" \d+$" , "" , lowerCAmelCase__ , 0 , re.M ) # remove frequency number print(F"""Generating {merges_file}""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as fout: fout.write(lowerCAmelCase__ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase__ , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args['tokenizer']}""" __lowerCAmelCase = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with __lowerCAmelCase = 5 __lowerCAmelCase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __lowerCAmelCase = best_score_hparams[model_dir]['''length_penalty'''] else: __lowerCAmelCase = 1.0 print(F"""Generating {fsmt_model_config_file}""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCAmelCase = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model __lowerCAmelCase = chkpt['''models'''][0] __lowerCAmelCase = model.state_dict() # rename keys to start with 'model.' __lowerCAmelCase = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __lowerCAmelCase = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCAmelCase = FSMTConfig.from_pretrained(lowerCAmelCase__ ) __lowerCAmelCase = FSMTForConditionalGeneration(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F"""cd {data_root}""" ) print(F"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase__ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
92
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def lowercase_ ( self : List[str] ): '''simple docstring''' debug_launcher(test_ops.main )
181
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure)
368
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __a = logging.getLogger(__name__) if __name__ == "__main__": __a = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30_522, type=int) __a = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, 'rb') as fp: __a = pickle.load(fp) logger.info('Counting occurrences for MLM.') __a = Counter() for tk_ids in data: counter.update(tk_ids) __a = [0] * args.vocab_size for k, v in counter.items(): __a = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
235
0
def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
10
def __UpperCamelCase ( _A = 1000000 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 lowerCAmelCase_ = {1: 1} for inputa in range(2 , _A ): lowerCAmelCase_ = 0 lowerCAmelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase_ = counter if counter > pre_counter: lowerCAmelCase_ = inputa lowerCAmelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
278
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy snake_case : Union[str, Any] = logging.getLogger(__name__) snake_case : Optional[int] = "pytorch_model.bin" @dataclasses.dataclass class _snake_case : UpperCamelCase__ = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class _snake_case : UpperCamelCase__ = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) UpperCamelCase__ = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'A csv or a json file containing the validation data.'} ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'The name of the task to train on.'} , ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class _snake_case : UpperCamelCase__ = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) UpperCamelCase__ = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) UpperCamelCase__ = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) UpperCamelCase__ = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) UpperCamelCase__ = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) UpperCamelCase__ = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) UpperCamelCase__ = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) UpperCamelCase__ = dataclasses.field( default=snake_case , metadata={'help': 'Random seed for initialization.'} , ) def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : int , _snake_case : str , _snake_case : int , _snake_case : Tuple , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : str = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __magic_name__ : Optional[Any] = dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __magic_name__ : Union[str, Any] = int(eval_result * len(_snake_case ) ) print(_snake_case ) __magic_name__ : List[Any] = dataset.sort("probability" , reverse=_snake_case ) __magic_name__ : Union[str, Any] = dataset.select(range(_snake_case ) ) __magic_name__ : Optional[Any] = dataset.remove_columns(["label", "probability"] ) __magic_name__ : Optional[int] = dataset.rename_column("prediction" , "label" ) __magic_name__ : int = dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __magic_name__ : List[Any] = dataset.shuffle(seed=args.seed ) __magic_name__ : Any = os.path.join(_snake_case , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Dict , **_snake_case : Any ) -> List[str]: '''simple docstring''' __magic_name__ : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __magic_name__ : str = STModelArguments(model_name_or_path=_snake_case ) __magic_name__ : Optional[Any] = STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __magic_name__ : List[Any] = STTrainingArguments(output_dir=_snake_case ) __magic_name__ : Optional[int] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __magic_name__ : Tuple = {} __magic_name__ : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __magic_name__ : List[str] = args.train_file __magic_name__ : Optional[int] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __magic_name__ : Union[str, Any] = args.eval_file for key in data_files: __magic_name__ : List[str] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __magic_name__ : List[Any] = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __magic_name__ : Tuple = F'''{args.output_dir}/self-train_iter-{{}}'''.format __magic_name__ : int = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __magic_name__ : Optional[Any] = None __magic_name__ : Tuple = None __magic_name__ : str = 0 __magic_name__ : str = False # Show the progress bar __magic_name__ : str = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __magic_name__ : Optional[Any] = data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __magic_name__ : Union[str, Any] = os.path.join(_snake_case , "stage-1" ) __magic_name__ : Union[str, Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __magic_name__ : Union[str, Any] = os.path.join(_snake_case , "best-checkpoint" , _snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _snake_case , _snake_case , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 1." , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __magic_name__ : List[Any] = os.path.join(_snake_case , "best-checkpoint" ) __magic_name__ : List[Any] = os.path.join(_snake_case , "stage-2" ) # Update arguments_dict __magic_name__ : List[str] = model_path __magic_name__ : str = data_files["train"] __magic_name__ : Any = current_output_dir __magic_name__ : Any = os.path.join(_snake_case , "best-checkpoint" , _snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _snake_case , _snake_case , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 2." , _snake_case ) __magic_name__ : Tuple = iteration __magic_name__ : Any = data_dir_format(iteration + 1 ) __magic_name__ : str = AutoConfig.from_pretrained(os.path.join(_snake_case , "best-checkpoint" ) ) __magic_name__ : Optional[int] = config.idalabel __magic_name__ : List[Any] = os.path.join(_snake_case , "eval_results_best-checkpoint.json" ) __magic_name__ : List[Any] = os.path.join(_snake_case , "test_results_best-checkpoint.json" ) assert os.path.exists(_snake_case ) with open(_snake_case , "r" ) as f: __magic_name__ : Dict = float(json.load(_snake_case )[args.eval_metric] ) __magic_name__ : Tuple = os.path.join(_snake_case , "infer_output_best-checkpoint.csv" ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __magic_name__ : int = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] __magic_name__ : Optional[Any] = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __magic_name__ : Optional[Any] = os.path.join(_snake_case , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __magic_name__ : Optional[int] = eval_result if best_iteration is None: __magic_name__ : Union[str, Any] = new_iteration __magic_name__ : List[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __magic_name__ : str = new_iteration __magic_name__ : str = new_eval_result __magic_name__ : Optional[Any] = 0 else: if new_eval_result == best_eval_result: __magic_name__ : str = new_iteration __magic_name__ : Any = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __magic_name__ : int = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , _snake_case ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(_snake_case , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_snake_case , "eval_results_best-iteration.json" ) , )
350
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast snake_case : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): UpperCamelCase__ = 1_0000 UpperCamelCase__ = None UpperCamelCase__ = None class _snake_case ( datasets.ArrowBasedBuilder ): UpperCamelCase__ = ParquetConfig def SCREAMING_SNAKE_CASE ( self ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self , _a ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __magic_name__ : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): __magic_name__ : Dict = data_files if isinstance(_a , _a ): __magic_name__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : Tuple = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __magic_name__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): __magic_name__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : Optional[int] = [dl_manager.iter_files(_a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_a ): with open(_a , "rb" ) as f: __magic_name__ : str = datasets.Features.from_arrow_schema(pq.read_schema(_a ) ) break splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self , _a ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __magic_name__ : str = table_cast(_a , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , "rb" ) as f: __magic_name__ : List[str] = pq.ParquetFile(_a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __magic_name__ : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_a ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise
41
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
252
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def snake_case_ ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
200
0
"""simple docstring""" import pprint import requests _lowerCAmelCase : List[str] = """https://zenquotes.io/api""" def SCREAMING_SNAKE_CASE__ ( )-> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def SCREAMING_SNAKE_CASE__ ( )-> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": _lowerCAmelCase : Optional[int] = random_quotes() pprint.pprint(response)
298
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ ): _lowerCamelCase : int = 'huggingface/label-files' _lowerCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : List[Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _lowerCamelCase : List[Any] = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def _snake_case ( lowercase__ ): if "stem.conv" in name: _lowerCamelCase : int = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _lowerCamelCase : int = name.replace('blocks' , 'layers' ) if "head.fc" in name: _lowerCamelCase : Union[str, Any] = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): _lowerCamelCase : List[str] = 'bit.' + name if "bit" not in name and "classifier" not in name: _lowerCamelCase : int = 'bit.encoder.' + name return name def _snake_case ( ): _lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__=False ): _lowerCamelCase : Tuple = get_config(lowercase__ ) # load original model from timm _lowerCamelCase : int = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model _lowerCamelCase : Dict = timm_model.state_dict() for key in state_dict.copy().keys(): _lowerCamelCase : Dict = state_dict.pop(lowercase__ ) _lowerCamelCase : str = val.squeeze() if 'head' in key else val # load HuggingFace model _lowerCamelCase : List[Any] = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor _lowerCamelCase : Dict = create_transform(**resolve_data_config({} , model=lowercase__ ) ) _lowerCamelCase : str = transform.transforms _lowerCamelCase : int = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _lowerCamelCase : int = BitImageProcessor( do_resize=lowercase__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Optional[Any] = transform(lowercase__ ).unsqueeze(0 ) _lowerCamelCase : Optional[Any] = processor(lowercase__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): _lowerCamelCase : List[str] = model(lowercase__ ) _lowerCamelCase : Dict = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) _lowerCamelCase : List[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
96
'''simple docstring''' import argparse import os import re _snake_case = 'src/transformers' # Pattern that looks at the indentation in a line. _snake_case = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _snake_case = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _snake_case = re.compile(r'\[([^\]]+)\]') def _A ( snake_case ) -> str: _lowercase : Union[str, Any] = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def _A ( snake_case , snake_case="" , snake_case=None , snake_case=None ) -> Optional[int]: _lowercase : List[str] = 0 _lowercase : str = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 _lowercase : Optional[int] = ["\n".join(lines[:index] )] else: _lowercase : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase : Any = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case ) ) if index < len(snake_case ) - 1: _lowercase : int = [lines[index + 1]] index += 1 else: _lowercase : Optional[int] = [] else: blocks.append("\n".join(snake_case ) ) _lowercase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append("\n".join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append("\n".join(lines[index:] ) ) return blocks def _A ( snake_case ) -> Optional[int]: def _inner(snake_case ): return key(snake_case ).lower().replace("_" , "" ) return _inner def _A ( snake_case , snake_case=None ) -> List[str]: # If no key is provided, we use a noop. def noop(snake_case ): return x if key is None: _lowercase : Optional[int] = noop # Constants are all uppercase, they go first. _lowercase : Dict = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase : int = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowercase : Dict = [obj for obj in objects if not key(snake_case )[0].isupper()] _lowercase : Union[str, Any] = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def _A ( snake_case ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(snake_case ): _lowercase : Optional[Any] = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase : str = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) + "]" _lowercase : Tuple = import_statement.split("\n" ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase : Union[str, Any] = 2 if lines[1].strip() == "[" else 1 _lowercase : Optional[int] = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase : Any = sort_objects(snake_case , key=lambda snake_case : x[1] ) _lowercase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: _lowercase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] _lowercase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line _lowercase : Optional[Any] = _re_bracket_content.sub(_replace , snake_case ) return import_statement def _A ( snake_case , snake_case=True ) -> Dict: with open(snake_case , encoding="utf-8" ) as f: _lowercase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase : Optional[Any] = split_code_in_indented_blocks( snake_case , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase : Dict = main_blocks[block_idx] _lowercase : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. _lowercase : int = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase : Optional[Any] = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowercase : Any = "\n".join(block_lines[line_idx:-1] ) _lowercase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase : Optional[int] = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase : Union[str, Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase : str = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase : List[str] = [(i, key) for i, key in enumerate(snake_case ) if key is not None] _lowercase : Tuple = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase : Any = 0 _lowercase : str = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowercase : int = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case ) ) def _A ( snake_case=True ) -> str: _lowercase : List[Any] = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: _lowercase : Tuple = sort_imports(os.path.join(snake_case , "__init__.py" ) , check_only=snake_case ) if result: _lowercase : Any = [os.path.join(snake_case , "__init__.py" )] if len(snake_case ) > 0: raise ValueError(F'''Would overwrite {len(snake_case )} files, run `make style`.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
250
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __magic_name__ = logging.getLogger() __magic_name__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = {'''source''': '''What is love ?''', '''target''': '''life'''} UpperCAmelCase = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(_snake_case , f"""{split}.{field}""" ) , '''w''' ) as f: f.write(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case = "pytorch" ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = os.path.join(_snake_case , '''output''' ) UpperCAmelCase = os.path.join(_snake_case , '''data''' ) self._create_dummy_data(data_dir=_snake_case ) UpperCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_snake_case , env=self.get_env() ) UpperCAmelCase = os.path.join(_snake_case , '''metrics.json''' ) with open(_snake_case ) as f: UpperCAmelCase = json.load(_snake_case ) return result @require_torch_gpu def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
152
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __magic_name__ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __magic_name__ = { "abeja/gpt-neox-japanese-2.7b": 2048, } def _lowerCAmelCase ( A__: List[Any] , A__: int ): '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): UpperCAmelCase = b UpperCAmelCase = idx for wd in b: UpperCAmelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) UpperCAmelCase = do_clean_text UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = load_vocab_and_emoji(_snake_case , _snake_case ) UpperCAmelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ ( self ) -> Any: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase = ''''''.join(_snake_case ).strip() return out_string def snake_case_ ( self , _snake_case ) -> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = 0 if os.path.isdir(_snake_case ): UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''','''.join(_snake_case ) + '''\n''' ) index += 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab # same as swe UpperCAmelCase = ids_to_tokens # same as bpe UpperCAmelCase = emoji UpperCAmelCase = np.max([len(_snake_case ) for w in self.vocab.keys()] ) UpperCAmelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) UpperCAmelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) UpperCAmelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) UpperCAmelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) UpperCAmelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' UpperCAmelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' UpperCAmelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Dict: """simple docstring""" return len(self.ids_to_tokens ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = self.content_repattera.sub('''<URL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<EMAIL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<TEL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<PRICE>''' , _snake_case ) UpperCAmelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def snake_case_ ( self , _snake_case , _snake_case=False ) -> str: """simple docstring""" UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace('''\r\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\r''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\t''' , '''<TAB>''' ) UpperCAmelCase = text.replace('''—''' , '''ー''' ) UpperCAmelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase = text.replace(_snake_case , _snake_case ) if clean: UpperCAmelCase = self.clean_text(_snake_case ) def check_simbol(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: UpperCAmelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: UpperCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28080 and c <= 0XE2B07F: return True return False UpperCAmelCase = 0 UpperCAmelCase = [] while pos < len(_snake_case ): UpperCAmelCase = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 UpperCAmelCase = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): UpperCAmelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: UpperCAmelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) UpperCAmelCase = e else: UpperCAmelCase = pos + 1 UpperCAmelCase = text[pos:end] if check_simbol(_snake_case ): result.append('''<KIGOU>''' ) elif checkuae(_snake_case ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) UpperCAmelCase = end return result def snake_case_ ( self , _snake_case , _snake_case="\n" ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = ''''''.join(_snake_case ) return text
152
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = GPTaTokenizer UpperCAmelCase__ : str = GPTaTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = {"add_prefix_space": True} UpperCAmelCase__ : int = False def __lowercase ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _a : List[Any] = dict(zip(_a , range(len(_a ) ) ) ) _a : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a : List[str] = {'''unk_token''': '''<unk>'''} _a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __lowercase ( self , **_a ) -> List[str]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Optional[Any]: _a : Tuple = '''lower newer''' _a : Tuple = '''lower newer''' return input_text, output_text def __lowercase ( self ) -> Any: _a : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : int = '''lower newer''' _a : int = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a : List[str] = tokenizer.tokenize(_a , add_prefix_space=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokens + [tokenizer.unk_token] _a : List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def __lowercase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _a : int = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer(add_prefix_space=_a ) _a : Tuple = '''lower newer''' # Testing tokenization _a : List[str] = tokenizer.tokenize(_a , add_prefix_space=_a ) _a : Optional[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) # Testing conversion to ids without special tokens _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) _a : List[Any] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) # Testing conversion to ids with special tokens _a : List[str] = self.get_rust_tokenizer(add_prefix_space=_a ) _a : List[str] = tokenizer.encode(_a , add_prefix_space=_a ) _a : Tuple = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # Testing the unknown token _a : Optional[Any] = tokens + [rust_tokenizer.unk_token] _a : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_a ) , _a ) def __lowercase ( self , *_a , **_a ) -> int: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __lowercase ( self , _a=1_5 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Optional[int] = self.rust_tokenizer_class.from_pretrained(_a , **_a ) # Simple input _a : List[str] = '''This is a simple input''' _a : Optional[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _a : Tuple = ('''This is a simple input''', '''This is a pair''') _a : Optional[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding='''max_length''' ) # Simple input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding='''max_length''' ) # Simple input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding='''max_length''' , ) # Pair input self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding='''max_length''' ) # Pair input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding='''max_length''' ) # Pair input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding='''max_length''' , ) def __lowercase ( self ) -> List[Any]: _a : int = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _a : int = '''This is a simple input''' _a : int = ['''This is a simple input looooooooong''', '''This is a simple input'''] _a : Any = ('''This is a simple input''', '''This is a pair''') _a : Dict = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _a : Optional[int] = tokenizer.pad_token_id _a : List[Any] = tokenizer(_a , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _a : Optional[int] = tokenizer(_a , padding=_a , truncate=_a , return_tensors='''np''' ) _a : int = tokenizer(*_a , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _a : Union[str, Any] = tokenizer(_a , padding=_a , truncate=_a , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = '''$$$''' _a : List[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_a , add_bos_token=_a ) _a : Any = '''This is a simple input''' _a : str = ['''This is a simple input 1''', '''This is a simple input 2'''] _a : Tuple = tokenizer.bos_token_id _a : Optional[Any] = tokenizer(_a ) _a : str = tokenizer(_a ) self.assertEqual(out_s.input_ids[0] , _a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _a : str = tokenizer.decode(out_s.input_ids ) _a : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __lowercase ( self ) -> str: pass def __lowercase ( self ) -> Dict: # TODO: change to self.get_tokenizers() when the fast version is implemented _a : Optional[int] = [self.get_tokenizer(do_lower_case=_a , add_bos_token=_a )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : Tuple = '''Encode this.''' _a : Optional[Any] = '''This one too please.''' _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) encoded_sequence += tokenizer.encode(_a , add_special_tokens=_a ) _a : List[str] = tokenizer.encode_plus( _a , _a , add_special_tokens=_a , return_special_tokens_mask=_a , ) _a : int = encoded_sequence_dict['''input_ids'''] _a : int = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(_a ) , len(_a ) ) _a : List[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_a ) ] _a : str = [x for x in filtered_sequence if x is not None] self.assertEqual(_a , _a ) @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _a : Any = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=_a ) _a : int = '''A photo of a cat''' _a : List[Any] = tokenizer.encode( _a , ) self.assertEqual(_a , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _a : Union[str, Any] = AutoTokenizer.from_pretrained('''./test_opt''' ) _a : Any = tokenizer.encode( _a , ) self.assertEqual(_a , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def __lowercase ( self ) -> int: _a : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=_a ) _a : Any = '''A photo of a cat''' _a : Optional[int] = tokenizer.encode( _a , ) # Same as above self.assertEqual(_a , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=_a ) _a : Optional[Any] = '''bos''' _a : Optional[Any] = tokenizer.get_vocab()['''bos'''] _a : str = '''A photo of a cat''' _a : int = tokenizer.encode( _a , ) # We changed the bos token self.assertEqual(_a , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _a : Dict = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _a : Union[str, Any] = tokenizer.encode( _a , ) self.assertEqual(_a , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
235
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = checkpoint lowerCAmelCase__ = {} lowerCAmelCase__ = vae_state_dict['encoder.conv_in.weight'] lowerCAmelCase__ = vae_state_dict['encoder.conv_in.bias'] lowerCAmelCase__ = vae_state_dict['encoder.conv_out.weight'] lowerCAmelCase__ = vae_state_dict['encoder.conv_out.bias'] lowerCAmelCase__ = vae_state_dict['encoder.norm_out.weight'] lowerCAmelCase__ = vae_state_dict['encoder.norm_out.bias'] lowerCAmelCase__ = vae_state_dict['decoder.conv_in.weight'] lowerCAmelCase__ = vae_state_dict['decoder.conv_in.bias'] lowerCAmelCase__ = vae_state_dict['decoder.conv_out.weight'] lowerCAmelCase__ = vae_state_dict['decoder.conv_out.bias'] lowerCAmelCase__ = vae_state_dict['decoder.norm_out.weight'] lowerCAmelCase__ = vae_state_dict['decoder.norm_out.bias'] lowerCAmelCase__ = vae_state_dict['quant_conv.weight'] lowerCAmelCase__ = vae_state_dict['quant_conv.bias'] lowerCAmelCase__ = vae_state_dict['post_quant_conv.weight'] lowerCAmelCase__ = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only lowerCAmelCase__ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowerCAmelCase__ = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase__ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowerCAmelCase__ = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): lowerCAmelCase__ = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: lowerCAmelCase__ = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) lowerCAmelCase__ = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) lowerCAmelCase__ = renew_vae_resnet_paths(lowerCAmelCase__ ) lowerCAmelCase__ = {'old': F"""down.{i}.block""", 'new': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowerCAmelCase__ = [key for key in vae_state_dict if 'encoder.mid.block' in key] lowerCAmelCase__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase__ = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] lowerCAmelCase__ = renew_vae_resnet_paths(lowerCAmelCase__ ) lowerCAmelCase__ = {'old': F"""mid.block_{i}""", 'new': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowerCAmelCase__ = [key for key in vae_state_dict if 'encoder.mid.attn' in key] lowerCAmelCase__ = renew_vae_attention_paths(lowerCAmelCase__ ) lowerCAmelCase__ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): lowerCAmelCase__ = num_up_blocks - 1 - i lowerCAmelCase__ = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: lowerCAmelCase__ = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] lowerCAmelCase__ = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] lowerCAmelCase__ = renew_vae_resnet_paths(lowerCAmelCase__ ) lowerCAmelCase__ = {'old': F"""up.{block_id}.block""", 'new': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowerCAmelCase__ = [key for key in vae_state_dict if 'decoder.mid.block' in key] lowerCAmelCase__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase__ = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] lowerCAmelCase__ = renew_vae_resnet_paths(lowerCAmelCase__ ) lowerCAmelCase__ = {'old': F"""mid.block_{i}""", 'new': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowerCAmelCase__ = [key for key in vae_state_dict if 'decoder.mid.attn' in key] lowerCAmelCase__ = renew_vae_attention_paths(lowerCAmelCase__ ) lowerCAmelCase__ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , ): # Only support V1 lowerCAmelCase__ = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowerCAmelCase__ = io.BytesIO(r.content ) lowerCAmelCase__ = OmegaConf.load(lowerCAmelCase__ ) lowerCAmelCase__ = 5_1_2 lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowerCAmelCase__ = {} with safe_open(lowerCAmelCase__ , framework='pt' , device='cpu' ) as f: for key in f.keys(): lowerCAmelCase__ = f.get_tensor(lowerCAmelCase__ ) else: lowerCAmelCase__ = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )['state_dict'] # Convert the VAE model. lowerCAmelCase__ = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) lowerCAmelCase__ = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') lowerCAmelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
354
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int , *lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , **lowercase__ : Optional[int]): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__) lowerCAmelCase__ = eval_examples lowerCAmelCase__ = post_process_function lowerCAmelCase__ = quant_trainer_args lowerCAmelCase__ = 128 # default number of calibration samples def __snake_case ( self : Tuple , lowercase__ : Any=None): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') lowerCAmelCase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase__ = self._remove_unused_columns(lowercase__ , description='Calibration') return DataLoader( lowercase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase__ , ) def __snake_case ( self : List[Any] , lowercase__ : Union[str, Any]=None): '''simple docstring''' lowerCAmelCase__ = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase__ = self.get_calib_dataloader(lowercase__) lowerCAmelCase__ = self.model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args , calib=lowercase__) model.eval() quant_trainer.enable_calibration(lowercase__) logger.info('***** Running calibration *****') logger.info(F""" Num examples = {self.calib_num}""") logger.info(F""" Batch size = {calib_dataloader.batch_size}""") for step, inputs in enumerate(lowercase__): # Prediction step lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prediction_step(lowercase__ , lowercase__ , prediction_loss_only=lowercase__) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowercase__ , self.quant_trainer_args) lowerCAmelCase__ = model def __snake_case ( self : Optional[Any] , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , lowercase__ : str = "eval"): '''simple docstring''' lowerCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowercase__) lowerCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ = eval_loop( lowercase__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: lowerCAmelCase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions) lowerCAmelCase__ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): lowerCAmelCase__ = metrics.pop(lowercase__) self.log(lowercase__) else: lowerCAmelCase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) lowerCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__) return metrics def __snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Any , lowercase__ : List[str]=None , lowercase__ : str = "test"): '''simple docstring''' lowerCAmelCase__ = self.get_test_dataloader(lowercase__) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ = eval_loop( lowercase__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: lowerCAmelCase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions , 'predict') lowerCAmelCase__ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): lowerCAmelCase__ = metrics.pop(lowercase__) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__) def __snake_case ( self : List[str] , lowercase__ : List[str]="./"): '''simple docstring''' lowerCAmelCase__ = self.eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowercase__) lowerCAmelCase__ = next(iter(lowercase__)) # saving device - to make it consistent lowerCAmelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple lowerCAmelCase__ = tuple(v.to(lowercase__) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase__ = True lowerCAmelCase__ = self.model.to(lowercase__) model.eval() model.float() lowerCAmelCase__ = model.module if hasattr(lowercase__ , 'module') else model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args) lowerCAmelCase__ = os.path.join(lowercase__ , 'model.onnx') logger.info(F"""exporting model to {output_model_file}""") lowerCAmelCase__ = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( lowercase__ , lowercase__ , lowercase__ , export_params=lowercase__ , opset_version=13 , do_constant_folding=lowercase__ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=lowercase__ , ) logger.info('onnx export finished')
119
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: str ) -> Union[str, Any]: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = BlipImageProcessor() lowercase__ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) lowercase__ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) lowercase__ = InstructBlipProcessor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase_: Tuple ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).tokenizer def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase_: List[Any] ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).image_processor def lowerCamelCase_ ( self: Tuple , **UpperCamelCase_: Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).qformer_tokenizer def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) lowercase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(UpperCamelCase_ , return_tensors='''np''' ) lowercase__ = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) lowercase__ = '''lower newer''' lowercase__ = processor(text=UpperCamelCase_ ) lowercase__ = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) lowercase__ = qformer_tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(UpperCamelCase_ ) lowercase__ = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = self.get_qformer_tokenizer() lowercase__ = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
110
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A : Union[str, Any] ={ '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =[ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _A : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
def lowerCAmelCase_ ( __lowerCamelCase = 1_0_0_0 ): __snake_case , __snake_case : int = 1, 1 __snake_case : Tuple = [] for i in range(1 , n + 1 ): __snake_case : List[str] = prev_numerator + 2 * prev_denominator __snake_case : Any = prev_numerator + prev_denominator if len(str(__lowerCamelCase ) ) > len(str(__lowerCamelCase ) ): result.append(__lowerCamelCase ) __snake_case : List[Any] = numerator __snake_case : Union[str, Any] = denominator return len(__lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
134
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase = 2_0 ): __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): __snake_case : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
134
1
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : List[str] = 0 for ch in input_str: __UpperCamelCase : int = ord(snake_case__ ) __UpperCamelCase : Optional[int] = pow(2 , snake_case__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
298
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __lowerCAmelCase ( snake_case__=None ): if subparsers is not None: __UpperCamelCase : Any = subparsers.add_parser("test" ) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=snake_case__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: __UpperCamelCase : str = script_name else: __UpperCamelCase : Tuple = F"--config_file={args.config_file} {script_name}" __UpperCamelCase : Optional[Any] = ["accelerate-launch"] + test_args.split() __UpperCamelCase : Optional[Any] = execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __lowerCAmelCase ( ): __UpperCamelCase : int = test_command_parser() __UpperCamelCase : Union[str, Any] = parser.parse_args() test_command(snake_case__ ) if __name__ == "__main__": main()
298
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __snake_case ( _UpperCAmelCase=None ): if subparsers is not None: __a = subparsers.add_parser('''env''' ) else: __a = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=_UpperCAmelCase , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def __snake_case ( _UpperCAmelCase ): __a = torch.__version__ __a = torch.cuda.is_available() __a = is_xpu_available() __a = is_npu_available() __a = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __a = load_config_from_file(args.config_file ).to_dict() __a = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'{pt_version} ({pt_cuda_available})', '''PyTorch XPU available''': str(_UpperCAmelCase ), '''PyTorch NPU available''': str(_UpperCAmelCase ), '''System RAM''': f'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: __a = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'- {prop}: {val}' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __a = ( '''\n'''.join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else f'\t{accelerate_config}' ) print(_UpperCAmelCase ) __a = accelerate_config return info def __snake_case ( ): __a = env_command_parser() __a = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
367
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) __a = f'{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}' return "".join(_UpperCAmelCase ) # matching characters __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = len(_UpperCAmelCase ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
131
0