code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __lowerCamelCase ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
241
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""CLIPFeatureExtractor"""] lowercase__ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
1
A : Optional[int] = "Input must be a string of 8 numbers plus letter" A : str = "TRWAGMYFPDXBNJZSQVHLCKE" def UpperCamelCase ( __magic_name__ : str ) -> bool: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = f'''Expected string as input, found {type(__magic_name__ ).__name__}''' raise TypeError(__magic_name__ ) lowercase__ = spanish_id.replace("""-""" , """""" ).upper() if len(__magic_name__ ) != 9: raise ValueError(__magic_name__ ) try: lowercase__ = int(spanish_id_clean[0:8] ) lowercase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__magic_name__ ) from ex if letter.isdigit(): raise ValueError(__magic_name__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
361
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowercase__ = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""] lowercase__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
146
0
import csv import tweepy # Twitter API credentials UpperCAmelCase__ = "" UpperCAmelCase__ = "" UpperCAmelCase__ = "" UpperCAmelCase__ = "" def _a ( a :str ) -> None: # authorize twitter, initialize tweepy a = tweepy.OAuthHandler(a , a ) auth.set_access_token(a , a ) a = tweepy.API(a ) # initialize a list to hold all the tweepy Tweets a = [] # make initial request for most recent tweets (200 is the maximum allowed count) a = api.user_timeline(screen_name=a , count=200 ) # save most recent tweets alltweets.extend(a ) # save the id of the oldest tweet less one a = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates a = api.user_timeline( screen_name=a , count=200 , max_id=a ) # save most recent tweets alltweets.extend(a ) # update the id of the oldest tweet less one a = alltweets[-1].id - 1 print(F"""...{len(a )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv a = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: a = csv.writer(a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
0
def _a ( a :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence a = gray_code_sequence_string(a ) # # convert them to integers for i in range(len(a ) ): a = int(sequence[i] , 2 ) return sequence def _a ( a :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a = gray_code_sequence_string(bit_count - 1 ) a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a = '''0''' + smaller_sequence[i] sequence.append(a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a = '''1''' + smaller_sequence[i] sequence.append(a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
0
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: List[str] , __A: Optional[int] , __A: Tuple=7 , __A: Union[str, Any]=3 , __A: int=30 , __A: Optional[int]=4_00 , __A: Tuple=True , __A: str=None , __A: Tuple=True , __A: List[Any]=[0.5, 0.5, 0.5] , __A: Tuple=[0.5, 0.5, 0.5] , __A: int=True , __A: Optional[Any]=1 / 2_55 , __A: Optional[Any]=True , ) -> List[Any]: _A = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def __A ( self: List[Any] ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self: Dict , __A: Union[str, Any] , __A: int=False ) -> int: if not batched: _A = image_inputs[0] if isinstance(__A , Image.Image ): _A = image.size else: _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size["shortest_edge"] elif w > h: _A = self.size["shortest_edge"] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size["shortest_edge"] _A = self.size["shortest_edge"] else: _A = [] for image in image_inputs: _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__A , key=lambda __A : item[0] )[0] _A = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" A_ = DeformableDetrImageProcessor if is_vision_available() else None def __A ( self: Tuple ) -> int: _A = DeformableDetrImageProcessingTester(self ) @property def __A ( self: Optional[int] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self: Tuple ) -> str: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''do_rescale''' ) ) self.assertTrue(hasattr(__A , '''do_pad''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def __A ( self: str ) -> Union[str, Any]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __A ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __A ) def __A ( self: Dict ) -> Tuple: pass def __A ( self: List[Any] ) -> Optional[Any]: _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = self.image_processor_tester.get_expected_values(__A , batched=__A ) _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: str ) -> List[Any]: _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: Tuple ) -> Any: _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self: int ) -> List[str]: _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {"image_id": 3_97_69, "annotations": target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def __A ( self: List[Any] ) -> str: _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
354
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Any ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__A , ) assert hasattr(self , '''env''' ) def __A ( self: Any , __A: Optional[int] ) -> Union[str, Any]: _A = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings _A = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__A , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__A , py_version='''py36''' , ) def __A ( self: Optional[int] , __A: Optional[int] ) -> List[Any]: TrainingJobAnalytics(__A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self: Dict , __A: Tuple ) -> Union[str, Any]: # create estimator _A = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __A )
75
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowerCamelCase_ : List[str] = 1_024 lowerCamelCase_ : Optional[int] = 4_096 lowerCamelCase_ : Optional[Any] = 24 lowerCamelCase_ : Any = 16 lowerCamelCase_ : Any = [5, 11, 17, 23] lowerCamelCase_ : Optional[int] = [256, 512, 1_024, 1_024] lowerCamelCase_ : Optional[int] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase_ : Optional[Any] = 768 lowerCamelCase_ : int = [1, 1, 1, 0.5] lowerCamelCase_ : List[str] = [256, 512, 768, 768] lowerCamelCase_ : List[str] = 150 lowerCamelCase_ : Any = 16 lowerCamelCase_ : Tuple = (1, 384, 384) lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[str] = '''project''' if "ade" in checkpoint_url: lowerCamelCase_ : Any = True lowerCamelCase_ : Union[str, Any] = 768 lowerCamelCase_ : Any = [1, 1, 1, 0.5] lowerCamelCase_ : Tuple = 150 lowerCamelCase_ : List[str] = 16 lowerCamelCase_ : str = '''huggingface/label-files''' lowerCamelCase_ : Tuple = '''ade20k-id2label.json''' lowerCamelCase_ : Any = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='''dataset''' ) ) , '''r''' ) ) lowerCamelCase_ : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] = idalabel lowerCamelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCamelCase_ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowercase ) -> Any: '''simple docstring''' lowerCamelCase_ : Tuple = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase_ : List[str] = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: lowerCamelCase_ : int = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: lowerCamelCase_ : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: lowerCamelCase_ : Optional[int] = name.replace('''proj''' , '''projection''' ) if "blocks" in name: lowerCamelCase_ : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: lowerCamelCase_ : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase_ : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: lowerCamelCase_ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowerCamelCase_ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: lowerCamelCase_ : str = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: lowerCamelCase_ : Dict = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: lowerCamelCase_ : Optional[int] = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: lowerCamelCase_ : Tuple = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: lowerCamelCase_ : Optional[Any] = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: lowerCamelCase_ : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase_ : Optional[Any] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCamelCase_ : Tuple = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: lowerCamelCase_ : Tuple = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: lowerCamelCase_ : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: lowerCamelCase_ : int = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase_ : Tuple = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase_ : List[str] = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase_ : Any = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase_ : Tuple = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase_ : List[str] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase_ : Optional[Any] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase_ : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase_ : Any = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase_ : Optional[int] = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase_ : List[str] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowerCamelCase_ : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: lowerCamelCase_ : Union[str, Any] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: lowerCamelCase_ : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: lowerCamelCase_ : List[str] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: lowerCamelCase_ : List[Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: lowerCamelCase_ : Dict = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: lowerCamelCase_ : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: lowerCamelCase_ : Optional[int] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowerCamelCase_ : Dict = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: lowerCamelCase_ : str = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: lowerCamelCase_ : Optional[Any] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: lowerCamelCase_ : Any = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: lowerCamelCase_ : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase_ : Dict = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def lowercase_ ( _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ : Any = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCamelCase_ : Union[str, Any] = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Tuple = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ : Any = in_proj_bias[: config.hidden_size] lowerCamelCase_ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ : List[str] = in_proj_bias[-config.hidden_size :] def lowercase_ ( ) -> List[Any]: '''simple docstring''' lowerCamelCase_ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : Tuple = get_dpt_config(snake_case__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase_ : List[str] = torch.load(snake_case__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ : str = state_dict.pop(snake_case__ ) lowerCamelCase_ : str = val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model lowerCamelCase_ : int = DPTForSemanticSegmentation(snake_case__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image lowerCamelCase_ : Union[str, Any] = 480 if '''ade''' in checkpoint_url else 384 lowerCamelCase_ : str = DPTImageProcessor(size=snake_case__ ) lowerCamelCase_ : str = prepare_img() lowerCamelCase_ : Union[str, Any] = image_processor(snake_case__ , return_tensors='''pt''' ) # forward pass lowerCamelCase_ : int = model(**snake_case__ ).logits if '''ade''' in checkpoint_url else model(**snake_case__ ).predicted_depth if show_prediction: lowerCamelCase_ : Optional[int] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=snake_case__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": __lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) __lowercase : int = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
318
from ...processing_utils import ProcessorMixin class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""] UpperCAmelCase_ : Optional[int] = """TvltImageProcessor""" UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]: super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = image_processor lowerCAmelCase = feature_extractor def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]: if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCAmelCase = None if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if images_mixed is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if audio is not None: lowerCAmelCase = self.feature_extractor( __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} if audio is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) if images is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) if images_mixed_dict is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) return output_dict @property def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.image_processor.model_input_names lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
338
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCamelCase ( __lowercase , __lowercase ): @register_to_config def __init__(self , *, lowerCamelCase = 4 , lowerCamelCase = 768 , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' super().__init__() _lowerCAmelCase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings _lowerCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states _lowerCAmelCase = clip_extra_context_tokens _lowerCAmelCase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) _lowerCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = nn.LayerNorm(lowerCamelCase ) def A__ (self , *, lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _lowerCAmelCase = image_embeddings.shape[0] _lowerCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _lowerCAmelCase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) _lowerCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _lowerCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _lowerCAmelCase = self.embedding_proj(lowerCamelCase ) _lowerCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) _lowerCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _lowerCAmelCase = self.clip_extra_context_tokens_proj(lowerCamelCase ) _lowerCAmelCase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) _lowerCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _lowerCAmelCase = self.encoder_hidden_states_proj(lowerCamelCase ) _lowerCAmelCase = self.text_encoder_hidden_states_norm(lowerCamelCase ) _lowerCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" from __future__ import annotations import requests __snake_case = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __lowerCAmelCase ( lowercase : str , lowercase : int = 1 , lowercase : str = "new" , lowercase : list | None = None ) -> dict: """simple docstring""" snake_case : Optional[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowercase ) - valid_terms ) ): snake_case : str = F'Invalid search term: {invalid_search_terms}' raise ValueError(lowercase ) snake_case : Dict = requests.get( F'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError snake_case : Tuple = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowercase )} snake_case : str = {} for id_ in range(lowercase ): snake_case : Union[str, Any] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
203
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowerCAmelCase ( lowercase : List[str] ) -> str: """simple docstring""" snake_case : Optional[int] = botoa.client("iam" ) snake_case : Any = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase , AssumeRolePolicyDocument=json.dumps(lowercase , indent=2 ) ) snake_case : Union[str, Any] = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase , PolicyName=F'{role_name}_policy_permission' , PolicyDocument=json.dumps(lowercase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'role {role_name} already exists. Using existing one' ) def __lowerCAmelCase ( lowercase : Dict ) -> Optional[int]: """simple docstring""" snake_case : Any = botoa.client("iam" ) return iam_client.get_role(RoleName=lowercase )["Role"]["Arn"] def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[int] = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , lowercase , ) snake_case : int = None if credentials_configuration == 0: snake_case : Any = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) snake_case : List[str] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) snake_case : Any = _ask_field("AWS Access Key ID: " ) snake_case : List[str] = aws_access_key_id snake_case : Optional[int] = _ask_field("AWS Secret Access Key: " ) snake_case : Union[str, Any] = aws_secret_access_key snake_case : Optional[Any] = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) snake_case : List[str] = aws_region snake_case : List[str] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , lowercase , ) if role_management == 0: snake_case : Tuple = _ask_field("Enter your IAM role name: " ) else: snake_case : Union[str, Any] = "accelerate_sagemaker_execution_role" print(F'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(lowercase ) snake_case : Union[str, Any] = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) snake_case : Any = None if is_custom_docker_image: snake_case : Union[str, Any] = _ask_field("Enter your Docker image: " , lambda lowercase : str(lowercase ).lower() ) snake_case : List[Any] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) snake_case : List[str] = None if is_sagemaker_inputs_enabled: snake_case : Dict = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda lowercase : str(lowercase ).lower() , ) snake_case : Tuple = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) snake_case : int = None if is_sagemaker_metrics_enabled: snake_case : int = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda lowercase : str(lowercase ).lower() , ) snake_case : str = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) snake_case : Tuple = {} snake_case : Any = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) if use_dynamo: snake_case : Any = "dynamo_" snake_case : Optional[int] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case : Optional[int] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) if use_custom_options: snake_case : Dict = _ask_options( "Which mode do you want to use?" , lowercase , lambda lowercase : TORCH_DYNAMO_MODES[int(lowercase )] , default="default" , ) snake_case : Union[str, Any] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) snake_case : Dict = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=lowercase , error_message="Please enter yes or no." , ) snake_case : List[str] = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: snake_case : str = _ask_options( lowercase , lowercase , lambda lowercase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case : Union[str, Any] = _ask_field(lowercase , lambda lowercase : str(lowercase ).lower() , default="ml.p3.2xlarge" ) snake_case : Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case : Dict = _ask_field( "How many machines do you want use? [1]: " , lowercase , default=1 , ) snake_case : Union[str, Any] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=lowercase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase , use_cpu=lowercase , dynamo_config=lowercase , eca_instance_type=lowercase , profile=lowercase , region=lowercase , iam_role_name=lowercase , mixed_precision=lowercase , num_machines=lowercase , sagemaker_inputs_file=lowercase , sagemaker_metrics_file=lowercase , )
203
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__: Optional[Any] = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) a__: List[str] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } a__: List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: List[str] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } a__: Tuple = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: Any = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) a__: List[str] = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: str = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) a__: Any = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: Dict = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' a__: int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' a__: Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' a__: Tuple = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' a__: Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' a__: List[str] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' a__: Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' a__: List[Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' a__: Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: int = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' a__: Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' a__: int = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' a__: Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: Tuple = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' a__: Any = '' a__: Tuple = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' a__: Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a__: Optional[Any] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : int )->str: assert ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any )->Union[str, Any]: with pytest.raises(UpperCamelCase__ , match=re.escape(expected_error.format(path='''root''' ) ) ): A__ = ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] )->int: with pytest.raises(UpperCamelCase__ , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__( UpperCamelCase__ : Tuple )->Union[str, Any]: ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ , suppress_parsing_errors=UpperCamelCase__ ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] )->int: with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / '''README.md''' with open(UpperCamelCase__ , '''w+''' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : Any )->List[str]: with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / '''README.md''' with open(UpperCamelCase__ , '''w+''' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = expected_error.format(path=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): A__ = ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple )->Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / '''README.md''' with open(UpperCamelCase__ , '''w+''' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = expected_error.format(path=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->Tuple: with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / '''README.md''' with open(UpperCamelCase__ , '''w+''' ) as readme_file: readme_file.write(UpperCamelCase__ ) ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ , suppress_parsing_errors=UpperCamelCase__ )
39
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int: A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
39
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowercase__ = """tiny-wmt19-en-ru""" # Build # borrowed from a test lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(vocab, range(len(vocab)))) lowercase__ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = Path(tmpdirname) lowercase__ = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] lowercase__ = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] lowercase__ = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) lowercase__ = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowercase__ = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowercase__ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test lowercase__ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowercase__ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
96
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: str = XLMTokenizer A: Optional[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCamelCase__ : Optional[int] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = '''lower newer''' UpperCamelCase__ : List[str] = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase__ : Tuple = '''lower''' UpperCamelCase__ : Dict = ['''low''', '''er</w>'''] UpperCamelCase__ : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + ['''<unk>'''] UpperCamelCase__ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCamelCase__ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
146
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a : Optional[int] = logging.get_logger(__name__) a : List[str] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) a : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Optional[Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: a : Optional[int] = model_type_to_module_name(_lowercase ) a : Tuple = importlib.import_module(F""".{module_name}""" , "transformers.models" ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_lowercase , "__name__" , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a : str = importlib.import_module("transformers" ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, os.PathLike] , _lowercase : Optional[Union[str, os.PathLike]] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : Optional[Dict[str, str]] = None , _lowercase : Optional[Union[bool, str]] = None , _lowercase : Optional[str] = None , _lowercase : bool = False , **_lowercase : Union[str, Any] , ) ->Tuple: '''simple docstring''' a : str = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(_lowercase , encoding="utf-8" ) as reader: return json.load(_lowercase ) class __UpperCamelCase : def __init__( self ) -> Dict: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase__ ) def __a ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: a : int = kwargs.pop("config" , lowerCAmelCase__ ) a : int = kwargs.pop("trust_remote_code" , lowerCAmelCase__ ) a : List[str] = True a, a : Optional[int] = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) a : List[Any] = config_dict.get("image_processor_type" , lowerCAmelCase__ ) a : Any = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): a : Optional[int] = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: a : List[Any] = config_dict.pop("feature_extractor_type" , lowerCAmelCase__ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) a : Optional[int] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): a : List[str] = config_dict["auto_map"]["AutoFeatureExtractor"] a : Union[str, Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # It could be in `config.image_processor_type`` a : List[Any] = getattr(lowerCAmelCase__ , "image_processor_type" , lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: a : Optional[Any] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: a : List[str] = image_processor_class_from_name(lowerCAmelCase__ ) a : Optional[Any] = image_processor_auto_map is not None a : Tuple = image_processor_class is not None or type(lowerCAmelCase__ ) in IMAGE_PROCESSOR_MAPPING a : int = resolve_trust_remote_code( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if has_remote_code and trust_remote_code: a : int = get_class_from_dynamic_module( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a : Tuple = kwargs.pop("code_revision" , lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase__ ) in IMAGE_PROCESSOR_MAPPING: a : Dict = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase__ )] return image_processor_class.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase__ , lowerCAmelCase__ )
79
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : Optional[Any] = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : Optional[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : int = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
79
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
68
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ ='''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) return image def a_ ( __snake_case : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =dct.pop(__snake_case ) lowerCamelCase_ =val def a_ ( __snake_case : str , __snake_case : Optional[Any] ) -> Any: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase_ =state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase_ =state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase_ =torch.cat((q_bias, torch.zeros_like(__snake_case , requires_grad=__snake_case ), v_bias) ) lowerCamelCase_ =qkv_bias def a_ ( __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =364 if '''coco''' in model_name else 224 lowerCamelCase_ =InstructBlipVisionConfig(image_size=__snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowerCamelCase_ =TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase_ =TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowerCamelCase_ =LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: lowerCamelCase_ =LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowerCamelCase_ =InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() lowerCamelCase_ =InstructBlipConfig(vision_config=__snake_case , text_config=__snake_case , qformer_config=__snake_case ) return config, image_size @torch.no_grad() def a_ ( __snake_case : Optional[int] , __snake_case : str=None , __snake_case : List[Any]=False ) -> List[str]: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: lowerCamelCase_ =TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowerCamelCase_ =LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) lowerCamelCase_, lowerCamelCase_ =get_blipa_config(__snake_case ) lowerCamelCase_ =InstructBlipForConditionalGeneration(__snake_case ).eval() lowerCamelCase_ ={ '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } lowerCamelCase_, lowerCamelCase_ =model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowerCamelCase_ ='''cuda:1''' if torch.cuda.is_available() else '''cpu''' lowerCamelCase_ ='''cuda:2''' if torch.cuda.is_available() else '''cpu''' lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =load_model_and_preprocess( name=__snake_case , model_type=__snake_case , is_eval=__snake_case , device=__snake_case ) original_model.eval() print('''Done!''' ) # update state dict keys lowerCamelCase_ =original_model.state_dict() lowerCamelCase_ =create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase_ =state_dict.pop(__snake_case ) if key.startswith('''Qformer.bert''' ): lowerCamelCase_ =key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowerCamelCase_ =key.replace('''self''' , '''attention''' ) if "llm_proj" in key: lowerCamelCase_ =key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: lowerCamelCase_ =key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): lowerCamelCase_ =key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): lowerCamelCase_ =key.replace('''t5''' , '''language''' ) lowerCamelCase_ =val # read in qv biases read_in_q_v_bias(__snake_case , __snake_case ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__snake_case , strict=__snake_case ) lowerCamelCase_ =load_demo_image() lowerCamelCase_ ='''What is unusual about this image?''' # create processor lowerCamelCase_ =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__snake_case , image_std=__snake_case ) lowerCamelCase_ =InstructBlipProcessor( image_processor=__snake_case , tokenizer=__snake_case , qformer_tokenizer=__snake_case , ) lowerCamelCase_ =processor(images=__snake_case , text=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # make sure processor creates exact same pixel values lowerCamelCase_ =vis_processors['''eval'''](__snake_case ).unsqueeze(0 ).to(__snake_case ) lowerCamelCase_ =inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __snake_case ) original_model.to(__snake_case ) hf_model.to(__snake_case ) with torch.no_grad(): if "vicuna" in model_name: lowerCamelCase_ =original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits lowerCamelCase_ =hf_model(**__snake_case ).logits else: lowerCamelCase_ =original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits lowerCamelCase_ =tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(__snake_case ) lowerCamelCase_ =label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase_ =hf_model(**__snake_case , labels=__snake_case ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowerCamelCase_ =1e-4 if '''vicuna''' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __snake_case , atol=__snake_case ) print('''Looks ok!''' ) print('''Generating with original model...''' ) lowerCamelCase_ =original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) lowerCamelCase_ =hf_model.generate( **__snake_case , do_sample=__snake_case , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowerCamelCase_ =2 print('''Original generation:''' , __snake_case ) lowerCamelCase_ =processor.batch_decode(__snake_case , skip_special_tokens=__snake_case ) lowerCamelCase_ =[text.strip() for text in output_text] print('''HF generation:''' , __snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__snake_case ) hf_model.save_pretrained(__snake_case ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() a_ : Any = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
75
0
'''simple docstring''' import logging import os from .state import PartialState class __A ( logging.LoggerAdapter ): @staticmethod def _lowercase (__a : Optional[Any] ): UpperCAmelCase_ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowercase (self : Any , __a : List[str] , __a : Tuple , *__a : Dict , **__a : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) UpperCAmelCase_ = kwargs.pop("main_process_only" , __a ) UpperCAmelCase_ = kwargs.pop("in_order" , __a ) if self.isEnabledFor(__a ): if self._should_log(__a ): UpperCAmelCase_ , UpperCAmelCase_ = self.process(__a , __a ) self.logger.log(__a , __a , *__a , **__a ) elif in_order: UpperCAmelCase_ = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase_ , UpperCAmelCase_ = self.process(__a , __a ) self.logger.log(__a , __a , *__a , **__a ) state.wait_for_everyone() def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str = None ) -> int: '''simple docstring''' if log_level is None: UpperCAmelCase_ = os.environ.get("ACCELERATE_LOG_LEVEL" , snake_case_ ) UpperCAmelCase_ = logging.getLogger(snake_case_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case_ , {} )
370
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Any = ["""pixel_values"""] def __init__(self : Any , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Dict , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = do_rescale UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase (self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = get_size_dict(__a ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : str , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : Dict , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Dict , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a ) if not is_batched(__a ): UpperCAmelCase_ = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
106
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @register_to_config def __init__( self : Union[str, Any] , *, lowerCAmelCase : int = 4 , lowerCAmelCase : int = 768 , lowerCAmelCase : int , lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : List[Any] = nn.Parameter(torch.zeros(lowerCAmelCase)) # parameters for additional clip time embeddings _snake_case : List[str] = nn.Linear(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase) # parameters for encoder hidden states _snake_case : str = clip_extra_context_tokens _snake_case : Dict = nn.Linear( lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim) _snake_case : Tuple = nn.Linear(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = nn.LayerNorm(lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , *, lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Dict) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _snake_case : int = image_embeddings.shape[0] _snake_case : int = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) _snake_case : Union[str, Any] = classifier_free_guidance_embeddings.expand( lowerCAmelCase , -1) _snake_case : int = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _snake_case : Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _snake_case : str = self.embedding_proj(lowerCAmelCase) _snake_case : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase) _snake_case : Dict = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _snake_case : Any = self.clip_extra_context_tokens_proj(lowerCAmelCase) _snake_case : Optional[int] = clip_extra_context_tokens.reshape(lowerCAmelCase , -1 , self.clip_extra_context_tokens) _snake_case : int = clip_extra_context_tokens.permute(0 , 2 , 1) _snake_case : Any = self.encoder_hidden_states_proj(lowerCAmelCase) _snake_case : Dict = self.text_encoder_hidden_states_norm(lowerCAmelCase) _snake_case : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
1
from __future__ import annotations _a = [] def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> bool: """simple docstring""" for i in range(len(__lowerCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(__lowerCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__lowerCAmelCase , -1 , -1 ) , range(__lowerCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__lowerCAmelCase , -1 , -1 ) , range(__lowerCAmelCase , len(__lowerCAmelCase ) ) ): if board[i][j] == 1: return False return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> bool: """simple docstring""" if row >= len(__lowerCAmelCase ): solution.append(__lowerCAmelCase ) printboard(__lowerCAmelCase ) print() return True for i in range(len(__lowerCAmelCase ) ): if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = 1 solve(__lowerCAmelCase , row + 1 ) _UpperCAmelCase = 0 return False def __A ( __lowerCAmelCase )-> None: """simple docstring""" for i in range(len(__lowerCAmelCase ) ): for j in range(len(__lowerCAmelCase ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _a = 8 _a = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
39
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ) ->Dict: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : List[Any] = window_size SCREAMING_SNAKE_CASE : Dict = mlp_ratio SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = patch_norm SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = scope SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = encoder_stride SCREAMING_SNAKE_CASE : Any = out_features SCREAMING_SNAKE_CASE : Tuple = out_indices def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinBackbone(config=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Any: return def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __lowerCAmelCase ( self ) ->Dict: pass def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): SCREAMING_SNAKE_CASE : str = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has""" F""" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) @require_torch class a_ ( unittest.TestCase , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = MaskFormerSwinConfig def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() SCREAMING_SNAKE_CASE : Tuple = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE : Optional[Any] = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE : Tuple = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = 50 # max width of layer names lowerCamelCase_ = 70 # max width of quantizer names def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__lowercase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__lowercase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__lowercase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__lowercase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__lowercase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__lowercase , type=__lowercase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__lowercase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' if args.calibrator == "max": _A = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) _A = "histogram" elif args.calibrator == "mse": _A = "histogram" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=__lowercase ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowercase ) def __lowercase ( __lowercase , __lowercase , __lowercase=False , __lowercase=False ) -> Dict: '''simple docstring''' logger.info("Configuring Model for Quantization" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowercase , ["embeddings"] , which="weight" , _disabled=__lowercase ) if args.quant_disable: set_quantizer_by_name(__lowercase , [""] , _disabled=__lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowercase , args.quant_disable_keyword , _disabled=__lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowercase , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=__lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowercase , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=__lowercase ) if args.recalibrate_weights: recalibrate_weights(__lowercase ) if args.fuse_qkv: fuse_qkv(__lowercase , __lowercase ) if args.clip_gelu: clip_gelu(__lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowercase ) def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowercase ) def __lowercase ( __lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' def fusea(__lowercase , __lowercase , __lowercase ): for mod in [qq, qk, qv]: if not hasattr(__lowercase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(__lowercase , __lowercase , __lowercase ) qq._amax.fill_(__lowercase ) qk._amax.fill_(__lowercase ) qv._amax.fill_(__lowercase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowercase ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def __lowercase ( __lowercase ) -> int: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(__lowercase , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowercase , keepdims=__lowercase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def __lowercase ( __lowercase , __lowercase=25 , __lowercase=180 , __lowercase=None ) -> int: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(__lowercase , __lowercase ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(__lowercase , "weight" ): continue _A = max(__lowercase , len(__lowercase ) ) for name, mod in model.named_modules(): _A = getattr(__lowercase , "_input_quantizer" , __lowercase ) _A = getattr(__lowercase , "_weight_quantizer" , __lowercase ) if not hasattr(__lowercase , "weight" ): continue if type(__lowercase ) in ignore: continue if [True for s in ignore if type(__lowercase ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowercase ) <= line_width: logger.info(__lowercase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(__lowercase , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' _A = getattr(__lowercase , __lowercase , __lowercase ) if quantizer_mod is not None: assert hasattr(__lowercase , __lowercase ) setattr(__lowercase , __lowercase , __lowercase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def __lowercase ( __lowercase , __lowercase , __lowercase="both" , **__lowercase ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowercase , __lowercase , "_input_quantizer" , __lowercase , __lowercase ) if which in ["weight", "both"]: set_quantizer(__lowercase , __lowercase , "_weight_quantizer" , __lowercase , __lowercase ) logger.info(__lowercase ) def __lowercase ( __lowercase , __lowercase , **__lowercase ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_input_quantizer" ) or hasattr(__lowercase , "_weight_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): set_quantizers(__lowercase , __lowercase , **__lowercase ) elif name.endswith("_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(__lowercase , __lowercase , __lowercase ) logger.info(__lowercase )
79
'''simple docstring''' class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : list[int] ): '''simple docstring''' _A = len(__UpperCAmelCase ) _A = [0] * len_array if len_array > 0: _A = array[0] for i in range(1 , __UpperCAmelCase ): _A = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' _A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
79
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
from __future__ import annotations import queue class __UpperCAmelCase : def __init__( self : str, __A : Union[str, Any] ): UpperCAmelCase : Dict = data UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None def a__ ( ) -> TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) UpperCAmelCase : Any = input('''Enter the value of the root node: ''' ).strip().lower() UpperCAmelCase : queue.Queue = queue.Queue() UpperCAmelCase : Tuple = TreeNode(int(UpperCAmelCase ) ) q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = q.get() UpperCAmelCase : Union[str, Any] = f'''Enter the left node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : List[str] = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : List[str] = left_node q.put(UpperCAmelCase ) UpperCAmelCase : List[Any] = f'''Enter the right node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : Dict = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : Dict = right_node q.put(UpperCAmelCase ) raise def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : List[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = [] while not q.empty(): UpperCAmelCase : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child UpperCAmelCase : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase : List[str] = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : Any = node while n or stack: while n: stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left UpperCAmelCase : Optional[int] = stack.pop() print(n.data , end=''',''' ) UpperCAmelCase : Any = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase , UpperCAmelCase : Dict = [], [] UpperCAmelCase : Any = node stacka.append(UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def a__ ( UpperCAmelCase : str = "" , UpperCAmelCase : int=50 , UpperCAmelCase : Union[str, Any]="*" ) -> str: if not s: return "\n" + width * char UpperCAmelCase , UpperCAmelCase : int = divmod(width - len(UpperCAmelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
99
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __snake_case = '''sshleifer/bart-tiny-random''' __snake_case = '''patrickvonplaten/t5-tiny-random''' @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> List[str]: return AutoConfig.from_pretrained(lowercase_ ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Tuple = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase :Any = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :List[Any] = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCAmelCase ( self ) -> List[str]: UpperCamelCase :List[str] = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCAmelCase ( self ) -> Any: with self.assertRaises(lowercase_ ): create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=lowercase_ , d=lowercase_ )
259
"""simple docstring""" import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : Dict="sayef/fsner-bert-base-uncased" ): super(lowercase_ ,self ).__init__() lowerCAmelCase__ : int = AutoModel.from_pretrained(lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.nn.CosineSimilarity(3 ,1E-08 ) lowerCAmelCase__ : List[str] = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self : str ,**lowercase_ : int ): return self.bert(**lowercase_ ).last_hidden_state def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Optional[int] ): return token_embeddings.sum(2 ,keepdim=lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : int ,lowercase_ : str ,lowercase_ : Tuple=1 ): return self.softmax(T * self.cos(lowercase_ ,lowercase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : List[Any] = W_supports['''sizes'''].tolist() lowerCAmelCase__ : Dict = W_supports['''start_token_id'''].item() lowerCAmelCase__ : Union[str, Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ : Optional[Any] = self.BERT(**lowercase_ ) lowerCAmelCase__ : int = self.BERT(**lowercase_ ) lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : int = W_supports['''input_ids'''] == start_token_id lowerCAmelCase__ : Optional[Any] = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(lowercase_ ): if i == 0: lowerCAmelCase__ : str = 0 else: lowerCAmelCase__ : List[Any] = support_sizes[i - 1] lowerCAmelCase__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ : Union[str, Any] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ : Any = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ : List[Any] = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ : List[Any] = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ : Union[str, Any] = p_start lowerCAmelCase__ : str = p_end return p_starts, p_ends
106
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self :Any , __magic_name__ :Dict[str, int] , __magic_name__ :List[str] , __magic_name__ :int = None , __magic_name__ :int = None ): '''simple docstring''' super().__init__() a = pad_token_id a = max_length a = vocab a = merges a = BytePairTokenizer(__magic_name__ , __magic_name__ , sequence_length=__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :str , __magic_name__ :GPTaTokenizer , *__magic_name__ :Optional[Any] , **__magic_name__ :Any ): '''simple docstring''' a = [""" """.join(__magic_name__ ) for m in tokenizer.bpe_ranks.keys()] a = tokenizer.get_vocab() return cls(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :Tuple , __magic_name__ :Union[str, os.PathLike] , *__magic_name__ :int , **__magic_name__ :Dict ): '''simple docstring''' a = GPTaTokenizer.from_pretrained(__magic_name__ , *__magic_name__ , **__magic_name__ ) return cls.from_tokenizer(__magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :Dict , __magic_name__ :List[str] ): '''simple docstring''' return cls(**__magic_name__ ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :str , __magic_name__ :int = None ): '''simple docstring''' a = self.tf_tokenizer(__magic_name__ ) a = tf.ones_like(__magic_name__ ) if self.pad_token_id is not None: # pad the tokens up to max length a = max_length if max_length is not None else self.max_length if max_length is not None: a , a = pad_model_inputs( __magic_name__ , max_seq_length=__magic_name__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
347
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase_ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase : Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''pt''' ) lowercase__ : Union[str, Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowercase__ : List[Any] = text_classifier('''This is great !''' ,top_k=2 ) self.assertEqual( nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) lowercase__ : Tuple = text_classifier(['''This is great !''', '''This is bad'''] ,top_k=2 ) self.assertEqual( nested_simplify(_snake_case ) ,[ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] ,) lowercase__ : Tuple = text_classifier('''This is great !''' ,top_k=1 ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior lowercase__ : Dict = text_classifier('''This is great !''' ,return_all_scores=_snake_case ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowercase__ : Optional[int] = text_classifier('''This is great !''' ,return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) lowercase__ : Dict = text_classifier(['''This is great !''', '''Something else'''] ,return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] ,) lowercase__ : Dict = text_classifier(['''This is great !''', '''Something else'''] ,return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] ,) @require_torch def UpperCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" import torch lowercase__ : List[str] = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''pt''' ,device=torch.device('''cpu''' ) ,) lowercase__ : Optional[Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''tf''' ) lowercase__ : Tuple = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = pipeline('''text-classification''' ) lowercase__ : List[Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowercase__ : Optional[int] = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowercase__ : Union[str, Any] = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : str = pipeline('''text-classification''' ,framework='''tf''' ) lowercase__ : Union[str, Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowercase__ : int = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowercase__ : List[Any] = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ,_snake_case : Union[str, Any] ,_snake_case : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = TextClassificationPipeline(model=_snake_case ,tokenizer=_snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowercase__ : int = '''HuggingFace is in''' lowercase__ : List[Any] = text_classifier(_snake_case ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) lowercase__ : Union[str, Any] = ['''HuggingFace is in ''', '''Paris is in France'''] lowercase__ : Optional[int] = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}, {'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ,) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowercase__ : Dict = text_classifier(_snake_case ,top_k=_snake_case ) lowercase__ : List[str] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_snake_case ) ,[[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] * N, [{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] * N] ,) lowercase__ : Union[str, Any] = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} lowercase__ : Optional[int] = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )} ,) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowercase__ : List[str] = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(_snake_case ): text_classifier(_snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowercase__ : Dict = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(_snake_case ) ,[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ,) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __magic_name__: Optional[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" __magic_name__: str = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" __magic_name__: str = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def __magic_name__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="auto" , lowerCAmelCase__=-1 , lowerCAmelCase__=0.9 , lowerCAmelCase__=5 , lowerCAmelCase__=5_00 , lowerCAmelCase__="gpt2-large" , lowerCAmelCase__=-1 , lowerCAmelCase__=10_24 , lowerCAmelCase__=25 , lowerCAmelCase__=5 , lowerCAmelCase__=True , lowerCAmelCase__=25 , ) -> Union[str, Any]: __magic_name__ : Tuple = compute_mauve( p_text=lowerCAmelCase__ , q_text=lowerCAmelCase__ , p_features=lowerCAmelCase__ , q_features=lowerCAmelCase__ , p_tokens=lowerCAmelCase__ , q_tokens=lowerCAmelCase__ , num_buckets=lowerCAmelCase__ , pca_max_data=lowerCAmelCase__ , kmeans_explained_var=lowerCAmelCase__ , kmeans_num_redo=lowerCAmelCase__ , kmeans_max_iter=lowerCAmelCase__ , featurize_model_name=lowerCAmelCase__ , device_id=lowerCAmelCase__ , max_text_length=lowerCAmelCase__ , divergence_curve_discretization_size=lowerCAmelCase__ , mauve_scaling_factor=lowerCAmelCase__ , verbose=lowerCAmelCase__ , seed=lowerCAmelCase__ , ) return out
138
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: __magic_name__ : List[str] = tempfile.mkdtemp() # fmt: off __magic_name__ : Union[str, Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __magic_name__ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __magic_name__ : Any = {"""unk_token""": """<unk>"""} __magic_name__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) __magic_name__ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __magic_name__ : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : Any = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : Any = self.get_image_processor(do_normalize=lowerCAmelCase__ ) __magic_name__ : Tuple = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict: __magic_name__ : int = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Dict = self.prepare_image_inputs() __magic_name__ : Any = image_processor(lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : str = processor(images=lowerCAmelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Optional[int] = """lower newer""" __magic_name__ : Tuple = processor(text=lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Any = """lower newer""" __magic_name__ : Union[str, Any] = self.prepare_image_inputs() __magic_name__ : int = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = """google/owlvit-base-patch32""" __magic_name__ : int = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : List[Any] = ["""cat""", """nasa badge"""] __magic_name__ : Any = processor(text=lowerCAmelCase__ ) __magic_name__ : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = """google/owlvit-base-patch32""" __magic_name__ : Optional[Any] = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : Tuple = [["""cat""", """nasa badge"""], ["""person"""]] __magic_name__ : Tuple = processor(text=lowerCAmelCase__ ) __magic_name__ : str = 16 __magic_name__ : str = len(lowerCAmelCase__ ) __magic_name__ : int = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[int] = """google/owlvit-base-patch32""" __magic_name__ : Any = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : str = ["""cat""", """nasa badge"""] __magic_name__ : List[str] = processor(text=lowerCAmelCase__ ) __magic_name__ : List[Any] = 16 __magic_name__ : Any = inputs["""input_ids"""] __magic_name__ : Optional[Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : List[str] = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[Any] = processor.batch_decode(lowerCAmelCase__ ) __magic_name__ : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
138
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_09 def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any="train" ): return calculate_hypothesis_value(lowerCamelCase__ , lowerCamelCase__ ) - output( lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : int ): _A : int = 0 for i in range(len(lowerCamelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=m ): _A : Any = 0 for i in range(lowerCamelCase__ ): if index == -1: summation_value += _error(lowerCamelCase__ ) else: summation_value += _error(lowerCamelCase__ ) * train_data[i][0][index] return summation_value def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): _A : Optional[int] = summation_of_cost_derivative(lowerCamelCase__ , lowerCamelCase__ ) / m return cost_derivative_value def _UpperCAmelCase (): global parameter_vector # Tune these values to set a tolerance value for predicted output _A : Optional[int] = 0.00_00_02 _A : Union[str, Any] = 0 _A : List[str] = 0 while True: j += 1 _A : Optional[int] = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase__ ) ): _A : int = get_cost_derivative(i - 1 ) _A : List[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase__ , lowerCamelCase__ , atol=lowerCamelCase__ , rtol=lowerCamelCase__ , ): break _A : Optional[int] = temp_parameter_vector print(("Number of iterations:", j) ) def _UpperCAmelCase (): for i in range(len(lowerCamelCase__ ) ): print(("Actual output value:", output(lowerCamelCase__ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase__ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
11
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __lowercase = { '''camembert-base''': 512, } __lowercase = '''▁''' class _lowercase ( __a ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['''input_ids''', '''attention_mask'''] lowercase__ = CamembertTokenizer def __init__( self : int , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="</s>" , UpperCamelCase__ : Tuple="<s>" , UpperCamelCase__ : Dict="<unk>" , UpperCamelCase__ : Tuple="<pad>" , UpperCamelCase__ : str="<mask>" , UpperCamelCase__ : Any=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase__ : List[str] , ) -> Any: '''simple docstring''' __UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) __UpperCamelCase =vocab_file __UpperCamelCase =False if not self.vocab_file else True def UpperCAmelCase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCamelCase =os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
362
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase (__UpperCamelCase : dict , __UpperCamelCase : str , __UpperCamelCase : set , __UpperCamelCase : set , __UpperCamelCase : dict , __UpperCamelCase : dict , __UpperCamelCase : PriorityQueue , __UpperCamelCase : dict , __UpperCamelCase : float | int , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue __UpperCamelCase =cst_fwd.get(__UpperCamelCase , np.inf ) __UpperCamelCase =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __UpperCamelCase =new_cost_f __UpperCamelCase =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __UpperCamelCase =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : dict , __UpperCamelCase : dict ): """simple docstring""" __UpperCamelCase =-1 __UpperCamelCase =set() __UpperCamelCase =set() __UpperCamelCase ={source: 0} __UpperCamelCase ={destination: 0} __UpperCamelCase ={source: None} __UpperCamelCase ={destination: None} __UpperCamelCase =PriorityQueue() __UpperCamelCase =PriorityQueue() __UpperCamelCase =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __UpperCamelCase , __UpperCamelCase =queue_forward.get() visited_forward.add(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase =queue_backward.get() visited_backward.add(__UpperCamelCase ) __UpperCamelCase =pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) __UpperCamelCase =pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __UpperCamelCase =shortest_distance return shortest_path_distance __lowercase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowercase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
85
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase : Any = 2_5_0_0_0_4 lowercase : Optional[int] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Dict = MBartaaTokenizer __A : Any = MBartaaTokenizerFast __A : Any = True __A : Tuple = True def __lowercase ( self) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a__ : str = MBartaaTokenizer(lowercase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowercase) tokenizer.save_pretrained(self.tmpdirname) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Dict = '<s>' a__ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase) , lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase) , lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(lowercase) , 1054) def __lowercase ( self) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054) def __lowercase ( self) -> str: '''simple docstring''' a__ : Any = MBartaaTokenizer(lowercase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowercase) a__ : Dict = tokenizer.tokenize('This is a test') self.assertListEqual(lowercase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowercase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) a__ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowercase) self.assertListEqual( lowercase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def __lowercase ( self) -> Any: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a__ : Dict = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): a__ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase) a__ : List[str] = self.tokenizer_class.from_pretrained(lowercase , **lowercase) a__ : int = tempfile.mkdtemp() a__ : Dict = tokenizer_r.save_pretrained(lowercase) a__ : Union[str, Any] = tokenizer_p.save_pretrained(lowercase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) a__ : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(lowercase , lowercase) # Checks everything loads correctly in the same way a__ : Any = tokenizer_r.from_pretrained(lowercase) a__ : Any = tokenizer_p.from_pretrained(lowercase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase) # Save tokenizer rust, legacy_format=True a__ : Any = tempfile.mkdtemp() a__ : str = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase) a__ : Dict = tokenizer_p.save_pretrained(lowercase) # Checks it save with the same files self.assertSequenceEqual(lowercase , lowercase) # Checks everything loads correctly in the same way a__ : Union[str, Any] = tokenizer_r.from_pretrained(lowercase) a__ : Optional[Any] = tokenizer_p.from_pretrained(lowercase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase)) shutil.rmtree(lowercase) # Save tokenizer rust, legacy_format=False a__ : Any = tempfile.mkdtemp() a__ : Optional[int] = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase) a__ : str = tokenizer_p.save_pretrained(lowercase) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way a__ : List[str] = tokenizer_r.from_pretrained(lowercase) a__ : Dict = tokenizer_p.from_pretrained(lowercase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase)) shutil.rmtree(lowercase) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" __A : str = '''facebook/mbart-large-50-one-to-many-mmt''' __A : Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __A : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __A : List[Any] = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __lowercase ( cls) -> Any: '''simple docstring''' a__ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO') a__ : Dict = 1 return cls def __lowercase ( self) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' self.assertIn(lowercase , self.tokenizer.all_special_ids) a__ : Any = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] a__ : Any = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase) a__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase) self.assertEqual(lowercase , lowercase) self.assertNotIn(self.tokenizer.eos_token , lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , lowercase) a__ : str = 10 a__ : Optional[Any] = self.tokenizer(lowercase , max_length=lowercase , truncation=lowercase).input_ids[0] self.assertEqual(ids[0] , lowercase) self.assertEqual(ids[-1] , 2) self.assertEqual(len(lowercase) , lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR']) , [25_0053, 25_0001]) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[Any] = tempfile.mkdtemp() a__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase) a__ : Optional[int] = MBartaaTokenizer.from_pretrained(lowercase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase) @require_torch def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase , return_tensors='pt') a__ : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) a__ : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(lowercase , lowercase) self.assertEqual((2, 14) , batch.input_ids.shape) self.assertEqual((2, 14) , batch.attention_mask.shape) a__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase) self.assertEqual(2 , batch.decoder_input_ids[0, 0]) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) def __lowercase ( self) -> str: '''simple docstring''' a__ : Any = self.tokenizer(self.src_text , padding=lowercase , truncation=lowercase , max_length=3 , return_tensors='pt') a__ : int = self.tokenizer( text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=10 , return_tensors='pt') a__ : Optional[int] = targets['input_ids'] a__ : Optional[Any] = shift_tokens_right(lowercase , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR') self.assertEqual( nested_simplify(lowercase) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
99
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase , 'hidden_sizes')) self.parent.assertTrue(hasattr(lowercase , 'num_attention_heads')) self.parent.assertTrue(hasattr(lowercase , 'num_encoder_blocks')) class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[16, 32, 64, 128] , lowercase=[1, 4, 8, 16] , lowercase=[1, 2, 4, 8] , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = parent a__ : int = batch_size a__ : Tuple = image_size a__ : Union[str, Any] = num_channels a__ : str = num_encoder_blocks a__ : Dict = sr_ratios a__ : Dict = depths a__ : Union[str, Any] = hidden_sizes a__ : str = downsampling_rates a__ : Tuple = num_attention_heads a__ : Optional[Any] = is_training a__ : Union[str, Any] = use_labels a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Optional[Any] = initializer_range a__ : Tuple = num_labels a__ : Union[str, Any] = scope def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : str = None if self.use_labels: a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__ : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Any: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__ : Dict = SegformerModel(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[Any] = model(lowercase) a__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Optional[Any] = self.num_labels a__ : List[str] = SegformerForSemanticSegmentation(lowercase) model.to(lowercase) model.eval() a__ : List[str] = model(lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a__ : int = model(lowercase , labels=lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = 1 a__ : Optional[int] = SegformerForSemanticSegmentation(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowercase) a__ : Optional[Any] = model(lowercase , labels=lowercase) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : str = config_and_inputs a__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __A : List[str] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __A : List[str] = True __A : Any = False __A : Any = False __A : str = False def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = SegformerModelTester(self) a__ : Optional[Any] = SegformerConfigTester(self , config_class=lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase) @unittest.skip('SegFormer does not use inputs_embeds') def __lowercase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def __lowercase ( self) -> str: '''simple docstring''' pass def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowercase) a__ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: a__ : str = True a__ : List[str] = False a__ : int = True a__ : List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions a__ : Dict = sum(self.model_tester.depths) self.assertEqual(len(lowercase) , lowercase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : Dict = True a__ : int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : Tuple = (self.model_tester.image_size // 4) ** 2 a__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a__ : str = (self.model_tester.image_size // 32) ** 2 a__ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a__ : Dict = len(lowercase) # Check attention is always last and order is fine a__ : List[Any] = True a__ : Any = True a__ : Dict = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__ : int = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : List[Any] = (self.model_tester.image_size // 4) ** 2 a__ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __lowercase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Union[str, Any] = outputs.hidden_states a__ : Any = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase) , lowercase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : int = True check_hidden_states_output(lowercase , lowercase , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' if not self.model_tester.is_training: return a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowercase): continue a__ : Dict = model_class(lowercase) model.to(lowercase) model.train() a__ : str = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__ : Optional[int] = model(**lowercase).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' pass @slow def __lowercase ( self) -> Tuple: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = SegformerModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : int = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Optional[int] = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[int] = model(lowercase) a__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-4)) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(lowercase) a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[Any] = model(lowercase) a__ : List[Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-1)) @slow def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Any = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt') a__ : Optional[int] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Union[str, Any] = model(lowercase) a__ : int = outputs.logits.detach().cpu() a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)]) a__ : Optional[Any] = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , lowercase) a__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowercase) a__ : Union[str, Any] = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , lowercase)
99
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : List[Any] = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCamelCase__ : Tuple = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCamelCase__ : Optional[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : List[str] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCamelCase__ : Dict = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(UpperCamelCase__ )-1}" ) if "norm" in key: lowerCamelCase__ : Tuple = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Optional[int] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCamelCase__ : int = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(UpperCamelCase__ )-1}" ) if "layer_norm1" in key: lowerCamelCase__ : Any = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCamelCase__ : str = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : Dict = key[key.find('''block''' ) + len('''block''' )] lowerCamelCase__ : List[str] = key.replace(f"block{idx}" , f"block.{int(UpperCamelCase__ )-1}" ) if "attn.q" in key: lowerCamelCase__ : Optional[int] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCamelCase__ : Any = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCamelCase__ : Optional[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCamelCase__ : Optional[Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCamelCase__ : Optional[int] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCamelCase__ : str = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCamelCase__ : Any = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCamelCase__ : List[str] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : str = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCamelCase__ : int = key.replace(f"linear_c{idx}" , f"linear_c.{int(UpperCamelCase__ )-1}" ) if "bot_conv" in key: lowerCamelCase__ : Optional[int] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCamelCase__ : List[Any] = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCamelCase__ : Dict = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCamelCase__ : int = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCamelCase__ : int = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCamelCase__ : str = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : Tuple = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCamelCase__ : List[Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCamelCase__ : List[str] = value return new_state_dict def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Dict = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCamelCase__ : Dict = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Dict = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Union[str, Any] = kv_bias[config.hidden_sizes[i] :] def _a ( ) -> Dict: """simple docstring""" lowerCamelCase__ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Tuple = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=None ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : int = GLPNImageProcessor() # prepare image lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : int = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCamelCase__ : Dict = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys lowerCamelCase__ : Dict = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict lowerCamelCase__ : Optional[int] = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass lowerCamelCase__ : str = model(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCamelCase__ : str = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"Unknown model name: {model_name}" ) lowerCamelCase__ : str = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A : Optional[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
363
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A : List[Any] = 'base_with_context' def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowerCamelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Any = weights[f"layers_{lyr_num}"] lowerCamelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : int = ly_weight['''attention'''] lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Tuple = weights[f"layers_{lyr_num}"] lowerCamelCase__ : str = ly_weight['''attention'''] lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ : List[Any] = weights[f"layers_{lyr_num}"] lowerCamelCase__ : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = ly_weight['''self_attention'''] lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = ly_weight['''MultiHeadDotProductAttention_0'''] lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , UpperCAmelCase ) lowerCamelCase__ : List[str] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowerCamelCase__ : List[Any] = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowerCamelCase__ : Optional[Any] = inference.parse_training_gin_file(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase ) lowerCamelCase__ : int = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowerCamelCase__ : str = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ : Optional[int] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : int = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = load_decoder(ta_checkpoint['''target''']['''decoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowerCamelCase__ : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase , continuous_encoder=UpperCAmelCase , decoder=UpperCAmelCase , scheduler=UpperCAmelCase , melgan=UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) _A : Tuple = parser.parse_args() main(args)
265
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A (tf.keras.layers.Layer): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : int = None ) ->Union[str, Any]: """simple docstring""" super().__init__() snake_case_ = pad_token_id snake_case_ = max_length snake_case_ = vocab snake_case_ = merges snake_case_ = BytePairTokenizer(UpperCAmelCase_ , UpperCAmelCase_ , sequence_length=UpperCAmelCase_ ) @classmethod def lowerCAmelCase ( cls : List[str] , UpperCAmelCase_ : GPTaTokenizer , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ) ->List[Any]: """simple docstring""" snake_case_ = [""" """.join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] snake_case_ = tokenizer.get_vocab() return cls(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , UpperCAmelCase_ : Union[str, os.PathLike] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) return cls.from_tokenizer(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def lowerCAmelCase ( cls : str , UpperCAmelCase_ : Tuple ) ->str: """simple docstring""" return cls(**UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int = None ) ->Tuple: """simple docstring""" snake_case_ = self.tf_tokenizer(UpperCAmelCase_ ) snake_case_ = tf.ones_like(UpperCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length snake_case_ = max_length if max_length is not None else self.max_length if max_length is not None: snake_case_ , snake_case_ = pad_model_inputs( UpperCAmelCase_ , max_seq_length=UpperCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
347
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->int: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] )
347
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer SCREAMING_SNAKE_CASE__ : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast SCREAMING_SNAKE_CASE__ : List[Any] = TaTokenizerFast SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
339
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
from __future__ import annotations class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = text, pattern lowerCAmelCase , lowerCAmelCase : List[str] = len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase__ ( self : List[str] , UpperCAmelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase__ ( self : Dict ): # searches pattern in text and returns index positions lowerCAmelCase : Optional[Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase : Dict = self.mismatch_in_text(UpperCAmelCase_ ) if mismatch_index == -1: positions.append(UpperCAmelCase_ ) else: lowerCAmelCase : str = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : Dict = '''ABAABA''' __A : List[Any] = '''AB''' __A : Dict = BoyerMooreSearch(text, pattern) __A : str = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
138
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowerCAmelCase : Dict = cva.getAffineTransform(_UpperCAmelCase, _UpperCAmelCase ) return cva.warpAffine(_UpperCAmelCase, _UpperCAmelCase, (rows, cols) ) if __name__ == "__main__": # read original image __A : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Optional[Any] = gray_img.shape # set different points to rotate image __A : int = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Union[str, Any] = plt.figure(1) __A : Optional[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
138
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowercase : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A_ ( A__ ) -> int: a__ : int = {} with open(A__ , 'r' ) as file: for line_number, line in enumerate(A__ ): a__ : Any = line.strip() if line: a__ : Optional[int] = line.split() a__ : str = line_number a__ : Tuple = words[0] a__ : Tuple = value return result def A_ ( A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: for attribute in key.split('.' ): a__ : Any = getattr(A__ , A__ ) a__ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): a__ : Dict = PARAM_MAPPING[full_name.split('.' )[-1]] a__ : str = 'param' if weight_type is not None and weight_type != "param": a__ : Dict = getattr(A__ , A__ ).shape elif weight_type is not None and weight_type == "param": a__ : Dict = hf_pointer for attribute in hf_param_name.split('.' ): a__ : Tuple = getattr(A__ , A__ ) a__ : str = shape_pointer.shape # let's reduce dimension a__ : str = value[0] else: a__ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__ : Dict = value elif weight_type == "weight_g": a__ : List[str] = value elif weight_type == "weight_v": a__ : Dict = value elif weight_type == "bias": a__ : Dict = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ : Optional[int] = getattr(A__ , A__ ) a__ : Tuple = value else: a__ : Union[str, Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A_ ( A__ , A__ , A__ , A__ , A__ ) -> Optional[int]: a__ : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): a__ : Any = PARAM_MAPPING[full_name.split('.' )[-1]] a__ : Any = 'param' if weight_type is not None and weight_type != "param": a__ : Dict = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ : str = '.'.join([key, hf_param_name] ) else: a__ : List[Any] = key a__ : Optional[Any] = value if 'lm_head' in full_key else value[0] lowercase : Optional[Any] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A_ ( A__ , A__ , A__=None , A__=None ) -> Optional[Any]: a__ : Tuple = False for key, mapped_key in MAPPING.items(): a__ : Optional[int] = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ : Dict = True if "*" in mapped_key: a__ : Any = name.split(A__ )[0].split('.' )[-2] a__ : Any = mapped_key.replace('*' , A__ ) if "weight_g" in name: a__ : List[str] = 'weight_g' elif "weight_v" in name: a__ : Optional[Any] = 'weight_v' elif "bias" in name: a__ : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ : Any = 'weight' else: a__ : List[str] = None if hf_dict is not None: rename_dict(A__ , A__ , A__ , A__ , A__ ) else: set_recursively(A__ , A__ , A__ , A__ , A__ ) return is_used return is_used def A_ ( A__ , A__ , A__ ) -> Tuple: a__ : Dict = [] a__ : Tuple = fairseq_model.state_dict() a__ : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ : Tuple = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , ) a__ : Optional[Any] = True else: a__ : Union[str, Any] = load_wavaveca_layer(A__ , A__ , A__ ) if not is_used: unused_weights.append(A__ ) logger.warning(F'Unused weights: {unused_weights}' ) def A_ ( A__ , A__ , A__ , A__ , A__ ) -> int: a__ : List[Any] = full_name.split('conv_layers.' )[-1] a__ : Optional[Any] = name.split('.' ) a__ : Union[str, Any] = int(items[0] ) a__ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__ : List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__ : Optional[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a__ : int = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a__ : List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A__ ) @torch.no_grad() def A_ ( A__ , A__ , A__=None , A__=None , A__=True , A__=False ) -> Dict: if config_path is not None: a__ : Union[str, Any] = WavaVecaConfig.from_pretrained(A__ ) else: a__ : str = WavaVecaConfig() if is_seq_class: a__ : Optional[int] = read_txt_into_dict(A__ ) a__ : Dict = idalabel a__ : Tuple = WavaVecaForSequenceClassification(A__ ) a__ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) feature_extractor.save_pretrained(A__ ) elif is_finetuned: if dict_path: a__ : Any = Dictionary.load(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ : Any = target_dict.pad_index a__ : Tuple = target_dict.bos_index a__ : Any = target_dict.eos_index a__ : Any = len(target_dict.symbols ) a__ : Optional[Any] = os.path.join(A__ , 'vocab.json' ) if not os.path.isdir(A__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) a__ : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched a__ : str = 0 a__ : Dict = 1 with open(A__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(A__ , A__ ) a__ : Optional[Any] = WavaVecaCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A__ , ) a__ : Union[str, Any] = True if config.feat_extract_norm == 'layer' else False a__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) a__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) a__ : Any = WavaVecaForCTC(A__ ) else: a__ : Union[str, Any] = WavaVecaForPreTraining(A__ ) if is_finetuned or is_seq_class: a__ , a__ , a__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ : Optional[int] = argparse.Namespace(task='audio_pretraining' ) a__ : Optional[int] = fairseq.tasks.setup_task(A__ ) a__ , a__ , a__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A__ ) a__ : Any = model[0].eval() recursively_load_weights(A__ , A__ , not is_finetuned ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowercase : List[str] = parser.parse_args() lowercase : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
225
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
1
"""simple docstring""" from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase_ : List[str] = TypeVar("""T""") class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , lowercase_ : Any = True): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} # dictionary of lists SCREAMING_SNAKE_CASE_ : Optional[int] = directed def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[Any]): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__) self.adj_list[destination_vertex].append(a__) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__) SCREAMING_SNAKE_CASE_ : List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(a__) SCREAMING_SNAKE_CASE_ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [destination_vertex] SCREAMING_SNAKE_CASE_ : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__) SCREAMING_SNAKE_CASE_ : List[str] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE_ : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE_ : Dict = [destination_vertex] SCREAMING_SNAKE_CASE_ : int = [] return self def __repr__( self : Tuple): '''simple docstring''' return pformat(self.adj_list)
91
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() _SCREAMING_SNAKE_CASE : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPImageProcessor() _SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") _SCREAMING_SNAKE_CASE : int = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
85
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( lowercase__ ): UpperCAmelCase__ : UNetaDModel UpperCAmelCase__ : ScoreSdeVeScheduler def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: super().__init__() self.register_modules(unet=lowercase_, scheduler=lowercase_ ) @torch.no_grad() def __call__( self, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 2000, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "pil", SCREAMING_SNAKE_CASE_ = True, **SCREAMING_SNAKE_CASE_, ) -> str: UpperCamelCase : Optional[Any] = self.unet.config.sample_size UpperCamelCase : Tuple = (batch_size, 3, img_size, img_size) UpperCamelCase : List[Any] = self.unet UpperCamelCase : Dict = randn_tensor(lowercase_, generator=lowercase_ ) * self.scheduler.init_noise_sigma UpperCamelCase : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(lowercase_ ) self.scheduler.set_sigmas(lowercase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCamelCase : Union[str, Any] = self.unet(lowercase_, lowercase_ ).sample UpperCamelCase : str = self.scheduler.step_correct(lowercase_, lowercase_, generator=lowercase_ ).prev_sample # prediction step UpperCamelCase : Any = model(lowercase_, lowercase_ ).sample UpperCamelCase : int = self.scheduler.step_pred(lowercase_, lowercase_, lowercase_, generator=lowercase_ ) UpperCamelCase : Union[str, Any] = output.prev_sample, output.prev_sample_mean UpperCamelCase : str = sample_mean.clamp(0, 1 ) UpperCamelCase : Union[str, Any] = sample.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase : Optional[int] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase_ )
351
from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCamelCase ( ) -> Tuple: UpperCamelCase : List[str] = 9 UpperCamelCase : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCamelCase : int = kruskal(snake_case__ , snake_case__ ) UpperCamelCase : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(snake_case__ ) == sorted(snake_case__ )
103
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" UpperCamelCase = int(number**0.5 ) return number == sq * sq def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__ ) -> tuple[int, int]: """simple docstring""" UpperCamelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase = x_den * y_den * z_den UpperCamelCase = gcd(A__ , A__ ) top //= hcf bottom //= hcf return top, bottom def __lowerCamelCase ( A__ = 35 ) -> int: """simple docstring""" UpperCamelCase = set() UpperCamelCase = 42 UpperCamelCase = Fraction(0 ) UpperCamelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCamelCase = x_num * y_den + x_den * y_num UpperCamelCase = x_den * y_den UpperCamelCase = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 UpperCamelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase = x_den * x_den * y_den * y_den if is_sq(A__ ) and is_sq(A__ ): UpperCamelCase = int(sqrt(A__ ) ) UpperCamelCase = int(sqrt(A__ ) ) UpperCamelCase = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=-1 UpperCamelCase = x_num * y_num UpperCamelCase = x_den * y_num + x_num * y_den UpperCamelCase = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 UpperCamelCase = x_num * x_num * y_num * y_num UpperCamelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A__ ) and is_sq(A__ ): UpperCamelCase = int(sqrt(A__ ) ) UpperCamelCase = int(sqrt(A__ ) ) UpperCamelCase = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) for num, den in unique_s: total += Fraction(A__ , A__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[int] = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCAmelCase__ ( UpperCamelCase__ ): """simple docstring""" lowerCAmelCase__ = '''longformer''' def __init__( self : str , __SCREAMING_SNAKE_CASE : Union[List[int], int] = 512 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 30_522 , __SCREAMING_SNAKE_CASE : int = 768 , __SCREAMING_SNAKE_CASE : int = 12 , __SCREAMING_SNAKE_CASE : int = 12 , __SCREAMING_SNAKE_CASE : int = 3_072 , __SCREAMING_SNAKE_CASE : str = "gelu" , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : int = 512 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : float = 1E-12 , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = attention_window __SCREAMING_SNAKE_CASE = sep_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = onnx_export class lowerCAmelCase__ ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : "PretrainedConfig" , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : "List[PatchingSpec]" = None ) -> List[Any]: """simple docstring""" super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = True @property def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __SCREAMING_SNAKE_CASE = super().outputs if self.task == "default": __SCREAMING_SNAKE_CASE = {0: """batch"""} return outputs @property def UpperCAmelCase__ ( self : Optional[int] ) -> float: """simple docstring""" return 1E-4 @property def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( preprocessor=UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __SCREAMING_SNAKE_CASE = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global __SCREAMING_SNAKE_CASE = 1 return inputs
355
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
331
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase__ = TaTokenizerFast UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
339
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str , _UpperCAmelCase : dict ) -> str: '''simple docstring''' _UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase , params=_UpperCAmelCase ).content , 'html.parser' ) _UpperCAmelCase = soup.find('div' , attrs={'class': 'gs_ri'} ) _UpperCAmelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase__ = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
339
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) SCREAMING_SNAKE_CASE_ = "sshleifer/student_marian_en_ro_6_1" SCREAMING_SNAKE_CASE_ = "sshleifer/tiny-mbart" @require_torch class a ( snake_case__ ): def _UpperCAmelCase ( self , A_=False , A_=None , A_=True , A_=True , A_=True , A_=True , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , extra_args_str=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , do_predict=UpperCAmelCase_ , ) _UpperCAmelCase : List[str] = TrainerState.load_from_json(os.path.join(UpperCAmelCase_ , "trainer_state.json" ) ).log_history if not do_eval: return _UpperCAmelCase : int = [log for log in logs if "eval_loss" in log.keys()] _UpperCAmelCase : Any = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _UpperCAmelCase : List[str] = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , UpperCAmelCase_ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=UpperCAmelCase_ ) @require_torch_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=UpperCAmelCase_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=UpperCAmelCase_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick( distributed=UpperCAmelCase_ , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=UpperCAmelCase_ ) @require_apex @require_torch_gpu def _UpperCAmelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=UpperCAmelCase_ , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } _UpperCAmelCase : Optional[Any] = experiments[experiment_id] _UpperCAmelCase : Optional[Any] = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} _UpperCAmelCase : List[Any] = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**UpperCAmelCase_ , extra_args_str=data["extra_args_str"] ) _UpperCAmelCase : Tuple = len(re.findall(UpperCAmelCase_ , cl.err ) ) self.assertEqual(UpperCAmelCase_ , data["n_matches"] ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = self.run_trainer( eval_steps=2 , max_len=128 , model_name=UpperCAmelCase_ , learning_rate=3e-4 , num_train_epochs=10 , distributed=UpperCAmelCase_ , ) # Check metrics _UpperCAmelCase : Dict = TrainerState.load_from_json(os.path.join(UpperCAmelCase_ , "trainer_state.json" ) ).log_history _UpperCAmelCase : str = [log for log in logs if "eval_loss" in log.keys()] _UpperCAmelCase : Tuple = eval_metrics[0] _UpperCAmelCase : Optional[int] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , UpperCAmelCase_ ) # test if do_predict saves generations and metrics _UpperCAmelCase : str = os.listdir(UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = {os.path.basename(UpperCAmelCase_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _UpperCAmelCase ( self ): '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(A_ ) -> Tuple[int, float]: _UpperCAmelCase : Tuple = "--skip_memory_metrics 0" _UpperCAmelCase : Any = self.run_trainer( max_len=128 , model_name=UpperCAmelCase_ , learning_rate=3e-4 , num_train_epochs=1 , optim=UpperCAmelCase_ , distributed=UpperCAmelCase_ , extra_args_str=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , do_predict=UpperCAmelCase_ , n_gpus_to_use=1 , ) # Check metrics _UpperCAmelCase : Optional[int] = TrainerState.load_from_json(Path(UpperCAmelCase_ , "trainer_state.json" ) ).log_history _UpperCAmelCase : Union[str, Any] = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) _UpperCAmelCase : Union[str, Any] = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) _UpperCAmelCase : str = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _UpperCAmelCase : Any = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _UpperCAmelCase : List[str] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _UpperCAmelCase : Any = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _UpperCAmelCase : int = gpu_peak_mem_orig + gpu_alloc_mem_orig _UpperCAmelCase : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _UpperCAmelCase : Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _UpperCAmelCase : Dict = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( UpperCAmelCase_ , UpperCAmelCase_ , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" f' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' f' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' , ) self.assertGreater( UpperCAmelCase_ , UpperCAmelCase_ , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" f' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' f' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' , ) self.assertEqual( UpperCAmelCase_ , UpperCAmelCase_ , f'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ = 3e-3 , A_ = "adafactor" , A_ = False , A_ = None , A_ = 0 , A_ = True , A_ = True , A_ = True , A_ = True , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" _UpperCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Optional[Any] = f'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(UpperCAmelCase_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(UpperCAmelCase_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() _UpperCAmelCase : Dict = f'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(UpperCAmelCase_ )}\n '.split() _UpperCAmelCase : Any = "\n --do_predict\n ".split() _UpperCAmelCase : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _UpperCAmelCase : List[str] = get_gpu_count() _UpperCAmelCase : Union[str, Any] = get_torch_dist_unique_port() _UpperCAmelCase : List[str] = f'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() _UpperCAmelCase : Optional[Any] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) else: _UpperCAmelCase : List[str] = ["run_translation.py"] + args with patch.object(UpperCAmelCase_ , "argv" , UpperCAmelCase_ ): main() return output_dir
365
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class a : _lowercase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) _lowercase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) _lowercase = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the training data."} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the validation data."} ) _lowercase = field(default=UpperCAmelCase , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: _UpperCAmelCase : int = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase : Optional[int] = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class a : _lowercase = field( default=UpperCAmelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _lowercase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _lowercase = field( default=UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) datasets.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCAmelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase : int = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase : Tuple = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[Any] = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase : Union[str, Any] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _UpperCAmelCase : List[str] = load_dataset("csv" , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase : Dict = load_dataset("json" , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase : List[str] = raw_datasets["train"].features["label"].names _UpperCAmelCase : Tuple = len(lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase : Tuple = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase , ) _UpperCAmelCase : Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase : Tuple = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase : List[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase : List[Any] = {"Refused": 0, "Entailed": 1} _UpperCAmelCase : Optional[int] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _UpperCAmelCase : int = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase: str ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase: List[Any] ): _UpperCAmelCase : Any = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _UpperCAmelCase : List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase : Tuple = examples["statement"] _UpperCAmelCase : List[Any] = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ) _UpperCAmelCase : List[str] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _UpperCAmelCase : List[Any] = raw_datasets.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : Dict = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Union[str, Any] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _UpperCAmelCase : Dict = raw_datasets["test"] if data_args.max_predict_samples is not None: _UpperCAmelCase : Any = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: EvalPrediction ): _UpperCAmelCase : Optional[int] = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase ) else p.predictions _UpperCAmelCase : Optional[Any] = np.argmax(lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase : str = default_data_collator elif training_args.fpaa: _UpperCAmelCase : int = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) else: _UpperCAmelCase : List[str] = None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Dict = last_checkpoint _UpperCAmelCase : str = trainer.train(resume_from_checkpoint=lowerCAmelCase ) _UpperCAmelCase : Tuple = train_result.metrics _UpperCAmelCase : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) _UpperCAmelCase : Any = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCAmelCase ) trainer.save_metrics("train" , lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase ) _UpperCAmelCase : Any = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics("eval" , lowerCAmelCase ) trainer.save_metrics("eval" , lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase : int = predict_dataset.remove_columns("label" ) _UpperCAmelCase : Any = trainer.predict(lowerCAmelCase , metric_key_prefix="predict" ).predictions _UpperCAmelCase : List[str] = np.argmax(lowerCAmelCase , axis=1 ) _UpperCAmelCase : int = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCAmelCase ): _UpperCAmelCase : List[Any] = label_list[item] writer.write(F'{index}\t{item}\n' ) _UpperCAmelCase : int = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
189
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : str = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
225
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCamelCase__ : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCamelCase__ : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCamelCase__ : int = BeautifulSoup(res.text, 'html.parser') lowerCamelCase__ : List[str] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
225
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :List[str] = '''instructblip_vision_model''' def __init__( self , lowerCAmelCase_=14_08 , lowerCAmelCase_=61_44 , lowerCAmelCase_=39 , lowerCAmelCase_=16 , lowerCAmelCase_=2_24 , lowerCAmelCase_=14 , lowerCAmelCase_="gelu" , lowerCAmelCase_=1E-6 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1E-10 , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> Any: super().__init__(**lowerCAmelCase_ ) _A = hidden_size _A = intermediate_size _A = num_hidden_layers _A = num_attention_heads _A = patch_size _A = image_size _A = initializer_range _A = attention_dropout _A = layer_norm_eps _A = hidden_act _A = qkv_bias @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _A = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''instructblip_qformer''' def __init__( self , lowerCAmelCase_=3_05_22 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0 , lowerCAmelCase_="absolute" , lowerCAmelCase_=2 , lowerCAmelCase_=14_08 , **lowerCAmelCase_ , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = cross_attention_frequency _A = encoder_hidden_size @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _A = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''instructblip''' lowerCamelCase :int = True def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=32 , **lowerCAmelCase_ ) -> Tuple: super().__init__(**lowerCAmelCase_ ) if vision_config is None: _A = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _A = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _A = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _A = InstructBlipVisionConfig(**lowerCAmelCase_ ) _A = InstructBlipQFormerConfig(**lowerCAmelCase_ ) _A = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _A = CONFIG_MAPPING[text_model_type](**lowerCAmelCase_ ) _A = self.text_config.tie_word_embeddings _A = self.text_config.is_encoder_decoder _A = num_query_tokens _A = self.vision_config.hidden_size _A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _A = 1.0 _A = 0.02 @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase_ , ) def UpperCAmelCase ( self ) -> Any: _A = copy.deepcopy(self.__dict__ ) _A = self.vision_config.to_dict() _A = self.qformer_config.to_dict() _A = self.text_config.to_dict() _A = self.__class__.model_type return output
81
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase( ): lowerCAmelCase_ : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=__UpperCamelCase ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=__UpperCamelCase ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=__UpperCamelCase ) return parser.parse_args() def UpperCamelCase( ): lowerCAmelCase_ : str = parse_args() # Import training_script as a module. lowerCAmelCase_ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase_ : Tuple = script_fpath.stem lowerCAmelCase_ : Union[str, Any] = importlib.import_module(__UpperCamelCase ) # Patch sys.argv lowerCAmelCase_ : Optional[int] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
103
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_4 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=9_9 , _UpperCamelCase=3_2 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=1_6 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ) -> Optional[int]: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_input_mask UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : List[str] = use_mc_token_ids UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : Any = scope UpperCAmelCase_ : str = self.vocab_size - 1 def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : str = None if self.use_input_mask: UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_mc_token_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self ) -> Dict: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Optional[int] = CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) UpperCAmelCase_ : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) -> List[str]: UpperCAmelCase_ : List[str] = CTRLLMHeadModel(__A ) model.to(__A ) model.eval() UpperCAmelCase_ : str = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Dict = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) -> int: UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : int = CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _snake_case : Any = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _snake_case : Dict = (CTRLLMHeadModel,) if is_torch_available() else () _snake_case : Tuple = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _snake_case : List[str] = True _snake_case : Union[str, Any] = False _snake_case : Optional[Any] = False def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = CTRLModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=__A , n_embd=3_7 ) def __UpperCAmelCase ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ) -> Dict: pass @slow def __UpperCAmelCase ( self ) -> Tuple: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self ) -> str: pass @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[Any] = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=__A ) # Legal the president is UpperCAmelCase_ : Union[str, Any] = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase_ : str = model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict=None ): """simple docstring""" lowercase_ : Any = argparse.ArgumentParser(add_help=__SCREAMING_SNAKE_CASE , allow_abbrev=__SCREAMING_SNAKE_CASE ) # The main config parser lowercase_ : List[Any] = config_command_parser(__SCREAMING_SNAKE_CASE ) # The subparser to add commands to lowercase_ : int = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(__SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(__SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def snake_case_ ( ): """simple docstring""" lowercase_ : int = get_config_parser() lowercase_ : List[Any] = config_parser.parse_args() if not hasattr(__SCREAMING_SNAKE_CASE , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
93
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
class UpperCamelCase__ : def __init__(self : Optional[int] , snake_case_ : int ): __a : List[Any] = n __a : Tuple = [None] * self.n __a : List[Any] = 0 # index of the first element __a : List[str] = 0 __a : Tuple = 0 def __len__(self : List[Any] ): return self.size def lowerCAmelCase (self : Tuple ): return self.size == 0 def lowerCAmelCase (self : Dict ): return False if self.is_empty() else self.array[self.front] def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) __a : Tuple = data __a : str = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase (self : Optional[int] ): if self.size == 0: raise Exception('''UNDERFLOW''' ) __a : str = self.array[self.front] __a : Union[str, Any] = None __a : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
90
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED lowercase__ ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowercase__ ={ 'allenai/led-base-16384': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCamelCase ( ): __a : Tuple = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __a : List[str] = bs[:] __a : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 __a : Union[str, Any] = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __UpperCamelCase ( lowerCAmelCase__ : List[Any] ): __a : Any = set() __a : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __a : Tuple = char return pairs class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case_ : int , snake_case_ : Dict , snake_case_ : Union[str, Any]="replace" , snake_case_ : Any="<s>" , snake_case_ : Any="</s>" , snake_case_ : Tuple="</s>" , snake_case_ : Dict="<s>" , snake_case_ : Any="<unk>" , snake_case_ : List[Any]="<pad>" , snake_case_ : Dict="<mask>" , snake_case_ : Dict=False , **snake_case_ : Tuple , ): __a : List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token __a : Tuple = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token __a : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token __a : Dict = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token __a : List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token __a : str = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a : int = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: __a : Union[str, Any] = json.load(snake_case_ ) __a : Union[str, Any] = {v: k for k, v in self.encoder.items()} __a : List[Any] = errors # how to handle errors in decoding __a : Union[str, Any] = bytes_to_unicode() __a : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: __a : List[Any] = merges_handle.read().split('''\n''' )[1:-1] __a : int = [tuple(merge.split() ) for merge in bpe_merges] __a : Tuple = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __a : Optional[int] = {} __a : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __a : str = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase (self : int ): return len(self.encoder ) def lowerCAmelCase (self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase (self : Dict , snake_case_ : Optional[Any] ): if token in self.cache: return self.cache[token] __a : str = tuple(snake_case_ ) __a : Optional[Any] = get_pairs(snake_case_ ) if not pairs: return token while True: __a : Optional[int] = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __a , __a : Any = bigram __a : Union[str, Any] = [] __a : List[Any] = 0 while i < len(snake_case_ ): try: __a : int = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a : Optional[int] = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a : Tuple = tuple(snake_case_ ) __a : List[Any] = new_word if len(snake_case_ ) == 1: break else: __a : Tuple = get_pairs(snake_case_ ) __a : Optional[int] = ''' '''.join(snake_case_ ) __a : Union[str, Any] = word return word def lowerCAmelCase (self : Dict , snake_case_ : str ): __a : Optional[Any] = [] for token in re.findall(self.pat , snake_case_ ): __a : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase (self : Optional[Any] , snake_case_ : int ): return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[str] ): return self.decoder.get(snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : str ): __a : Any = ''''''.join(snake_case_ ) __a : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCAmelCase (self : List[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __a : Any = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a : str = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) __a : Optional[int] = 0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) __a : Union[str, Any] = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase (self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] __a : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase (self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase (self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : Union[str, Any] = [self.sep_token_id] __a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase (self : str , snake_case_ : int , snake_case_ : Union[str, Any]=False , **snake_case_ : str ): __a : List[str] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): __a : str = ''' ''' + text return (text, kwargs) def lowerCAmelCase (self : Optional[int] , snake_case_ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case_ : Optional[int] = None , snake_case_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , ): __a : int = super()._pad( encoded_inputs=snake_case_ , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , ) # Load from model defaults if return_attention_mask is None: __a : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(snake_case_ ) if needs_to_be_padded: __a : int = len(snake_case_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a : List[str] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __a : List[str] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
90
1
"""simple docstring""" def lowercase ( __snake_case : int = 1_0_0_0 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while b: UpperCamelCase__ , UpperCamelCase__ : int = b, a % b return a def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def SCREAMING_SNAKE_CASE ( ) -> str: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
189
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] _UpperCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) )
185
def lowerCAmelCase__ ( a__: int ) -> None: '''simple docstring''' _UpperCAmelCase = generate_pascal_triangle(a__ ) for row_idx in range(a__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def lowerCAmelCase__ ( a__: int ) -> list[list[int]]: '''simple docstring''' if not isinstance(a__ , a__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _UpperCAmelCase = [] for current_row_idx in range(a__ ): _UpperCAmelCase = populate_current_row(a__ , a__ ) triangle.append(a__ ) return triangle def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _UpperCAmelCase , _UpperCAmelCase = 1, 1 for current_col_idx in range(1 , a__ ): calculate_current_element( a__ , a__ , a__ , a__ ) return current_row def lowerCAmelCase__ ( a__: list[list[int]] , a__: list[int] , a__: int , a__: int , ) -> None: '''simple docstring''' _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] _UpperCAmelCase = above_to_left_elt + above_to_right_elt def lowerCAmelCase__ ( a__: int ) -> list[list[int]]: '''simple docstring''' if not isinstance(a__ , a__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _UpperCAmelCase = [[1]] for row_index in range(1 , a__ ): _UpperCAmelCase = [0] + result[-1] + [0] _UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row _UpperCAmelCase = sum(divmod(a__ , 2 ) ) _UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _UpperCAmelCase = row_first_half + row_second_half result.append(a__ ) return result def lowerCAmelCase__ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(a__: Callable , a__: int ) -> None: _UpperCAmelCase = F'''{func.__name__}({value})''' _UpperCAmelCase = timeit(F'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a__ , a__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
185
1
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowerCamelCase_ : int = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _A ( lowercase , lowercase , lowercase , lowercase , lowercase=False , lowercase=True ): """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) a , a , a , a =MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: a =cached_file(lowercase , lowercase , force_download=not use_cached_models ) a =config_class.from_json_file(lowercase ) a =True a =True print(f'''Building TensorFlow model from configuration: {config}''' ) a =model_class(lowercase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): a =cached_file( lowercase , lowercase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: a =load_pytorch_checkpoint_in_tfa_model(lowercase , lowercase ) if compare_with_pt_model: a =tf_model(tf_model.dummy_inputs , training=lowercase ) # build the network a =torch.load(lowercase , map_location='''cpu''' ) a =pt_model_class.from_pretrained( pretrained_model_name_or_path=lowercase , config=lowercase , state_dict=lowercase ) with torch.no_grad(): a =pt_model(**pt_model.dummy_inputs ) a =pto[0].numpy() a =tfo[0].numpy() a =np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(lowercase , save_format='''h5''' ) def _A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=False , lowercase=False , lowercase=False , lowercase=False , ): """simple docstring""" if args_model_type is None: a =list(MODEL_CLASSES.keys() ) else: a =[args_model_type] for j, model_type in enumerate(lowercase , start=1 ): print('''=''' * 1_00 ) print(f''' Converting model type {j}/{len(lowercase )}: {model_type}''' ) print('''=''' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) a , a , a , a , a =MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: a =list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: a =model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowercase , lowercase ) , start=1 ): print('''-''' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue a =model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(lowercase )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 1_00 ) if config_shortcut_name in aws_config_map: a =cached_file(lowercase , lowercase , force_download=not use_cached_models ) else: a =config_shortcut_name if model_shortcut_name in aws_model_maps: a =cached_file(lowercase , lowercase , force_download=not use_cached_models ) else: a =model_shortcut_name if os.path.isfile(lowercase ): a ='''converted_model''' convert_pt_checkpoint_to_tf( model_type=lowercase , pytorch_checkpoint_path=lowercase , config_file=lowercase , tf_dump_path=os.path.join(lowercase , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=lowercase , ) if remove_cached_files: os.remove(lowercase ) os.remove(lowercase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") lowerCamelCase_ : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
81
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" return number | (1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return number & ~(1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return number ^ (1 << position) def _A ( lowercase , lowercase ): """simple docstring""" return ((number >> position) & 1) == 1 def _A ( lowercase , lowercase ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
81
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Dict = None __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : List[str] = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Union[str, Any] = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = TaTokenizer snake_case__ = [] def __init__( self , _snake_case=None , _snake_case=None , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case=1_00 , _snake_case=None , **_snake_case , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase = [F'<extra_id_{i}>' for i in range(_snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase = len(set(filter(lambda _snake_case : bool('extra_id_' in str(_snake_case ) ) , _snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( _snake_case , tokenizer_file=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , extra_ids=_snake_case , additional_special_tokens=_snake_case , **_snake_case , ) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True lowerCAmelCase = extra_ids @staticmethod def UpperCamelCase__ ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _snake_case , ) return max_model_length def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) logger.info(F'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ ( self ): """simple docstring""" return list( set(filter(lambda _snake_case : bool(re.search(r'<extra_id_\d+>' , _snake_case ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" return [self.convert_tokens_to_ids(_snake_case ) for token in self.get_sentinel_tokens()]
309
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
1
"""simple docstring""" import random def _snake_case ( lowercase__ , lowercase__ , lowercase__ = False ): _lowerCamelCase : dict = {i: [] for i in range(lowercase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if random.random() < probability: graph[i].append(lowercase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase__ ) return graph def _snake_case ( lowercase__ ): return { i: [j for j in range(lowercase__ ) if i != j] for i in range(lowercase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
96
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __a = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : int = 1_4 ) -> None: """simple docstring""" if group not in primes: raise ValueError("Unsupported Group" ) _UpperCAmelCase : Union[str, Any] = primes[group]["prime"] _UpperCAmelCase : List[Any] = primes[group]["generator"] _UpperCAmelCase : str = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCAmelCase__ )[2:] def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = int(lowerCAmelCase__ , base=1_6 ) if not self.is_valid_public_key(lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Optional[Any] = pow(lowerCAmelCase__ , self.__private_key , self.prime ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase__ , (prime - 1) // 2 , lowerCAmelCase__ ) == 1 ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 1_4 ) -> str: """simple docstring""" _UpperCAmelCase : Any = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : List[Any] = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : str = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Tuple = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
145
0
import random def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase_ ) elif element > pivot: greater.append(lowerCAmelCase_ ) else: equal.append(lowerCAmelCase_ ) return less, equal, greater def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int ): """simple docstring""" if index >= len(lowerCAmelCase_ ) or index < 0: return None lowerCAmelCase__ = items[random.randint(0 , len(lowerCAmelCase_ ) - 1 )] lowerCAmelCase__ = 0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _partition(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase_ , lowerCAmelCase_ ) # must be in larger else: return quick_select(lowerCAmelCase_ , index - (m + count) )
221
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[str]=("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple=(64,) , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]="silu" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , ) -> str: super().__init__() lowerCAmelCase__ = layers_per_block lowerCAmelCase__ = torch.nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) # down lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(SCREAMING_SNAKE_CASE__ ) - 1 lowerCAmelCase__ = get_down_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) self.down_blocks.append(SCREAMING_SNAKE_CASE__ ) # mid lowerCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # out lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = 2 * out_channels if double_z else out_channels lowerCAmelCase__ = nn.Convad(block_out_channels[-1] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) lowerCAmelCase__ = False def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> int: lowerCAmelCase__ = x lowerCAmelCase__ = self.conv_in(SCREAMING_SNAKE_CASE__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE__ : Optional[int] ): def custom_forward(*SCREAMING_SNAKE_CASE__ : Dict ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: for down_block in self.down_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ ) else: # down for down_block in self.down_blocks: lowerCAmelCase__ = down_block(SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = self.mid_block(SCREAMING_SNAKE_CASE__ ) # post-process lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_act(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : int=("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple=(64,) , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]="silu" , SCREAMING_SNAKE_CASE__ : List[str]="group" , ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ = layers_per_block lowerCAmelCase__ = nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) lowerCAmelCase__ = in_channels if norm_type == "spatial" else None # mid lowerCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # up lowerCAmelCase__ = list(reversed(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = i == len(SCREAMING_SNAKE_CASE__ ) - 1 lowerCAmelCase__ = get_up_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , resnet_time_scale_shift=SCREAMING_SNAKE_CASE__ , ) self.up_blocks.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output_channel # out if norm_type == "spatial": lowerCAmelCase__ = SpatialNorm(block_out_channels[0] , SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = nn.Convad(block_out_channels[0] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) lowerCAmelCase__ = False def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Dict: lowerCAmelCase__ = z lowerCAmelCase__ = self.conv_in(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): def custom_forward(*SCREAMING_SNAKE_CASE__ : List[str] ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # middle lowerCAmelCase__ = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = up_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # post-process if latent_embeds is None: lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_act(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]="random" , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True ) -> List[Any]: super().__init__() lowerCAmelCase__ = n_e lowerCAmelCase__ = vq_embed_dim lowerCAmelCase__ = beta lowerCAmelCase__ = legacy lowerCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase__ = self.used.shape[0] lowerCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase__ = self.re_embed lowerCAmelCase__ = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowerCAmelCase__ = n_e lowerCAmelCase__ = sane_index_shape def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 lowerCAmelCase__ = inds.reshape(ishape[0] , -1 ) lowerCAmelCase__ = self.used.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase__ = match.argmax(-1 ) lowerCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase__ = self.unknown_index return new.reshape(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: lowerCAmelCase__ = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 lowerCAmelCase__ = inds.reshape(ishape[0] , -1 ) lowerCAmelCase__ = self.used.to(SCREAMING_SNAKE_CASE__ ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase__ = 0 # simply set to zero lowerCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , SCREAMING_SNAKE_CASE__ ) return back.reshape(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase__ = torch.argmin(torch.cdist(SCREAMING_SNAKE_CASE__ , self.embedding.weight ) , dim=1 ) lowerCAmelCase__ = self.embedding(SCREAMING_SNAKE_CASE__ ).view(z.shape ) lowerCAmelCase__ = None lowerCAmelCase__ = None # compute loss for embedding if not self.legacy: lowerCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCAmelCase__ = self.remap_to_used(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def a ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis lowerCAmelCase__ = self.unmap_to_all(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase__ = self.embedding(SCREAMING_SNAKE_CASE__ ) if shape is not None: lowerCAmelCase__ = z_q.view(SCREAMING_SNAKE_CASE__ ) # reshape back to match original input shape lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=False ) -> Optional[int]: lowerCAmelCase__ = parameters lowerCAmelCase__ , lowerCAmelCase__ = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 , dim=1 ) lowerCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCAmelCase__ = deterministic lowerCAmelCase__ = torch.exp(0.5 * self.logvar ) lowerCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase__ = lowerCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase__ = randn_tensor( self.mean.shape , generator=SCREAMING_SNAKE_CASE__ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCAmelCase__ = self.mean + self.std * sample return x def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Union[str, Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=[1, 2, 3] ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Dict: return self.mean
221
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A = 10 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" for i in range(UpperCamelCase__ , UpperCamelCase__ ): if array[i] == target: return i return -1 def lowerCamelCase_ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = len(UpperCamelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCamelCase = one_third - 1 elif array[two_third] < target: __lowerCamelCase = two_third + 1 else: __lowerCamelCase = one_third + 1 __lowerCamelCase = two_third - 1 else: return -1 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase__ , one_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A = int(input("Enter the number to be found in the list:\n").strip()) __A = ite_ternary_search(collection, target) __A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
90
1
def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 _lowerCAmelCase , _lowerCAmelCase : Dict = 1, 1 for _ in range(number_of_steps - 1 ): _lowerCAmelCase , _lowerCAmelCase : str = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
159
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowerCamelCase : Tuple = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowerCamelCase : List[str] = get_tests_dir("fixtures/vocab.json") _lowerCamelCase : str = get_tests_dir("fixtures") class __snake_case (unittest.TestCase ): lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: '''simple docstring''' _lowerCAmelCase : Any = 0 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : List[Any] = WavaVecaConfig() _lowerCAmelCase : str = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Any = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """vocab.json""" ) ) _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Any = WavaVecaFeatureExtractor() _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) _lowerCAmelCase : List[str] = WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """r""" ) as f: _lowerCAmelCase : Union[str, Any] = json.load(_UpperCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as f: f.write(json.dumps(_UpperCAmelCase ) ) _lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Dict = WavaVecaFeatureExtractor() _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) _lowerCAmelCase : str = WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """r""" ) as f: _lowerCAmelCase : str = json.load(_UpperCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as f: f.write(json.dumps(_UpperCAmelCase ) ) _lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Tuple = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(_UpperCAmelCase ) # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as f: f.write("""{}""" ) _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Any = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : List[str] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) _lowerCAmelCase : Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) _lowerCAmelCase : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) _lowerCAmelCase : List[str] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' try: AutoConfig.register("""custom""" , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase : List[str] = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Tuple = os.path.join(_UpperCAmelCase , """vocab.txt""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : str = CustomTokenizer(_UpperCAmelCase ) _lowerCAmelCase : List[str] = CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: '''simple docstring''' class __snake_case (_a ): lowerCAmelCase__ = False class __snake_case (_a ): lowerCAmelCase__ = False class __snake_case (_a ): lowerCAmelCase__ = "AutoFeatureExtractor" lowerCAmelCase__ = "AutoTokenizer" lowerCAmelCase__ = False try: AutoConfig.register("""custom""" , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local classes. _lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCAmelCase : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class __snake_case (unittest.TestCase ): lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def SCREAMING_SNAKE_CASE ( cls : int ) -> Any: '''simple docstring''' _lowerCAmelCase : List[str] = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple ) -> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[int] = WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , """test-processor""" ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) _lowerCAmelCase : str = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : int = WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , """test-processor-org""" ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token , organization="""valid_org""" , ) _lowerCAmelCase : str = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCAmelCase : Any = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : int = os.path.join(_UpperCAmelCase , """vocab.txt""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : List[str] = CustomTokenizer(_UpperCAmelCase ) _lowerCAmelCase : List[str] = CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor" , token=self._token ) _lowerCAmelCase : Union[str, Any] = Repository(_UpperCAmelCase , clone_from=f"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(_UpperCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_UpperCAmelCase , """tokenizer_config.json""" ) ) as f: _lowerCAmelCase : str = json.load(_UpperCAmelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() _lowerCAmelCase : Tuple = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor" , trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
159
1
'''simple docstring''' import math from collections.abc import Callable def UpperCAmelCase__ ( UpperCAmelCase_ : Callable[[float], float] , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: __lowerCamelCase : float = xa __lowerCamelCase : float = xa while True: if x_n == x_na or function(UpperCAmelCase_ ) == function(UpperCAmelCase_ ): raise ZeroDivisionError('float division by zero, could not find root' ) __lowerCamelCase : float = x_na - ( function(UpperCAmelCase_ ) / ((function(UpperCAmelCase_ ) - function(UpperCAmelCase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __lowerCamelCase : Union[str, Any] = x_na __lowerCamelCase : Optional[Any] = x_na def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: return math.pow(UpperCAmelCase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
185
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Dict = None A__ : List[Any] = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A__ : Union[str, Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } A__ : Any = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } A__ : Dict = """▁""" # Segments (not really needed) A__ : List[str] = 0 A__ : List[Any] = 1 A__ : Union[str, Any] = 2 A__ : List[Any] = 3 A__ : str = 4 class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = 'left' lowerCamelCase : Optional[Any] = XLNetTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : int = do_lower_case __lowerCamelCase : Optional[Any] = remove_space __lowerCamelCase : int = keep_accents __lowerCamelCase : Any = vocab_file __lowerCamelCase : Any = False if not self.vocab_file else True def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Optional[Any] = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
185
1
'''simple docstring''' import re from filelock import FileLock try: import nltk lowercase__ : int = True except (ImportError, ModuleNotFoundError): lowercase__ : str = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def a__ ( lowercase : str ) -> str: """simple docstring""" re.sub('''<n>''', '''''', lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase ) )
287
'''simple docstring''' import random class __lowerCAmelCase : """simple docstring""" @staticmethod def snake_case__ ( lowerCAmelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCamelCase = [ord(lowerCAmelCase__ ) for i in text] _UpperCamelCase = [] _UpperCamelCase = [] for i in plain: _UpperCamelCase = random.randint(1 , 300 ) _UpperCamelCase = (i + k) * k cipher.append(lowerCAmelCase__ ) key.append(lowerCAmelCase__ ) return cipher, key @staticmethod def snake_case__ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> str: '''simple docstring''' _UpperCamelCase = [] for i in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCAmelCase__ ) ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ , lowercase__ : List[str] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
287
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 UpperCamelCase_ = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[str] = TaTokenizer __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=1_0_0 , snake_case_=None , **snake_case_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase : int = [f'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _lowerCAmelCase : int = len(set(filter(lambda snake_case_ : bool("""extra_id_""" in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Union[str, Any] = vocab_file _lowerCAmelCase : List[str] = False if not self.vocab_file else True _lowerCAmelCase : Any = extra_ids @staticmethod def __UpperCamelCase ( snake_case_ , snake_case_ , snake_case_ ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _lowerCAmelCase : Tuple = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , snake_case_ , ) return max_model_length def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : List[str] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _lowerCAmelCase : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCamelCase ( self ): return list( set(filter(lambda snake_case_ : bool(re.search(r"""<extra_id_\d+>""" , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def __UpperCamelCase ( self ): return [self.convert_tokens_to_ids(snake_case_ ) for token in self.get_sentinel_tokens()]
309
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
1
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _UpperCamelCase = deepcopy(lowerCAmelCase__ ) elif os.path.exists(lowerCAmelCase__ ): with io.open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = json.load(lowerCAmelCase__ ) else: try: _UpperCamelCase = baseaa.urlsafe_baadecode(lowerCAmelCase__ ).decode('''utf-8''' ) _UpperCamelCase = json.loads(lowerCAmelCase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) _UpperCamelCase = config self.set_stage_and_offload() def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_value('''zero_optimization.stage''' , -1 ) # offload _UpperCamelCase = False if self.is_zeroa() or self.is_zeroa(): _UpperCamelCase = set(['''cpu''', '''nvme'''] ) _UpperCamelCase = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: _UpperCamelCase = True def snake_case__ ( self : Tuple , lowerCAmelCase__ : int ) -> Dict: '''simple docstring''' _UpperCamelCase = self.config # find the config node of interest if it exists _UpperCamelCase = ds_key_long.split('''.''' ) _UpperCamelCase = nodes.pop() for node in nodes: _UpperCamelCase = config.get(lowerCAmelCase__ ) if config is None: return None, ds_key return config, ds_key def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.find_config_node(lowerCAmelCase__ ) if config is None: return default return config.get(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int=False ) -> Any: '''simple docstring''' _UpperCamelCase = self.config # find the config node of interest if it exists _UpperCamelCase = ds_key_long.split('''.''' ) for node in nodes: _UpperCamelCase = config _UpperCamelCase = config.get(lowerCAmelCase__ ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_value(lowerCAmelCase__ ) return False if value is None else bool(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_value(lowerCAmelCase__ ) return False if value is None else not bool(lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> str: '''simple docstring''' return self._stage == 2 def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return self._stage == 3 def snake_case__ ( self : List[str] ) -> str: '''simple docstring''' return self._offload class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = engine def snake_case__ ( self : List[str] , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' self.engine.backward(lowerCAmelCase__ , **lowerCAmelCase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , device_placement=lowerCAmelCase__ , scaler=lowerCAmelCase__ ) _UpperCamelCase = hasattr(self.optimizer , '''overflow''' ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def snake_case__ ( self : Dict ) -> str: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __lowerCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=0.001 , lowerCAmelCase__ : str=0 , **lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = params _UpperCamelCase = lr _UpperCamelCase = weight_decay _UpperCamelCase = kwargs class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=0 , **lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = optimizer _UpperCamelCase = total_num_steps _UpperCamelCase = warmup_num_steps _UpperCamelCase = kwargs
287
'''simple docstring''' from math import isclose, sqrt def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> tuple[float, float, float]: """simple docstring""" _UpperCamelCase = point_y / 4 / point_x _UpperCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCamelCase = outgoing_gradient**2 + 4 _UpperCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _UpperCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCamelCase = x_minus if isclose(lowercase, lowercase ) else x_plus _UpperCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( lowercase : float = 1.4, lowercase : float = -9.6 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = first_x_coord _UpperCamelCase = first_y_coord _UpperCamelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = next_point(lowercase, lowercase, lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
287
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) A__ = BlipaProcessor(__UpperCAmelCase ,__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,**__UpperCAmelCase ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).tokenizer def snake_case__ ( self ,**__UpperCAmelCase ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).image_processor def snake_case__ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> Any: A__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> Optional[Any]: A__ = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=__UpperCAmelCase ,padding_value=1.0 ) A__ = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCAmelCase ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__UpperCAmelCase ,return_tensors='np' ) A__ = processor(images=__UpperCAmelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ) A__ = 'lower newer' A__ = processor(text=__UpperCAmelCase ) A__ = tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def snake_case__ ( self ) -> int: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case__ ( self ) -> Dict: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'input_ids', 'attention_mask'] )
221
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 2_55 ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: A__ = get_resize_output_image_size(__UpperCAmelCase ,size['shortest_edge'] ,default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase ,size=(size['height'], size['width']) ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> Optional[Any]: A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: return normalize(__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(__UpperCAmelCase ) if do_resize: A__ = self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) if do_center_crop: A__ = self.center_crop(__UpperCAmelCase ,size=__UpperCAmelCase ) if do_rescale: A__ = self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ,offset=__UpperCAmelCase ) if do_normalize: A__ = self.normalize(image=__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ) A__ = to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) return image def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(__UpperCAmelCase ) A__ = [ [ self._preprocess_image( image=__UpperCAmelCase ,do_resize=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,do_center_crop=__UpperCAmelCase ,crop_size=__UpperCAmelCase ,do_rescale=__UpperCAmelCase ,rescale_factor=__UpperCAmelCase ,offset=__UpperCAmelCase ,do_normalize=__UpperCAmelCase ,image_mean=__UpperCAmelCase ,image_std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
221
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( __lowercase ) -> str: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowercase ( ) -> Tuple: '''simple docstring''' _A = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _A = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _A , _A = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _A = parse_unknown_args(__lowercase ) # Run _A = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
367
'''simple docstring''' import operator def __lowercase ( __lowercase , __lowercase = False , __lowercase = None ) -> list: '''simple docstring''' _A = operator.lt if reverse else operator.gt _A = solution or [] if not arr: return solution _A = [arr.pop(0 )] for i, item in enumerate(__lowercase ): if _operator(__lowercase , sublist[-1] ): sublist.append(__lowercase ) arr.pop(__lowercase ) # merging sublist into solution list if not solution: solution.extend(__lowercase ) else: while sublist: _A = sublist.pop(0 ) for i, xx in enumerate(__lowercase ): if not _operator(__lowercase , __lowercase ): solution.insert(__lowercase , __lowercase ) break else: solution.append(__lowercase ) strand_sort(__lowercase , __lowercase , __lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
174
0
def _lowerCAmelCase ( lowerCAmelCase_ :list , lowerCAmelCase_ :list , lowerCAmelCase_ :int , lowerCAmelCase_ :int , lowerCAmelCase_ :int )->int: '''simple docstring''' if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , max_weight - weights[index] , index + 1 ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
159
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :Union[str, Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE :Any = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = GPTaTokenizer def __init__( self : Any , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = kwargs.pop("add_bos_token" , _lowerCAmelCase ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: snake_case_ = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_lowerCAmelCase ) snake_case_ = add_prefix_space def lowerCAmelCase__ ( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : "Conversation" ) -> List[int]: """simple docstring""" snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids
159
1
'''simple docstring''' def __lowercase ( __lowercase ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
174
0
def _a ( lowerCamelCase, lowerCamelCase = 0 ): lowerCamelCase : Tuple = length or len(lowerCamelCase ) lowerCamelCase : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCamelCase , lowerCamelCase : Any = list_data[i + 1], list_data[i] lowerCamelCase : Any = True return list_data if not swapped else bubble_sort(lowerCamelCase, length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
287
def _a ( lowerCamelCase ): return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
287
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Optional[Any] = ["""pixel_values"""] def __init__(self : int , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Optional[Any] , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase (self : str , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : str , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : Optional[Any] , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Tuple , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : Tuple , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : int , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" ) UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a ) def _lowercase (self : Any , __a : Optional[int] , __a : List[Tuple] = None ): UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__a ): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(__a ) ): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__a ) UpperCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: UpperCAmelCase_ = logits.argmax(dim=1 ) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
106
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: List[str] =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Any ) -> Optional[int]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True elif name.split("." )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : int ) -> List[str]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(" " )[0] for line in lines] UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Any , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(snake_case_ ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , snake_case_ ) UpperCAmelCase_ = SpeechaTextaForCausalLM(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ , "vocab.json" ) , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(snake_case_ , "vocab.json" ) ) tokenizer.save_pretrained(snake_case_ ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = "speech_to_text_2" UpperCAmelCase_ = "wav2vec2" UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
106
1
import math from numpy import inf from scipy.integrate import quad def _a ( lowerCamelCase ): if num <= 0: raise ValueError("""math domain error""" ) return quad(lowerCamelCase, 0, lowerCamelCase, args=(lowerCamelCase) )[0] def _a ( lowerCamelCase, lowerCamelCase ): return math.pow(lowerCamelCase, z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
287
def _a ( lowerCamelCase = 100_0000 ): lowerCamelCase : Any = set(range(3, lowerCamelCase, 2 ) ) primes.add(2 ) for p in range(3, lowerCamelCase, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, lowerCamelCase, lowerCamelCase ) ) ) lowerCamelCase : Any = [float(lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCamelCase, limit + 1, lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
287
1
"""simple docstring""" def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase_ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j - wt[i - 1] ) + val[i - 1] , ) UpperCamelCase_ = val return f[i][j] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: """simple docstring""" UpperCamelCase_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCamelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCamelCase_ = dp[i - 1][w_] return dp[n][w_], dp def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" if not (isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) UpperCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) if num_items != len(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(SCREAMING_SNAKE_CASE_ )} values" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = ( "All weights must be integers but got weight of " f"type {type(wt[i] )} at index {i}" ) raise TypeError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ , UpperCamelCase_ = knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = set() _construct_solution(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return optimal_val, example_optional_set def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: optimal_set.add(SCREAMING_SNAKE_CASE_ ) _construct_solution(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = [3, 2, 4, 4] SCREAMING_SNAKE_CASE :Optional[Any] = [4, 3, 2, 3] SCREAMING_SNAKE_CASE :List[str] = 4 SCREAMING_SNAKE_CASE :Dict = 6 SCREAMING_SNAKE_CASE :str = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] SCREAMING_SNAKE_CASE :Union[str, Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 SCREAMING_SNAKE_CASE :Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
366
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_0_0 )-> int: """simple docstring""" UpperCamelCase_ = (n * (n + 1) // 2) ** 2 UpperCamelCase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
60
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a : int = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') a : int = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a : List[Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a : Union[str, Any] = sorted(arg_to_scheduler.keys()) a : List[Any] = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _a ( pl.LightningModule ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="base", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> List[str]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowercase ) UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Optional[Any] = Path(self.hparams.output_dir ) UpperCAmelCase_: int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase_: Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"""num_labels""": num_labels} if num_labels is not None else {}), cache_dir=__lowercase, **__lowercase, ) else: UpperCAmelCase_: Tuple = config UpperCAmelCase_: int = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams, __lowercase, __lowercase ): assert hasattr(self.config, __lowercase ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config, __lowercase, getattr(self.hparams, __lowercase ) ) if tokenizer is None: UpperCAmelCase_: List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=__lowercase, ) else: UpperCAmelCase_: int = tokenizer UpperCAmelCase_: Optional[Any] = MODEL_MODES[mode] if model is None: UpperCAmelCase_: Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ), config=self.config, cache_dir=__lowercase, ) else: UpperCAmelCase_: str = model def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: Optional[Any] = self.model_type.from_pretrained(*__lowercase, **__lowercase ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase_: List[Any] = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) UpperCAmelCase_: Tuple = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def __snake_case (self ) -> Tuple: UpperCAmelCase_: Union[str, Any] = self.model UpperCAmelCase_: int = ["""bias""", """LayerNorm.weight"""] UpperCAmelCase_: Optional[int] = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase_: List[str] = Adafactor( __lowercase, lr=self.hparams.learning_rate, scale_parameter=__lowercase, relative_step=__lowercase ) else: UpperCAmelCase_: Any = AdamW( __lowercase, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) UpperCAmelCase_: Optional[int] = optimizer UpperCAmelCase_: Dict = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.validation_step(__lowercase, __lowercase ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.validation_end(__lowercase ) def __snake_case (self ) -> Dict: UpperCAmelCase_: str = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase_: List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if stage == "test": UpperCAmelCase_: Dict = len(self.test_dataloader().dataset ) else: UpperCAmelCase_: List[str] = self.get_dataloader("""train""", self.hparams.train_batch_size, shuffle=__lowercase ) UpperCAmelCase_: str = len(self.train_dataloader().dataset ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> int: raise NotImplementedError("""You must implement this for your task""" ) def __snake_case (self ) -> List[str]: return self.train_loader def __snake_case (self ) -> List[Any]: return self.get_dataloader("""dev""", self.hparams.eval_batch_size, shuffle=__lowercase ) def __snake_case (self ) -> Optional[Any]: return self.get_dataloader("""test""", self.hparams.eval_batch_size, shuffle=__lowercase ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Tuple: return os.path.join( self.hparams.data_dir, """cached_{}_{}_{}""".format( __lowercase, list(filter(__lowercase, self.hparams.model_name_or_path.split("""/""" ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Tuple = self.output_dir.joinpath("""best_tfmr""" ) UpperCAmelCase_: int = self.step_count self.model.save_pretrained(__lowercase ) self.tokenizer.save_pretrained(__lowercase ) @staticmethod def __snake_case (SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: parser.add_argument( """--model_name_or_path""", default=__lowercase, type=__lowercase, required=__lowercase, help="""Path to pretrained model or model identifier from huggingface.co/models""", ) parser.add_argument( """--config_name""", default="""""", type=__lowercase, help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""", default=__lowercase, type=__lowercase, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--cache_dir""", default=str(Path(__lowercase ).parent / """test_run""" / """cache""" ), type=__lowercase, help="""Where do you want to store the pre-trained models downloaded from huggingface.co""", ) parser.add_argument( """--encoder_layerdrop""", type=__lowercase, help="""Encoder layer dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--decoder_layerdrop""", type=__lowercase, help="""Decoder layer dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--dropout""", type=__lowercase, help="""Dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--attention_dropout""", type=__lowercase, help="""Attention dropout probability (Optional). Goes into model.config""", ) parser.add_argument("""--learning_rate""", default=5E-5, type=__lowercase, help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""", default="""linear""", choices=__lowercase, metavar=__lowercase, type=__lowercase, help="""Learning rate scheduler""", ) parser.add_argument("""--weight_decay""", default=0.0, type=__lowercase, help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""", default=1E-8, type=__lowercase, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""", default=0, type=__lowercase, help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""", default=4, type=__lowercase, help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""", dest="""max_epochs""", default=3, type=__lowercase ) parser.add_argument("""--train_batch_size""", default=32, type=__lowercase ) parser.add_argument("""--eval_batch_size""", default=32, type=__lowercase ) parser.add_argument("""--adafactor""", action="""store_true""" ) class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowercase ) class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Optional[Any] = trainer.lr_schedulers[0]["""scheduler"""] UpperCAmelCase_: int = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__lowercase ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: rank_zero_info("""***** Validation results *****""" ) UpperCAmelCase_: Union[str, Any] = trainer.callback_metrics # Log results for key in sorted(__lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__lowercase, str(metrics[key] ) ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: rank_zero_info("""***** Test results *****""" ) UpperCAmelCase_: List[Any] = trainer.callback_metrics # Log and save results to file UpperCAmelCase_: Any = os.path.join(pl_module.hparams.output_dir, """test_results.txt""" ) with open(__lowercase, """w""" ) as writer: for key in sorted(__lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__lowercase, str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__lowercase, str(metrics[key] ) ) ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(lowerCAmelCase__ ).parent / """test_run""" / """model_checkpoints""" ) , type=lowerCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=lowerCAmelCase__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=lowerCAmelCase__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=lowerCAmelCase__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=4_2 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(lowerCAmelCase__ ).parent / """test_run""" / """dummy-train-data""" ) , type=lowerCAmelCase__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: str , lowerCAmelCase__: int=None , lowerCAmelCase__: str=True , lowerCAmelCase__: Tuple=[] , lowerCAmelCase__: Union[str, Any]=None , lowerCAmelCase__: Tuple=None , **lowerCAmelCase__: List[Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model UpperCAmelCase_: List[str] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase_: List[str] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: UpperCAmelCase_: Dict = LoggingCallback() UpperCAmelCase_: Optional[Any] = {} if args.fpaa: UpperCAmelCase_: Optional[Any] = 1_6 if args.gpus > 1: UpperCAmelCase_: Optional[int] = """auto""" UpperCAmelCase_: List[Any] = """ddp""" UpperCAmelCase_: List[str] = args.accumulate_grad_batches UpperCAmelCase_: Optional[int] = None UpperCAmelCase_: str = """auto""" UpperCAmelCase_: Dict = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
147
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _UpperCAmelCase : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
0
import math def lowerCAmelCase__ ( _a : int ): snake_case_ : str = [True] * n snake_case_ : List[Any] = False snake_case_ : int = False snake_case_ : Union[str, Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): snake_case_ : Optional[Any] = i * 2 while index < n: snake_case_ : Dict = False snake_case_ : Any = index + i snake_case_ : List[Any] = [2] for i in range(3 , _a , 2 ): if is_prime[i]: primes.append(_a ) return primes def lowerCAmelCase__ ( _a : int = 99_99_66_66_33_33 ): snake_case_ : List[Any] = math.floor(math.sqrt(_a ) ) + 1_00 snake_case_ : Optional[Any] = prime_sieve(_a ) snake_case_ : List[Any] = 0 snake_case_ : Any = 0 snake_case_ : List[Any] = primes[prime_index] while (last_prime**2) <= limit: snake_case_ : int = primes[prime_index + 1] snake_case_ : int = last_prime**2 snake_case_ : List[Any] = next_prime**2 # Get numbers divisible by lps(current) snake_case_ : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) snake_case_ : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps snake_case_ : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair snake_case_ : Optional[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
367
import numpy as np def lowerCAmelCase__ ( _a : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
36
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCamelCase_ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = _distribute_shards(**UpperCamelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = _split_gen_kwargs(UpperCamelCase_ , UpperCamelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if expected is RuntimeError: with pytest.raises(UpperCamelCase_ ): _number_of_shards_in_gen_kwargs(UpperCamelCase_ ) else: __SCREAMING_SNAKE_CASE = _number_of_shards_in_gen_kwargs(UpperCamelCase_ ) assert out == expected
100
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__lowercase ).to(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCAmelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __lowerCAmelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __lowerCAmelCase = model(input_ids.to(__lowercase ) , labels=labels.to(__lowercase ) ).loss __lowerCAmelCase = -(labels.shape[-1] * loss.item()) __lowerCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
174
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __lowerCamelCase ( __a :Any ) -> str: """simple docstring""" if "model" in orig_key: A__ = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: A__ = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: A__ = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: A__ = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: A__ = orig_key.split(""".""" )[0].split("""_""" )[-1] A__ = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: A__ = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: A__ = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: A__ = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: A__ = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: A__ = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: A__ = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: A__ = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: A__ = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: A__ = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: A__ = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: A__ = """yoso.""" + orig_key return orig_key def __lowerCamelCase ( __a :Union[str, Any] , __a :Union[str, Any] ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(__a ) if ("pooler" in key) or ("sen_class" in key): continue else: A__ = val A__ = orig_state_dict["""cls.predictions.decoder.bias"""] A__ = torch.arange(__a ).expand((1, -1) ) + 2 return orig_state_dict def __lowerCamelCase ( __a :Optional[int] , __a :int , __a :List[Any] ) -> Any: """simple docstring""" A__ = torch.load(__a , map_location="""cpu""" )["""model_state_dict"""] A__ = YosoConfig.from_json_file(__a ) A__ = YosoForMaskedLM(__a ) A__ = convert_checkpoint_helper(config.max_position_embeddings , __a ) print(model.load_state_dict(__a ) ) model.eval() model.save_pretrained(__a ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A : Any = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
276
import unittest import numpy as np def __lowerCamelCase ( __a :np.ndarray , __a :np.ndarray , __a :np.ndarray , __a :np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" A__ = np.shape(__a ) A__ = np.shape(__a ) A__ = np.shape(__a ) if shape_a[0] != shape_b[0]: A__ = ( """Expected the same number of rows for A and B. """ F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__a ) if shape_b[1] != shape_c[1]: A__ = ( """Expected the same number of columns for B and C. """ F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__a ) A__ = pseudo_inv if a_inv is None: try: A__ = np.linalg.inv(__a ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) A__ = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = np.block([[a, b], [b.T, c]] ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def a_ ( self : str ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
276
1
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : List[Any] = [False] * len(A_ ) lowerCAmelCase__ : Optional[int] = [-1] * len(A_ ) def dfs(A_ , A_ ): lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Optional[Any] = c for u in graph[v]: if not visited[u]: dfs(A_ , 1 - c ) for i in range(len(A_ ) ): if not visited[i]: dfs(A_ , 0 ) for i in range(len(A_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCamelCase : Tuple = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor'''] __UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = None @experimental def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return _map_with_joblib(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: SCREAMING_SNAKE_CASE = num_proc if num_proc <= len(SCREAMING_SNAKE_CASE_ ) else len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = [] # We organize the splits ourselve (contiguous splits) for index in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) // num_proc SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) % num_proc SCREAMING_SNAKE_CASE = div * index + min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(SCREAMING_SNAKE_CASE_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(SCREAMING_SNAKE_CASE_ )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(SCREAMING_SNAKE_CASE_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (RLock(),), tqdm.set_lock with Pool(SCREAMING_SNAKE_CASE_ , initargs=SCREAMING_SNAKE_CASE_ , initializer=SCREAMING_SNAKE_CASE_ ) as pool: SCREAMING_SNAKE_CASE = pool.map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'Finished {num_proc} processes' ) SCREAMING_SNAKE_CASE = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(SCREAMING_SNAKE_CASE_ )} objects' ) return mapped def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=SCREAMING_SNAKE_CASE_ ): return joblib.Parallel()( joblib.delayed(SCREAMING_SNAKE_CASE_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> Dict: SCREAMING_SNAKE_CASE = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE = None
38
"""simple docstring""" from math import sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00 ) -> int: SCREAMING_SNAKE_CASE = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
38
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[Any] ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=UpperCamelCase_ , ) assert hasattr(self , """env""" ) def __lowercase ( self : Optional[int] , lowerCAmelCase : List[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase = { '''enabled''': True, '''processes_per_host''': 8, } lowerCAmelCase = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } lowerCAmelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} lowerCAmelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase_ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase_ , py_version="""py36""" , ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : str ): TrainingJobAnalytics(UpperCamelCase_ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] ): # create estimator lowerCAmelCase = self.create_estimator(UpperCamelCase_ ) # run training estimator.fit() # result dataframe lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCamelCase_ )
155
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_: def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : int=3 , UpperCamelCase_ : Any=1_6 , UpperCamelCase_ : int=[1, 2, 1] , UpperCamelCase_ : Optional[int]=[2, 2, 4] , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2.0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Tuple=1E-5 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=1_0 , UpperCamelCase_ : Dict=8 , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : List[str] = image_size lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Any = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : Any = num_heads lowerCAmelCase : int = window_size lowerCAmelCase : List[Any] = mlp_ratio lowerCAmelCase : int = qkv_bias lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : str = drop_path_rate lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Union[str, Any] = patch_norm lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : str = initializer_range lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = scope lowerCAmelCase : List[str] = use_labels lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Union[str, Any] = encoder_stride def lowerCamelCase__ ( self : Any ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): lowerCAmelCase : List[str] = SwinvaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ ) lowerCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = SwinvaForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : int = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = self.type_sequence_label_size lowerCAmelCase : Optional[Any] = SwinvaForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = config_and_inputs lowerCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCamelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = SwinvaModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase_ , embed_dim=3_7 ) def lowerCamelCase__ ( self : Optional[int] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def lowerCamelCase__ ( self : Dict ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: lowerCAmelCase : Any = True lowerCAmelCase : List[str] = False lowerCAmelCase : int = True lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : str = outputs.attentions lowerCAmelCase : int = len(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : Any = True lowerCAmelCase : Union[str, Any] = config.window_size**2 lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase : str = len(UpperCamelCase_ ) # Check attention is always last and order is fine lowerCAmelCase : Optional[int] = True lowerCAmelCase : int = True lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase : Union[str, Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) ) lowerCAmelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : str = outputs.hidden_states lowerCAmelCase : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # Swinv2 has a different seq_length lowerCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = reshaped_hidden_states[0].shape lowerCAmelCase : Optional[Any] = ( reshaped_hidden_states[0].view(UpperCamelCase_ , UpperCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Tuple = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Dict = 3 lowerCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase : str = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : int ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = SwinvaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Dict ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( UpperCamelCase_ ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Any = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "mgp-str" def __init__( self : str , _lowerCAmelCase : Optional[int]=[32, 1_28] , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : str=3 , _lowerCAmelCase : List[str]=27 , _lowerCAmelCase : List[Any]=38 , _lowerCAmelCase : Dict=5_02_57 , _lowerCAmelCase : Tuple=3_05_22 , _lowerCAmelCase : List[str]=7_68 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Dict=4.0 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=1e-5 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : int=False , _lowerCAmelCase : Dict=0.02 , **_lowerCAmelCase : Dict , ): super().__init__(**_lowerCAmelCase ) __snake_case : int = image_size __snake_case : Tuple = patch_size __snake_case : int = num_channels __snake_case : Union[str, Any] = max_token_length __snake_case : Any = num_character_labels __snake_case : Tuple = num_bpe_labels __snake_case : Any = num_wordpiece_labels __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[Any] = mlp_ratio __snake_case : List[Any] = distilled __snake_case : List[str] = layer_norm_eps __snake_case : Union[str, Any] = drop_rate __snake_case : Tuple = qkv_bias __snake_case : str = attn_drop_rate __snake_case : Any = drop_path_rate __snake_case : Optional[int] = output_aa_attentions __snake_case : Dict = initializer_range
20
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = "Usage of script: script_name <size_of_canvas:int>" lowercase_ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : int = bool(random.getrandbits(1 ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Union[str, Any] = np.array(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : Optional[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): '''simple docstring''' __snake_case : Any = 0 __snake_case : Dict = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : str = pt if pt: if alive < 2: __snake_case : Optional[Any] = False elif alive == 2 or alive == 3: __snake_case : Union[str, Any] = True elif alive > 3: __snake_case : Optional[int] = False else: if alive == 3: __snake_case : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["w", "k"]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCamelCase : Optional[Any] = len(__a ) - 1 def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, __a ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__a ), 5 ) == 1 return output_values def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase : Tuple = self.basis_function(__a ) UpperCamelCase : Any = 0.0 UpperCamelCase : Optional[int] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ = 0.01 ) -> Union[str, Any]: from matplotlib import pyplot as plt # type: ignore UpperCamelCase : list[float] = [] # x coordinates of points to plot UpperCamelCase : list[float] = [] # y coordinates of points to plot UpperCamelCase : List[str] = 0.0 while t <= 1: UpperCamelCase : int = self.bezier_curve_function(__a ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size UpperCamelCase : List[Any] = [i[0] for i in self.list_of_points] UpperCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __a, __a, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(__a, __a, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
119
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=None ): _lowerCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_image_size(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = output_size # determine new height and width _lowerCAmelCase : List[Any] = output_height / input_height _lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase : Union[str, Any] = scale_width else: # fit height _lowerCAmelCase : Union[str, Any] = scale_height _lowerCAmelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) _lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = False, __a = 1, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase : Optional[int] = get_size_dict(__a) _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Any = keep_aspect_ratio _lowerCAmelCase : str = ensure_multiple_of _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Optional[int] = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = False, __a = 1, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : List[Any] = get_resize_output_image_size( __a, output_size=(size["height"], size["width"]), keep_aspect_ratio=__a, multiple=__a, ) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(__a) _lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : List[Any] = target_sizes.numpy() _lowerCAmelCase : Dict = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Dict = logits.argmax(dim=1) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
36
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __A : Tuple = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" __A : Tuple = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" __A : Optional[Any] = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" return float((preds == labels).mean() ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) A = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = np.array(lowerCamelCase__ ) A = np.array(lowerCamelCase__ ) A = en_sentvecs.shape[0] # mean centering A = en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) A = in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) A = cdist(lowerCamelCase__ , lowerCamelCase__ , "cosine" ) A = np.array(range(lowerCamelCase__ ) ) A = sim.argsort(axis=1 )[:, :10] A = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Tuple): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), "references": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), }) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]")
371
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ (cls : int): A = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Dict): try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def SCREAMING_SNAKE_CASE__ (self : Dict): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("test-config" , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id="test-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : int): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): CustomConfig.register_for_auto_class() A = CustomConfig(attribute=4_2) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) A = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 4_2) class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A = c.n_embd + 1 # int A = c.resid_pdrop + 1.0 # float A = not c.scale_attn_weights # bool A = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(__SCREAMING_SNAKE_CASE , c.n_embd , "mismatch for key: n_embd") self.assertEqual(__SCREAMING_SNAKE_CASE , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(__SCREAMING_SNAKE_CASE , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(__SCREAMING_SNAKE_CASE , c.summary_type , "mismatch for key: summary_type") def SCREAMING_SNAKE_CASE__ (self : Dict): A = PretrainedConfig() A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __SCREAMING_SNAKE_CASE , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) A = [key for key, value in config_common_kwargs.items() if value == getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] if len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(__SCREAMING_SNAKE_CASE)}.""") def SCREAMING_SNAKE_CASE__ (self : Dict): with self.assertRaises(__SCREAMING_SNAKE_CASE): # config is in subfolder, the following should not work without specifying the subfolder A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 5_0_0 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__SCREAMING_SNAKE_CASE) as mock_head: A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This test is for deprecated behavior and can be removed in v5 A = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = AutoConfig.from_pretrained("bert-base-cased") A = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__SCREAMING_SNAKE_CASE) A = 2 json.dump(configuration.to_dict() , open(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A = ["config.42.0.0.json"] A = 7_6_8 configuration.save_pretrained(__SCREAMING_SNAKE_CASE) shutil.move(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , os.path.join(__SCREAMING_SNAKE_CASE , "config.42.0.0.json")) A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 7_6_8) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A = "hf-internal-testing/test-two-configs" import transformers as new_transformers A = "v4.0.0" A , A = new_transformers.models.auto.AutoConfig.from_pretrained( __SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__SCREAMING_SNAKE_CASE , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A = "v3.0.0" A = old_transformers.models.auto.AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(old_configuration.hidden_size , 7_6_8)
57
0
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_UpperCAmelCase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ) -> Optional[Any]: _a : Tuple =_distribute_shards(**_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ) -> List[str]: _a : List[str] =_split_gen_kwargs(_UpperCAmelCase ,_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ) -> Union[str, Any]: if expected is RuntimeError: with pytest.raises(_UpperCAmelCase ): _number_of_shards_in_gen_kwargs(_UpperCAmelCase ) else: _a : Dict =_number_of_shards_in_gen_kwargs(_UpperCAmelCase ) assert out == expected
276
'''simple docstring''' from __future__ import annotations import requests def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> dict: _a : Any =F"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(_UpperCAmelCase ).json() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> list[dict]: _a : Union[str, Any] ="""https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" _a : int =requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> str: _a : Union[str, Any] =hackernews_top_stories(_UpperCAmelCase ) return "\n".join("""* [{title}]({url})""".format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
276
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowercase ( nn.Module ): def __init__( self): super().__init__() lowercase = nn.Linear(3 ,4) lowercase = nn.BatchNormad(4) lowercase = nn.Linear(4 ,5) def A__ ( self ,A__): return self.lineara(self.batchnorm(self.lineara(A__))) class lowercase ( unittest.TestCase ): def A__ ( self): lowercase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(A__ ,model.state_dict()) lowercase = os.path.join(A__ ,'''index.json''') self.assertTrue(os.path.isfile(A__)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowercase = os.path.join(A__ ,f'{key}.dat') self.assertTrue(os.path.isfile(A__)) # TODO: add tests on the fact weights are properly loaded def A__ ( self): lowercase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowercase = torch.randn(2 ,3 ,dtype=A__) with TemporaryDirectory() as tmp_dir: lowercase = offload_weight(A__ ,'''weight''' ,A__ ,{}) lowercase = os.path.join(A__ ,'''weight.dat''') self.assertTrue(os.path.isfile(A__)) self.assertDictEqual(A__ ,{'''weight''': {'''shape''': [2, 3], '''dtype''': str(A__).split('''.''')[1]}}) lowercase = load_offloaded_weight(A__ ,index['''weight''']) self.assertTrue(torch.equal(A__ ,A__)) def A__ ( self): lowercase = ModelForTest() lowercase = model.state_dict() lowercase = {k: v for k, v in state_dict.items() if """linear2""" not in k} lowercase = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A__ ,A__) lowercase = OffloadedWeightsLoader(state_dict=A__ ,save_folder=A__) # Every key is there with the right value self.assertEqual(sorted(A__) ,sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A__ ,weight_map[key])) lowercase = {k: v for k, v in state_dict.items() if """weight""" in k} lowercase = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A__ ,A__) lowercase = OffloadedWeightsLoader(state_dict=A__ ,save_folder=A__) # Every key is there with the right value self.assertEqual(sorted(A__) ,sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A__ ,weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(A__ ,A__) # Duplicates are removed lowercase = OffloadedWeightsLoader(state_dict=A__ ,save_folder=A__) # Every key is there with the right value self.assertEqual(sorted(A__) ,sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A__ ,weight_map[key])) def A__ ( self): lowercase = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} lowercase = extract_submodules_state_dict(A__ ,['''a.1''', '''a.2''']) self.assertDictEqual(A__ ,{'''a.1''': 0, '''a.2''': 2}) lowercase = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} lowercase = extract_submodules_state_dict(A__ ,['''a.1''', '''a.2''']) self.assertDictEqual(A__ ,{'''a.1.a''': 0, '''a.2.a''': 2})
356
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ :Union[str, Any] = 16 lowercase__ :Optional[Any] = 32 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 16 ): '''simple docstring''' lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ :List[str] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase__ ) == "1": lowercase = 2 # New Code # lowercase = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config['''lr'''] lowercase = int(config['''num_epochs'''] ) lowercase = int(config['''seed'''] ) lowercase = int(config['''batch_size'''] ) lowercase = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowerCAmelCase__ ) lowercase , lowercase = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase__ ): lowercase = model(**lowerCAmelCase__ ) lowercase = output.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase = parser.parse_args() lowercase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
97
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : int=99 , __lowerCamelCase : int=16 , __lowerCamelCase : int=36 , __lowerCamelCase : Any=6 , __lowerCamelCase : int=6 , __lowerCamelCase : Dict=6 , __lowerCamelCase : Tuple=37 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[Any]=None , ): UpperCamelCase :List[Any] = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :Optional[Any] = seq_length UpperCamelCase :Optional[int] = is_training UpperCamelCase :str = use_input_mask UpperCamelCase :List[str] = use_token_type_ids UpperCamelCase :List[str] = use_labels UpperCamelCase :Union[str, Any] = vocab_size UpperCamelCase :Optional[Any] = embedding_size UpperCamelCase :str = hidden_size UpperCamelCase :Union[str, Any] = num_hidden_layers UpperCamelCase :Union[str, Any] = num_hidden_groups UpperCamelCase :Dict = num_attention_heads UpperCamelCase :int = intermediate_size UpperCamelCase :List[Any] = hidden_act UpperCamelCase :Any = hidden_dropout_prob UpperCamelCase :str = attention_probs_dropout_prob UpperCamelCase :Optional[int] = max_position_embeddings UpperCamelCase :Any = type_vocab_size UpperCamelCase :List[str] = type_sequence_label_size UpperCamelCase :int = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :List[Any] = num_choices UpperCamelCase :List[Any] = scope def _A ( self : int ): UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Dict = None if self.use_input_mask: UpperCamelCase :Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :str = None UpperCamelCase :Union[str, Any] = None UpperCamelCase :List[str] = None if self.use_labels: UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : int ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _A ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : str ): UpperCamelCase :Dict = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) UpperCamelCase :str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) UpperCamelCase :Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _A ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ): UpperCamelCase :List[Any] = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :Optional[Any] = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[str] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int ): UpperCamelCase :int = self.num_labels UpperCamelCase :int = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): UpperCamelCase :Union[str, Any] = self.num_labels UpperCamelCase :Any = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): UpperCamelCase :Dict = self.num_choices UpperCamelCase :List[Any] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : int ): UpperCamelCase :Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Optional[int] = config_and_inputs UpperCamelCase :Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : List[Any] = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Dict = True def _A ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Dict=False ): UpperCamelCase :Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): UpperCamelCase :Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) UpperCamelCase :Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _A ( self : Any ): UpperCamelCase :Optional[int] = AlbertModelTester(self ) UpperCamelCase :Tuple = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _A ( self : Dict ): self.config_tester.run_common_tests() def _A ( self : Dict ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _A ( self : Union[str, Any] ): UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def _A ( self : str ): UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _A ( self : Dict ): UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _A ( self : Any ): UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase :Optional[Any] = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def _A ( self : Dict ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :List[Any] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : Union[str, Any] ): UpperCamelCase :int = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase :str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase :Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase :List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] UpperCamelCase :Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
38
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[Any] = TransfoXLTokenizer snake_case__ : List[Any] = False snake_case__ : Tuple = False def _A ( self : str ): super().setUp() UpperCamelCase :Dict = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] UpperCamelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _A ( self : List[str] , **__lowerCamelCase : Any ): UpperCamelCase :Any = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : Any , __lowerCamelCase : int ): UpperCamelCase :List[Any] = """<unk> UNwanted , running""" UpperCamelCase :int = """<unk> unwanted, running""" return input_text, output_text def _A ( self : Tuple ): UpperCamelCase :List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCamelCase ) UpperCamelCase :Any = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__lowerCamelCase , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [0, 4, 8, 7] ) def _A ( self : Optional[Any] ): UpperCamelCase :List[Any] = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def _A ( self : Union[str, Any] ): UpperCamelCase :int = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _A ( self : Tuple ): UpperCamelCase :Any = TransfoXLTokenizer(lower_case=__lowerCamelCase ) UpperCamelCase :Optional[int] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" UpperCamelCase :Optional[int] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCamelCase ) , __lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Any = self.get_tokenizer() UpperCamelCase :List[str] = len(__lowerCamelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCamelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
38
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
0
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowercase , lowercase : int = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> List[str]: try: lowercase : List[Any] = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowercase : Dict = int(nums[0] ) lowercase : Tuple = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
20
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def snake_case ( A__ ): UpperCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ : int = x_den * y_den * z_den UpperCAmelCase_ : int = gcd(A__ ,A__ ) top //= hcf bottom //= hcf return top, bottom def snake_case ( A__ = 35 ): UpperCAmelCase_ : set = set() UpperCAmelCase_ : int UpperCAmelCase_ : Fraction = Fraction(0 ) UpperCAmelCase_ : tuple[int, int] for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 UpperCAmelCase_ : Any = x_num * y_den + x_den * y_num UpperCAmelCase_ : Dict = x_den * y_den UpperCAmelCase_ : List[Any] = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Dict = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) # n=2 UpperCAmelCase_ : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ : List[str] = x_den * x_den * y_den * y_den if is_sq(A__ ) and is_sq(A__ ): UpperCAmelCase_ : Any = int(sqrt(A__ ) ) UpperCAmelCase_ : Optional[int] = int(sqrt(A__ ) ) UpperCAmelCase_ : List[str] = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Any = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) # n=-1 UpperCAmelCase_ : str = x_num * y_num UpperCAmelCase_ : List[Any] = x_den * y_num + x_num * y_den UpperCAmelCase_ : Dict = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : str = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) # n=2 UpperCAmelCase_ : List[str] = x_num * x_num * y_num * y_num UpperCAmelCase_ : int = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A__ ) and is_sq(A__ ): UpperCAmelCase_ : int = int(sqrt(A__ ) ) UpperCAmelCase_ : Any = int(sqrt(A__ ) ) UpperCAmelCase_ : Tuple = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Dict = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) for num, den in unique_s: total += Fraction(A__ ,A__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
253
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Collection[float] | None = None ) -> None: if components is None: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[Any] = list(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ) -> int: return len(self.__components ) def __str__( self : List[str] ) -> str: return "(" + ",".join(map(lowerCAmelCase_ , self.__components ) ) + ")" def __add__( self : Dict , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : Optional[int] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = [self.__components[i] + other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : List[str] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = [self.__components[i] - other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Any , lowerCAmelCase_ : float ) -> Vector: ... @overload def __mul__( self : Optional[int] , lowerCAmelCase_ : Vector ) -> float: ... def __mul__( self : Dict , lowerCAmelCase_ : float | Vector ) -> float | Vector: if isinstance(lowerCAmelCase_ , (float, int) ): UpperCAmelCase_ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(self ) == len(lowerCAmelCase_ ): UpperCAmelCase_ : Dict = len(self ) UpperCAmelCase_ : Dict = [self.__components[i] * other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return sum(lowerCAmelCase_ ) else: # error case raise Exception("invalid operand!" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Vector: return Vector(self.__components ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> float: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase_ : List[str] = value def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) UpperCAmelCase_ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Vector , lowerCAmelCase_ : bool = False ) -> float: UpperCAmelCase_ : int = self * other UpperCAmelCase_ : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case ( A__ ): assert isinstance(A__ ,A__ ) return Vector([0] * dimension ) def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) and (isinstance(A__ ,A__ )) UpperCAmelCase_ : Any = [0] * dimension UpperCAmelCase_ : Dict = 1 return Vector(A__ ) def snake_case ( A__ ,A__ ,A__ ): assert ( isinstance(A__ ,A__ ) and isinstance(A__ ,A__ ) and (isinstance(A__ ,(int, float) )) ) return x * scalar + y def snake_case ( A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : Tuple = [random.randint(A__ ,A__ ) for _ in range(A__ )] return Vector(A__ ) class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : List[Any] = matrix UpperCAmelCase_ : List[Any] = w UpperCAmelCase_ : List[Any] = h def __str__( self : int ) -> str: UpperCAmelCase_ : Tuple = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : List[Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Optional[Any] = [ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Union[str, Any] = [ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Tuple , lowerCAmelCase_ : float ) -> Matrix: ... @overload def __mul__( self : Tuple , lowerCAmelCase_ : Vector ) -> Vector: ... def __mul__( self : Any , lowerCAmelCase_ : float | Vector ) -> Vector | Matrix: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # matrix-vector if len(lowerCAmelCase_ ) == self.__width: UpperCAmelCase_ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase_ : Any = [ self.__matrix[i][j] * other.component(lowerCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(lowerCAmelCase_ , (int, float) ): # matrix-scalar UpperCAmelCase_ : int = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height ) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.__height def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.__width def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase_ : List[Any] = value else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) UpperCAmelCase_ : Optional[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise Exception("Indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase_ : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_ ) for y in range(self.__width ) ] return sum(lowerCAmelCase_ ) def snake_case ( A__ ): UpperCAmelCase_ : list[list[float]] = [[0] * n for _ in range(A__ )] return Matrix(A__ ,A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : list[list[float]] = [ [random.randint(A__ ,A__ ) for _ in range(A__ )] for _ in range(A__ ) ] return Matrix(A__ ,A__ ,A__ )
253
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A_ = imread(r'''digital_image_processing/image_data/lena_small.jpg''') A_ = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = cn.convert_to_negative(snake_case__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ (): """simple docstring""" with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case__ , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _snake_case : Optional[Any] = canny.canny(snake_case__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ (): """simple docstring""" assert gg.gaussian_filter(snake_case__ , 5 , sigma=0.9 ).all() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _snake_case : Optional[int] = conv.img_convolve(snake_case__ , snake_case__ ).astype(snake_case__ ) assert res.any() def UpperCAmelCase__ (): """simple docstring""" assert med.median_filter(snake_case__ , 3 ).any() def UpperCAmelCase__ (): """simple docstring""" _snake_case , _snake_case : int = sob.sobel_filter(snake_case__ ) assert grad.any() and theta.any() def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = sp.make_sepia(snake_case__ , 20 ) assert sepia.all() def UpperCAmelCase__ (snake_case__ : str = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" _snake_case : Any = bs.Burkes(imread(snake_case__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ (snake_case__ : str = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" _snake_case : Optional[Any] = rs.NearestNeighbour(imread(snake_case__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. _snake_case : List[Any] = imread(snake_case__ , 0 ) # Test for get_neighbors_pixel function() return not None _snake_case : str = 0 _snake_case : Union[str, Any] = 0 _snake_case : Optional[int] = image[x_coordinate][y_coordinate] _snake_case : str = lbp.get_neighbors_pixel( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _snake_case : Tuple = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _snake_case : Optional[int] = lbp.local_binary_value(snake_case__ , snake_case__ , snake_case__ ) assert lbp_image.any()
64
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( _UpperCamelCase = 4 ): '''simple docstring''' __lowerCAmelCase = abs(_UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(_UpperCamelCase )] for y in range(_UpperCamelCase )] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return reverse_row(transpose(_UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return reverse_row(reverse_column(_UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return reverse_column(transpose(_UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [list(_UpperCamelCase ) for x in zip(*_UpperCamelCase )] return matrix def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = matrix[::-1] return matrix def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [x[::-1] for x in matrix] return matrix def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for i in matrix: print(*_UpperCamelCase ) if __name__ == "__main__": A : Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A : List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A : str = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
57
0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Dict = len(lowerCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> List[Any]: if len(lowerCAmelCase ) <= 1: return arr, 0 _UpperCAmelCase : int = len(lowerCAmelCase ) // 2 _UpperCAmelCase : Optional[Any] = arr[0:mid] _UpperCAmelCase : List[Any] = arr[mid:] _UpperCAmelCase , _UpperCAmelCase : Any = count_inversions_recursive(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = count_inversions_recursive(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : str = _count_cross_inversions(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Dict = inversion_p + inversions_q + cross_inversions return c, num_inversions def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: List[Any] ) -> Tuple: _UpperCAmelCase : int = [] _UpperCAmelCase : str = 0 while i < len(lowerCAmelCase ) and j < len(lowerCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCAmelCase : List[Any] = count_inversions_bf(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = count_inversions_recursive(lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , lowerCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCAmelCase : Optional[Any] = count_inversions_bf(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = count_inversions_recursive(lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase ) # an empty list should also have zero inversions _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Dict = count_inversions_bf(lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : int = count_inversions_recursive(lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase ) if __name__ == "__main__": main()
189
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: float | Decimal , lowerCAmelCase: float = 10**-10 ) -> float: _UpperCAmelCase : Optional[int] = a while True: _UpperCAmelCase : Tuple = Decimal(lowerCAmelCase ) - ( Decimal(eval(lowerCAmelCase ) ) / Decimal(eval(str(diff(lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCAmelCase ) ) < precision: # noqa: S307 return float(lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
189
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCAmelCase_ ( snake_case_=None ): if subparsers is not None: _A : List[str] = subparsers.add_parser("""test""" ) else: _A : str = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""",default=snake_case_,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ),) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ ): _A : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: _A : Tuple = script_name else: _A : Tuple = f'''--config_file={args.config_file} {script_name}''' _A : int = ["""accelerate-launch"""] + test_args.split() _A : str = execute_subprocess_async(snake_case_,env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def lowerCAmelCase_ ( ): _A : List[Any] = test_command_parser() _A : Any = parser.parse_args() test_command(snake_case_ ) if __name__ == "__main__": main()
26
'''simple docstring''' from datetime import datetime as dt import os from github import Github __snake_case = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def a ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCamelCase__ :Tuple = g.get_repo('''huggingface/transformers''' ) UpperCamelCase__ :Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCamelCase__ :List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __a : i.created_at , reverse=__a ) UpperCamelCase__ :List[Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
97
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = len(a__ ) for i in range(a__ ): for j in range(i + 1 , a__ ): if numbers[j] < numbers[i]: A__ , A__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
154
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[int] = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def SCREAMING_SNAKE_CASE_ ( __A : Tuple=True ) -> Union[str, Any]: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowercase__ ) ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = None snake_case__ : List[str] = None def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: with TemporaryDirectory() as tmp_dir: a_ : Optional[Any] = dataset_module_factory(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = import_main_class(dataset_module.module_path , dataset=SCREAMING_SNAKE_CASE__ ) a_ : DatasetBuilder = builder_cls( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ , hash=dataset_module.hash , ) a_ : Any = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=SCREAMING_SNAKE_CASE__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) a_ : Dict = cached_path(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ) self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE__ ) ) @pytest.mark.integration def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> int: """simple docstring""" a_ : List[str] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' a_ : Union[str, Any] = dataset_module_factory('wikipedia' , cache_dir=__A ) a_ : Dict = import_main_class(dataset_module.module_path ) a_ : DatasetBuilder = builder_cls( cache_dir=__A , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam a_ : Optional[Any] = None builder_instance.download_and_prepare() a_ : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> List[Any]: """simple docstring""" a_ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=__A ) a_ : Any = import_main_class(dataset_module.module_path , dataset=__A ) a_ : DatasetBuilder = builder_cls( cache_dir=__A , config_name='20220301.frr' , hash=dataset_module.hash , ) a_ : Tuple = builder_instance.as_streaming_dataset() assert ds assert isinstance(__A , __A ) assert "train" in ds assert isinstance(ds['train'] , __A ) assert next(iter(ds['train'] ) )
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE :List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
0
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _a ( __lowercase ): '''simple docstring''' A : Tuple = "EncodecFeatureExtractor" A : Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self, A, A ): '''simple docstring''' super().__init__(snake_case_, snake_case_ ) SCREAMING_SNAKE_CASE : int = self.feature_extractor SCREAMING_SNAKE_CASE : Tuple = False def UpperCamelCase_ ( self, A=None, A=None, A=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case_, language=snake_case_, no_timestamps=snake_case_ ) def __call__( self, *A, **A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case_, **snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('audio', snake_case_ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('sampling_rate', snake_case_ ) SCREAMING_SNAKE_CASE : int = kwargs.pop('text', snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = args[0] SCREAMING_SNAKE_CASE : List[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(snake_case_, **snake_case_ ) if audio is not None: SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(snake_case_, *snake_case_, sampling_rate=snake_case_, **snake_case_ ) if audio is None: return inputs elif text is None: return audio_inputs else: SCREAMING_SNAKE_CASE : Tuple = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: SCREAMING_SNAKE_CASE : Optional[int] = audio_inputs['''padding_mask'''] return inputs def UpperCamelCase_ ( self, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = kwargs.pop('audio', snake_case_ ) SCREAMING_SNAKE_CASE : int = kwargs.pop('padding_mask', snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Any = args[0] SCREAMING_SNAKE_CASE : str = args[1:] if audio_values is not None: return self._decode_audio(snake_case_, padding_mask=snake_case_ ) else: return self.tokenizer.batch_decode(*snake_case_, **snake_case_ ) def UpperCamelCase_ ( self, *A, **A ): '''simple docstring''' return self.tokenizer.decode(*snake_case_, **snake_case_ ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = to_numpy(snake_case_ ) SCREAMING_SNAKE_CASE : Any = audio_values.shape if padding_mask is None: return list(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = to_numpy(snake_case_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) SCREAMING_SNAKE_CASE : int = seq_len - padding_mask.shape[-1] SCREAMING_SNAKE_CASE : Tuple = 1 - self.feature_extractor.padding_value SCREAMING_SNAKE_CASE : Optional[Any] = np.pad(snake_case_, ((0, 0), (0, difference)), 'constant', constant_values=snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = audio_values.tolist() for i in range(snake_case_ ): SCREAMING_SNAKE_CASE : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] SCREAMING_SNAKE_CASE : str = sliced_audio.reshape(snake_case_, -1 ) return audio_values
352
'''simple docstring''' from __future__ import annotations def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = array[indexa], array[indexa] def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if length > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = int(length / 2 ) for i in range(__UpperCamelCase ,low + middle ): comp_and_swap(__UpperCamelCase ,__UpperCamelCase ,i + middle ,__UpperCamelCase ) bitonic_merge(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) bitonic_merge(__UpperCamelCase ,low + middle ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if length > 1: SCREAMING_SNAKE_CASE : Dict = int(length / 2 ) bitonic_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,1 ) bitonic_sort(__UpperCamelCase ,low + middle ,__UpperCamelCase ,0 ) bitonic_merge(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
246
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
253
import os def A_ ( a = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE_ : Dict = in_file.read() SCREAMING_SNAKE_CASE_ : Dict = [[int(a ) for cell in row.split(',' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ : str = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE_ : Any = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE_ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
253
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__(self , *, _lowerCamelCase = 4 , _lowerCamelCase = 768 , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(_lowerCamelCase ) ) # parameters for additional clip time embeddings UpperCAmelCase__ : Optional[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase ) # parameters for encoder hidden states UpperCAmelCase__ : Dict = clip_extra_context_tokens UpperCAmelCase__ : Dict = nn.Linear( _lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ : List[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = nn.LayerNorm(_lowerCamelCase ) def _a (self , *, _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ : Optional[Any] = image_embeddings.shape[0] UpperCAmelCase__ : Dict = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ : List[Any] = classifier_free_guidance_embeddings.expand( _lowerCamelCase , -1 ) UpperCAmelCase__ : str = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ : List[str] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ : str = self.embedding_proj(_lowerCamelCase ) UpperCAmelCase__ : Dict = self.clip_image_embeddings_project_to_time_embeddings(_lowerCamelCase ) UpperCAmelCase__ : List[str] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ : Optional[Any] = self.clip_extra_context_tokens_proj(_lowerCamelCase ) UpperCAmelCase__ : str = clip_extra_context_tokens.reshape(_lowerCamelCase , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ : Union[str, Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ : int = self.encoder_hidden_states_proj(_lowerCamelCase ) UpperCAmelCase__ : str = self.text_encoder_hidden_states_norm(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
166
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__(self , _lowerCamelCase = 65536 , _lowerCamelCase = None , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = 0 , _lowerCamelCase = "fourier" , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = 0.0 , _lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _lowerCamelCase = "UNetMidBlock1D" , _lowerCamelCase = None , _lowerCamelCase = (32, 32, 64) , _lowerCamelCase = None , _lowerCamelCase = 8 , _lowerCamelCase = 1 , _lowerCamelCase = False , ): """simple docstring""" super().__init__() UpperCAmelCase__ : str = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase__ : Any = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_lowerCamelCase , log=_lowerCamelCase , flip_sin_to_cos=_lowerCamelCase ) UpperCAmelCase__ : Tuple = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase__ : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_lowerCamelCase , downscale_freq_shift=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase__ : Optional[Any] = block_out_channels[0] * 4 UpperCAmelCase__ : Any = TimestepEmbedding( in_channels=_lowerCamelCase , time_embed_dim=_lowerCamelCase , act_fn=_lowerCamelCase , out_dim=block_out_channels[0] , ) UpperCAmelCase__ : Optional[Any] = nn.ModuleList([] ) UpperCAmelCase__ : int = None UpperCAmelCase__ : str = nn.ModuleList([] ) UpperCAmelCase__ : Optional[int] = None # down UpperCAmelCase__ : List[str] = in_channels for i, down_block_type in enumerate(_lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = output_channel UpperCAmelCase__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase__ : Any = i == len(_lowerCamelCase ) - 1 UpperCAmelCase__ : Dict = get_down_block( _lowerCamelCase , num_layers=_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_lowerCamelCase ) # mid UpperCAmelCase__ : Optional[Any] = get_mid_block( _lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_lowerCamelCase , add_downsample=_lowerCamelCase , ) # up UpperCAmelCase__ : Tuple = list(reversed(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase__ : int = out_channels else: UpperCAmelCase__ : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_lowerCamelCase ): UpperCAmelCase__ : Any = output_channel UpperCAmelCase__ : Dict = ( reversed_block_out_channels[i + 1] if i < len(_lowerCamelCase ) - 1 else final_upsample_channels ) UpperCAmelCase__ : Union[str, Any] = i == len(_lowerCamelCase ) - 1 UpperCAmelCase__ : Optional[int] = get_up_block( _lowerCamelCase , num_layers=_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_lowerCamelCase ) UpperCAmelCase__ : Dict = output_channel # out UpperCAmelCase__ : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) UpperCAmelCase__ : int = get_out_block( out_block_type=_lowerCamelCase , num_groups_out=_lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=_lowerCamelCase , act_fn=_lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = timestep if not torch.is_tensor(_lowerCamelCase ): UpperCAmelCase__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase__ : List[str] = timesteps[None].to(sample.device ) UpperCAmelCase__ : Optional[Any] = self.time_proj(_lowerCamelCase ) if self.config.use_timestep_embedding: UpperCAmelCase__ : Dict = self.time_mlp(_lowerCamelCase ) else: UpperCAmelCase__ : int = timestep_embed[..., None] UpperCAmelCase__ : List[str] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCAmelCase__ : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCAmelCase__ : Optional[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase__ , UpperCAmelCase__ : Dict = downsample_block(hidden_states=_lowerCamelCase , temb=_lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase__ : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCAmelCase__ : int = down_block_res_samples[-1:] UpperCAmelCase__ : Dict = down_block_res_samples[:-1] UpperCAmelCase__ : str = upsample_block(_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , temb=_lowerCamelCase ) # 5. post-process if self.out_block: UpperCAmelCase__ : str = self.out_block(_lowerCamelCase , _lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=_lowerCamelCase )
166
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __a ( A__ ): _lowerCAmelCase : torch.FloatTensor class __a ( A__ , A__ ): @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE : Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE : Tuple[int] = (64,) , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : str = "silu" , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : int = 2_56 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : float = 0.1_8_2_1_5 , SCREAMING_SNAKE_CASE : str = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder UpperCamelCase__ : Union[str, Any] = Encoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , down_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , double_z=SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCamelCase__ : Tuple = nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) UpperCamelCase__ : List[Any] = VectorQuantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=0.2_5 , remap=SCREAMING_SNAKE_CASE , sane_index_shape=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) # pass init params to Decoder UpperCamelCase__ : Optional[int] = Decoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , up_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , norm_type=SCREAMING_SNAKE_CASE , ) @apply_forward_hook def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.encoder(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.quant_conv(SCREAMING_SNAKE_CASE ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE ) @apply_forward_hook def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if not force_not_quantize: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.quantize(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Optional[int] = h UpperCamelCase__ : Tuple = self.post_quant_conv(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.decoder(SCREAMING_SNAKE_CASE , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' UpperCamelCase__ : List[str] = sample UpperCamelCase__ : Any = self.encode(SCREAMING_SNAKE_CASE ).latents UpperCamelCase__ : Optional[int] = self.decode(SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE )
189
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Tuple ={ '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): if attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase : """simple docstring""" lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = '''gelu''' def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : Any=7 , __magic_name__ : int=True , __magic_name__ : Tuple=False , __magic_name__ : str=99 , __magic_name__ : str=16 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=4 , __magic_name__ : str="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Union[str, Any]=20 , __magic_name__ : Any=2 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=0 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : List[Any]=16 , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = word_embed_proj_dim SCREAMING_SNAKE_CASE_ = False def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__magic_name__ , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_opt_inputs_dict(__magic_name__ , __magic_name__ ) return config, inputs_dict def __A ( self : Dict , __magic_name__ : Any , __magic_name__ : str ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTModel(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE_ = input_ids[:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE_ = 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1e-3 ) @require_tf class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 1_0 def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ ) def __A ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) def __A ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__magic_name__ : int , __magic_name__ : List[str] ): if hasattr(__magic_name__ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__magic_name__ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__magic_name__ ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __magic_name__ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(__magic_name__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __magic_name__ ) SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(__magic_name__ ) def a__ ( __UpperCamelCase ): return tf.constant(__UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = 9_9 def __A ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) SCREAMING_SNAKE_CASE_ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ = tf.not_equal(__magic_name__ , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE_ = model(input_ids=__magic_name__ , attention_mask=__magic_name__ ).last_hidden_state SCREAMING_SNAKE_CASE_ = (1, 11, 512) self.assertEqual(output.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-3 ) ) SCREAMING_SNAKE_CASE_ = tf.function(__magic_name__ , jit_compile=__magic_name__ ) SCREAMING_SNAKE_CASE_ = xla_generate(__magic_name__ , __magic_name__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" , padding=__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = tf.function(__magic_name__ , jit_compile=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @property def __A ( self : Dict ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __A ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = "facebook/opt-125m" SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(__magic_name__ , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "left" # use different length sentences to test batching SCREAMING_SNAKE_CASE_ = [ "Hello, my dog is a little", "Today, I", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs["input_ids"] SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ , attention_mask=inputs["attention_mask"] ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(__magic_name__ , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ )
356
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __a = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __a = { 'ctrl': 2_5_6, } __a = { 'Pregnancy': 1_6_8_6_2_9, 'Christianity': 7_6_7_5, 'Explain': 1_0_6_4_2_3, 'Fitness': 6_3_4_4_0, 'Saving': 6_3_1_6_3, 'Ask': 2_7_1_7_1, 'Ass': 9_5_9_8_5, 'Joke': 1_6_3_5_0_9, 'Questions': 4_5_6_2_2, 'Thoughts': 4_9_6_0_5, 'Retail': 5_2_3_4_2, 'Feminism': 1_6_4_3_3_8, 'Writing': 1_1_9_9_2, 'Atheism': 1_9_2_2_6_3, 'Netflix': 4_8_6_1_6, 'Computing': 3_9_6_3_9, 'Opinion': 4_3_2_1_3, 'Alone': 4_4_9_6_7, 'Funny': 5_8_9_1_7, 'Gaming': 4_0_3_5_8, 'Human': 4_0_8_8, 'India': 1_3_3_1, 'Joker': 7_7_1_3_8, 'Diet': 3_6_2_0_6, 'Legal': 1_1_8_5_9, 'Norman': 4_9_3_9, 'Tip': 7_2_6_8_9, 'Weight': 5_2_3_4_3, 'Movies': 4_6_2_7_3, 'Running': 2_3_4_2_5, 'Science': 2_0_9_0, 'Horror': 3_7_7_9_3, 'Confession': 6_0_5_7_2, 'Finance': 1_2_2_5_0, 'Politics': 1_6_3_6_0, 'Scary': 1_9_1_9_8_5, 'Support': 1_2_6_5_4, 'Technologies': 3_2_5_1_6, 'Teenage': 6_6_1_6_0, 'Event': 3_2_7_6_9, 'Learned': 6_7_4_6_0, 'Notion': 1_8_2_7_7_0, 'Wikipedia': 3_7_5_8_3, 'Books': 6_6_6_5, 'Extract': 7_6_0_5_0, 'Confessions': 1_0_2_7_0_1, 'Conspiracy': 7_5_9_3_2, 'Links': 6_3_6_7_4, 'Narcissus': 1_5_0_4_2_5, 'Relationship': 5_4_7_6_6, 'Relationships': 1_3_4_7_9_6, 'Reviews': 4_1_6_7_1, 'News': 4_2_5_6, 'Translation': 2_6_8_2_0, 'multilingual': 1_2_8_4_0_6, } def a ( snake_case__: List[str] ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char lowercase_ = set(snake_case__ ) return pairs class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[Any] = VOCAB_FILES_NAMES a :int = PRETRAINED_VOCAB_FILES_MAP a :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :Any = CONTROL_CODES def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict="<unk>" , **SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowercase_ = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowercase_ = merges_handle.read().split('''\n''' )[1:-1] lowercase_ = [tuple(merge.split() ) for merge in merges] lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase_ = {} @property def _lowercase ( self : List[Any] ) -> Dict: return len(self.encoder ) def _lowercase ( self : List[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: if token in self.cache: return self.cache[token] lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowercase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowercase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) lowercase_ = word[:-4] lowercase_ = word return word def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: lowercase_ = [] lowercase_ = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[str]: lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) lowercase_ = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowercase_ = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
30
def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" assert ( isinstance(_A , _A ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 lowerCamelCase_ , lowerCamelCase_ =1, 1 for _ in range(number_of_steps - 1 ): lowerCamelCase_ , lowerCamelCase_ =current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
154
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase : Tuple = """<<<<<<< This should probably be modified because it mentions: """ lowercase : Any = """======= >>>>>>> """ lowercase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase : Any = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __snake_case ( lowerCAmelCase ): @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : str = parser.add_parser( """convert""" ,help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" ,) train_parser.add_argument( """--tfds_path""" ,type=snake_case ,required=snake_case ,help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" ,) train_parser.add_argument( """--datasets_directory""" ,type=snake_case ,required=snake_case ,help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=snake_case ) def __init__( self ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : Optional[Any] = get_logger("""datasets-cli/converting""" ) lowercase : Optional[int] = tfds_path lowercase : Dict = datasets_directory def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowercase : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) lowercase : List[Any] = [] lowercase : Optional[int] = [] lowercase : Dict = {} if os.path.isdir(self._tfds_path ): lowercase : int = os.listdir(snake_case ) else: lowercase : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) lowercase : List[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(snake_case ,encoding="""utf-8""" ) as f: lowercase : str = f.readlines() lowercase : Union[str, Any] = [] lowercase : Optional[Any] = False lowercase : Optional[Any] = False lowercase : Optional[int] = [] for line in lines: lowercase : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase : Union[str, Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here lowercase : List[Any] = """""" continue elif "from absl import logging" in out_line: lowercase : Optional[int] = """from datasets import logging\n""" elif "getLogger" in out_line: lowercase : Any = out_line.replace("""getLogger""" ,"""get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase : Optional[Any] = True lowercase : Optional[Any] = list(filter(lambda snake_case : e in out_line ,snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + """\n""" ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: lowercase : Union[str, Any] = re.sub(snake_case ,snake_case ,snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" ,snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowercase : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase : Any = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase : Union[str, Any] = f_name.replace(""".py""" ,"""""" ) lowercase : Optional[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) os.makedirs(snake_case ,exist_ok=snake_case ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines(snake_case ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: lowercase : Optional[int] = os.path.basename(snake_case ) lowercase : int = imports_to_builder_map[f_name.replace(""".py""" ,"""""" )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(snake_case ,snake_case ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
359
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase : Tuple = """<<<<<<< This should probably be modified because it mentions: """ lowercase : Any = """======= >>>>>>> """ lowercase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase : Any = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __snake_case ( lowerCAmelCase ): @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : str = parser.add_parser( """convert""" ,help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" ,) train_parser.add_argument( """--tfds_path""" ,type=snake_case ,required=snake_case ,help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" ,) train_parser.add_argument( """--datasets_directory""" ,type=snake_case ,required=snake_case ,help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=snake_case ) def __init__( self ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : Optional[Any] = get_logger("""datasets-cli/converting""" ) lowercase : Optional[int] = tfds_path lowercase : Dict = datasets_directory def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowercase : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) lowercase : List[Any] = [] lowercase : Optional[int] = [] lowercase : Dict = {} if os.path.isdir(self._tfds_path ): lowercase : int = os.listdir(snake_case ) else: lowercase : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) lowercase : List[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(snake_case ,encoding="""utf-8""" ) as f: lowercase : str = f.readlines() lowercase : Union[str, Any] = [] lowercase : Optional[Any] = False lowercase : Optional[Any] = False lowercase : Optional[int] = [] for line in lines: lowercase : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase : Union[str, Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here lowercase : List[Any] = """""" continue elif "from absl import logging" in out_line: lowercase : Optional[int] = """from datasets import logging\n""" elif "getLogger" in out_line: lowercase : Any = out_line.replace("""getLogger""" ,"""get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase : Optional[Any] = True lowercase : Optional[Any] = list(filter(lambda snake_case : e in out_line ,snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + """\n""" ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: lowercase : Union[str, Any] = re.sub(snake_case ,snake_case ,snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" ,snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowercase : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase : Any = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase : Union[str, Any] = f_name.replace(""".py""" ,"""""" ) lowercase : Optional[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) os.makedirs(snake_case ,exist_ok=snake_case ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines(snake_case ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: lowercase : Optional[int] = os.path.basename(snake_case ) lowercase : int = imports_to_builder_map[f_name.replace(""".py""" ,"""""" )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(snake_case ,snake_case ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
285
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DeiTFeatureExtractor'] __UpperCAmelCase = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase): @property def __snake_case ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = self.dummy_uncond_unet _UpperCAmelCase : Optional[Any] = KarrasVeScheduler() _UpperCAmelCase : Optional[int] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : str = pipe(num_inference_steps=2 , generator=_A , output_type="""numpy""" ).images _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=_A , output_type="""numpy""" , return_dict=_A )[0] _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : List[str] = """google/ncsnpp-celebahq-256""" _UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(_A ) _UpperCAmelCase : Optional[int] = KarrasVeScheduler() _UpperCAmelCase : Optional[int] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Tuple = pipe(num_inference_steps=20 , generator=_A , output_type="""numpy""" ).images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
246
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(_SCREAMING_SNAKE_CASE) def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, "Image.Image", List[Dict[str, Any]]] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : List[str] = kwargs.pop("text_queries") if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image)): __lowerCAmelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase : Dict = image __lowerCAmelCase : Optional[int] = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) return results def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = load_image(inputs["image"]) __lowerCAmelCase : Union[str, Any] = inputs["candidate_labels"] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = candidate_labels.split(",") __lowerCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("target_size") __lowerCAmelCase : Any = model_inputs.pop("candidate_label") __lowerCAmelCase : List[str] = model_inputs.pop("is_last") __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["candidate_label"] __lowerCAmelCase : int = BaseModelOutput(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Any = outputs["scores"][index].item() __lowerCAmelCase : int = self._get_bounding_box(outputs["boxes"][index][0]) __lowerCAmelCase : List[str] = {"score": score, "label": label, "box": box} results.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_SCREAMING_SNAKE_CASE) if top_k: __lowerCAmelCase : str = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") __lowerCAmelCase : int = box.int().tolist() __lowerCAmelCase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
364
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(_SCREAMING_SNAKE_CASE) def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, "Image.Image", List[Dict[str, Any]]] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : List[str] = kwargs.pop("text_queries") if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image)): __lowerCAmelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase : Dict = image __lowerCAmelCase : Optional[int] = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) return results def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = load_image(inputs["image"]) __lowerCAmelCase : Union[str, Any] = inputs["candidate_labels"] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = candidate_labels.split(",") __lowerCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("target_size") __lowerCAmelCase : Any = model_inputs.pop("candidate_label") __lowerCAmelCase : List[str] = model_inputs.pop("is_last") __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["candidate_label"] __lowerCAmelCase : int = BaseModelOutput(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Any = outputs["scores"][index].item() __lowerCAmelCase : int = self._get_bounding_box(outputs["boxes"][index][0]) __lowerCAmelCase : List[str] = {"score": score, "label": label, "box": box} results.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_SCREAMING_SNAKE_CASE) if top_k: __lowerCAmelCase : str = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = box.int().tolist() __lowerCAmelCase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
58
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AlbertTokenizer lowerCAmelCase__ = AlbertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =AlbertTokenizer(_lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase ='this is a test' __lowercase ='this is a test' return input_text, output_text def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='<pad>' __lowercase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '▁eloquent') self.assertEqual(len(_lowerCAmelCase) , 3_0_0_0_0) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0) def __lowerCamelCase ( self : int): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase ='I was born in 92000, and this is falsé.' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =AlbertTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase) __lowercase =tokenizer.tokenize('This is a test') self.assertListEqual(_lowerCAmelCase , ['▁this', '▁is', '▁a', '▁test']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [4_8, 2_5, 2_1, 1_2_8_9]) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.']) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9]) __lowercase =tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =AlbertTokenizer(_lowerCAmelCase) __lowercase =tokenizer.encode('sequence builders') __lowercase =tokenizer.encode('multi-sequence build') __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase ={'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
166
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class UpperCamelCase__( __A , unittest.TestCase ): lowerCAmelCase__ : Any = SpeechTaTokenizer lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : List[str] = True def snake_case__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(__UpperCAmelCase ) A__ = AddedToken('<mask>' ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) A__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=20 ,__UpperCAmelCase=5 ) -> Union[str, Any]: A__ , A__ = self.get_input_output_texts(__UpperCAmelCase ) A__ = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) A__ = tokenizer.decode(__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def snake_case__ ( self ) -> Optional[Any]: A__ = '<pad>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) ,__UpperCAmelCase ) def snake_case__ ( self ) -> Tuple: A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-4] ,'œ' ) self.assertEqual(vocab_keys[-2] ,'<mask>' ) self.assertEqual(vocab_keys[-1] ,'<ctc_blank>' ) self.assertEqual(len(__UpperCAmelCase ) ,81 ) def snake_case__ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def snake_case__ ( self ) -> Tuple: A__ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): A__ = tokenizer.vocab_size A__ = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] A__ = tokenizer.add_tokens(__UpperCAmelCase ) A__ = tokenizer.vocab_size A__ = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase ,0 ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,len(__UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase ,all_size + len(__UpperCAmelCase ) ) A__ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' ,add_special_tokens=__UpperCAmelCase ) self.assertGreaterEqual(len(__UpperCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) A__ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} A__ = tokenizer.add_special_tokens(__UpperCAmelCase ) A__ = tokenizer.vocab_size A__ = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase ,0 ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,len(__UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase ,all_size_a + len(__UpperCAmelCase ) ) A__ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' ,add_special_tokens=__UpperCAmelCase ) self.assertGreaterEqual(len(__UpperCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def snake_case__ ( self ) -> List[str]: pass def snake_case__ ( self ) -> List[str]: pass def snake_case__ ( self ) -> Dict: A__ = self.get_tokenizer() A__ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(__UpperCAmelCase ,[SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) # fmt: off self.assertListEqual(__UpperCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def snake_case__ ( self ) -> Union[str, Any]: # Use custom sequence because this tokenizer does not handle numbers. A__ = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off A__ = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase ,model_name='microsoft/speecht5_asr' ,revision='c5ef64c71905caeccde0e4462ef3f9077224c524' ,sequences=__UpperCAmelCase ,)
154
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def SCREAMING_SNAKE_CASE__ ( __a , __a ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case_ : int = flax_key_tuple[:-1] + ('weight',) snake_case_ : List[str] = torch.permute(__a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer snake_case_ : Dict = flax_key_tuple[:-1] + ('weight',) snake_case_ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case_ : List[Any] = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if "metadata" in layer: snake_case_ : Optional[int] = layer.split('metadata' ) snake_case_ : str = ''.join(split_layer[0] )[:-1] snake_case_ : Optional[int] = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: snake_case_ : Union[str, Any] = layer.split('kvstore' ) snake_case_ : Any = ''.join(split_layer[0] )[:-1] snake_case_ : int = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: snake_case_ : str = layer.split('/' ) snake_case_ : str = '/'.join(split_layer[:-1] ) snake_case_ : Dict = (split_layer[-1],) if "kvstore/path" in layer: snake_case_ : Tuple = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: snake_case_ : Dict = 'file' else: snake_case_ : List[str] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Tuple = rename_keys(__a ) snake_case_ : Dict = {} for k, v in current_block.items(): snake_case_ : Any = v snake_case_ : Dict = new_current_block torch.save(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a = WEIGHTS_NAME ): snake_case_ : List[str] = convert_file_size_to_int(__a ) snake_case_ : Any = [] snake_case_ : Optional[Any] = {} snake_case_ : str = 0 snake_case_ : Dict = 0 os.makedirs(__a , exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: snake_case_ : str = serialization.msgpack_restore(fp.read() )['optimizer']['target'] snake_case_ : int = flatten_dict(__a , sep='/' ) snake_case_ : Dict = {} for layer in checkpoint_info.keys(): snake_case_ ,snake_case_ ,snake_case_ : int = get_key_and_tensorstore_dict( __a , __a , __a ) if curr_real_layer_name in all_layers: snake_case_ : Any = content else: snake_case_ : Optional[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case_ : Optional[int] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case_ : Tuple = torch.tensor(__a ) snake_case_ : Tuple = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case_ ,snake_case_ : Union[str, Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , __a ) snake_case_ : Union[str, Any] = '/'.join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case_ : Tuple = os.path.join( __a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case_ : int = {} snake_case_ : Tuple = 0 snake_case_ : Optional[int] = raw_weights.to(getattr(__a , __a ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case_ : Optional[int] = os.path.join(__a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case_ : Optional[int] = {} snake_case_ : Optional[Any] = {} for idx, shard in enumerate(__a ): snake_case_ : Optional[Any] = weights_name.replace( '.bin' , f"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) # len(sharded_state_dicts):05d} snake_case_ : Tuple = os.path.join(__a , weights_name.replace('.bin' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a , os.path.join(__a , __a ) ) snake_case_ : Optional[Any] = shard for key in shard: snake_case_ : int = shard_file # Add the metadata snake_case_ : Dict = {'total_size': total_size} snake_case_ : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__a , __a ) , 'w' , encoding='utf-8' ) as f: snake_case_ : Tuple = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) return metadata, index if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def SCREAMING_SNAKE_CASE__ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case_ : str = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) snake_case_ : Any = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) snake_case_ : Dict = TaTokenizer.from_pretrained('t5-small' ) snake_case_ : Tuple = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' snake_case_ : Union[str, Any] = tokenizer(__a , return_tensors='pt' ).input_ids snake_case_ : Optional[Any] = model.generate(__a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class SCREAMING_SNAKE_CASE__ (lowercase__ ): __lowerCamelCase : Union[str, Any] = (DPMSolverSDEScheduler,) __lowerCamelCase : Dict = 10 def snake_case_ ( self , **a): lowercase__ : Union[str, Any] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_UpperCamelCase) return config def snake_case_ ( self): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def snake_case_ ( self): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def snake_case_ ( self): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def snake_case_ ( self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def snake_case_ ( self): lowercase__ : Any = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config() lowercase__ : str = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) lowercase__ : Dict = self.dummy_model() lowercase__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ : Any = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): lowercase__ : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) lowercase__ : Tuple = model(_UpperCamelCase , _UpperCamelCase) lowercase__ : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) lowercase__ : Any = output.prev_sample lowercase__ : Tuple = torch.sum(torch.abs(_UpperCamelCase)) lowercase__ : List[str] = torch.mean(torch.abs(_UpperCamelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326) < 1e-3 def snake_case_ ( self): lowercase__ : str = self.scheduler_classes[0] lowercase__ : Any = self.get_scheduler_config(prediction_type='v_prediction') lowercase__ : Tuple = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) lowercase__ : Optional[int] = self.dummy_model() lowercase__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): lowercase__ : List[str] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) lowercase__ : int = model(_UpperCamelCase , _UpperCamelCase) lowercase__ : Tuple = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) lowercase__ : str = output.prev_sample lowercase__ : Dict = torch.sum(torch.abs(_UpperCamelCase)) lowercase__ : Optional[Any] = torch.mean(torch.abs(_UpperCamelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621) < 1e-3 def snake_case_ ( self): lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : List[str] = self.get_scheduler_config() lowercase__ : Optional[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) lowercase__ : Optional[Any] = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter.to(_UpperCamelCase) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase__ : Dict = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) lowercase__ : str = model(_UpperCamelCase , _UpperCamelCase) lowercase__ : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) lowercase__ : List[str] = output.prev_sample lowercase__ : Dict = torch.sum(torch.abs(_UpperCamelCase)) lowercase__ : str = torch.mean(torch.abs(_UpperCamelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326) < 1e-3 def snake_case_ ( self): lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : Any = self.get_scheduler_config() lowercase__ : List[str] = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) lowercase__ : Dict = self.dummy_model() lowercase__ : Tuple = self.dummy_sample_deter.to(_UpperCamelCase) * scheduler.init_noise_sigma lowercase__ : List[Any] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: lowercase__ : Any = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) lowercase__ : int = model(_UpperCamelCase , _UpperCamelCase) lowercase__ : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) lowercase__ : Any = output.prev_sample lowercase__ : Optional[Any] = torch.sum(torch.abs(_UpperCamelCase)) lowercase__ : Dict = torch.mean(torch.abs(_UpperCamelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811) < 1e-2
358
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } snake_case_ = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } snake_case_ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Tuple = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , a) != do_lower_case or pre_tok_state.get('strip_accents' , a) != strip_accents ): lowercase__ : Optional[int] = getattr(a , pre_tok_state.pop('type')) lowercase__ : str = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : int = pre_tok_class(**a) lowercase__ : Optional[int] = do_lower_case def __getstate__( self): lowercase__ : str = self.__dict__.copy() lowercase__ : Any = BertPreTokenizer() return state def __setstate__( self , a): lowercase__ : Union[str, Any] = d lowercase__ : int = self.__dict__['_tokenizer'].get_vocab() lowercase__ : List[str] = PreTokenizer.custom(JiebaPreTokenizer(a)) def snake_case_ ( self , a , a=None): lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a , a = None): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , a , a = None): lowercase__ : Optional[Any] = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a , a=None , a=None , a=False , **a , ): lowercase__ : List[str] = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a)
216
0
from __future__ import annotations import time import numpy as np snake_case : Union[str, Any] = [8, 5, 9, 7] snake_case : Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] snake_case : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _snake_case : def __init__( self , _a , _a , _a , ): __magic_name__ : List[str] = claim_vector __magic_name__ : Union[str, Any] = allocated_resources_table __magic_name__ : List[str] = maximum_claim_table def SCREAMING_SNAKE_CASE ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def SCREAMING_SNAKE_CASE ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def SCREAMING_SNAKE_CASE ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def SCREAMING_SNAKE_CASE ( self ): return {self.__need().index(_a ): i for i in self.__need()} def SCREAMING_SNAKE_CASE ( self , **_a ): __magic_name__ : Dict = self.__need() __magic_name__ : int = self.__allocated_resources_table __magic_name__ : str = self.__available_resources() __magic_name__ : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: __magic_name__ : Tuple = False for each_need in need_list: __magic_name__ : Tuple = True for index, need in enumerate(_a ): if need > available_resources[index]: __magic_name__ : Any = False break if execution: __magic_name__ : Optional[int] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __magic_name__ : Optional[Any] = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_a ) # update available/freed resources stack __magic_name__ : Optional[Any] = np.array(_a ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(_a ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def SCREAMING_SNAKE_CASE ( self ): print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(_a ) + 1}''' + " ".join(f'''{it:>8}''' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(_a ) + 1}''' + " ".join(f'''{it:>8}''' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(_a ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(_a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
281
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case_ = max( mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) snake_case_ = len(UpperCamelCase__ ) if num_items != len(UpperCamelCase__ ): snake_case_ = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(UpperCamelCase__ )} values''' ) raise ValueError(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): if not isinstance(wt[i] , UpperCamelCase__ ): snake_case_ = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(UpperCamelCase__ ) snake_case_ , snake_case_ = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = set() _construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return optimal_val, example_optional_set def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: optimal_set.add(UpperCamelCase__ ) _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : Tuple = [3, 2, 4, 4] _UpperCAmelCase : Optional[Any] = [4, 3, 2, 3] _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : str = 6 _UpperCAmelCase : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _UpperCAmelCase , _UpperCAmelCase : List[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _UpperCAmelCase , _UpperCAmelCase : Any = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
285
0
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase : str = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Any , a :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> List[Any]: super().__init__() __UpperCamelCase : Optional[Any] = nn.ModuleList(a ) def _lowerCamelCase ( self :Optional[int] , a :torch.FloatTensor , a :Union[torch.Tensor, float, int] , a :torch.Tensor , a :List[torch.tensor] , a :List[float] , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[Dict[str, Any]] = None , a :bool = False , a :bool = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(a , a , self.nets ) ): __UpperCamelCase : Optional[Any] = controlnet( a , a , a , a , a , a , a , a , a , a , a , ) # merge samples if i == 0: __UpperCamelCase : Dict = down_samples, mid_sample else: __UpperCamelCase : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a , a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowerCamelCase ( self :int , a :Union[str, os.PathLike] , a :bool = True , a :Callable = None , a :bool = False , a :Optional[str] = None , ) -> List[Any]: __UpperCamelCase : Tuple = 0 __UpperCamelCase : Dict = save_directory for controlnet in self.nets: controlnet.save_pretrained( a , is_main_process=a , save_function=a , safe_serialization=a , variant=a , ) idx += 1 __UpperCamelCase : str = model_path_to_save + f'_{idx}' @classmethod def _lowerCamelCase ( cls :List[Any] , a :Optional[Union[str, os.PathLike]] , **a :str ) -> Tuple: __UpperCamelCase : Tuple = 0 __UpperCamelCase : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __UpperCamelCase : Optional[Any] = pretrained_model_path while os.path.isdir(a ): __UpperCamelCase : Any = ControlNetModel.from_pretrained(a , **a ) controlnets.append(a ) idx += 1 __UpperCamelCase : Tuple = pretrained_model_path + f'_{idx}' logger.info(f'{len(a )} controlnets loaded from {pretrained_model_path}.' ) if len(a ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(a )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(a )
362
import qiskit def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 2) -> qiskit.result.counts.Counts: '''simple docstring''' __UpperCamelCase : List[str] = qubits # Using Aer's simulator __UpperCamelCase : int = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register __UpperCamelCase : List[str] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 , _lowerCamelCase): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCamelCase) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCamelCase)) , list(range(_lowerCamelCase))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __UpperCamelCase : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_000) return job.result().get_counts(_lowerCamelCase) if __name__ == "__main__": print(f"Total count for various states are: {quantum_entanglement(3)}")
151
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=0.999 , _UpperCAmelCase : Dict="cosine" , ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(__lowerCamelCase ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ) , __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase , dtype=torch.floataa ) class __lowerCAmelCase ( snake_case_ , snake_case_ ): UpperCamelCase = [e.name for e in KarrasDiffusionSchedulers] UpperCamelCase = 2 @register_to_config def __init__( self : Tuple , A : int = 10_00 , A : List[Any] = 0.0_0_0_8_5 , A : Union[str, Any] = 0.0_1_2 , A : str = "linear" , A : Any = None , A : List[str] = "epsilon" , A : int = "linspace" , A : Dict = 0 , ) -> Dict: """simple docstring""" if trained_betas is not None: _UpperCAmelCase = torch.tensor(A , dtype=torch.floataa) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(A , A , A , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(A) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(A , A , A) def _lowerCamelCase ( self : str , A : Any , A : int=None) -> Union[str, Any]: """simple docstring""" if schedule_timesteps is None: _UpperCAmelCase = self.timesteps _UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: _UpperCAmelCase = 1 if len(A) > 1 else 0 else: _UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(A) else timestep _UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : int , A : List[str] , A : Any , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.index_for_timestep(A) if self.state_in_first_order: _UpperCAmelCase = self.sigmas[step_index] else: _UpperCAmelCase = self.sigmas_interpol[step_index] _UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : Dict , A : List[Any] , A : List[Any] = None , A : Any = None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , A , dtype=A)[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , A) * step_ratio).round()[::-1].copy().astype(A) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(A , 0 , -step_ratio)).round().copy().astype(A) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.") _UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) _UpperCAmelCase = torch.from_numpy(np.log(A)).to(A) _UpperCAmelCase = np.interp(A , np.arange(0 , len(A)) , A) _UpperCAmelCase = np.concatenate([sigmas, [0.0]]).astype(np.floataa) _UpperCAmelCase = torch.from_numpy(A).to(device=A) # interpolate sigmas _UpperCAmelCase = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() _UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) _UpperCAmelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(A).startswith('mps'): # mps does not support float64 _UpperCAmelCase = torch.from_numpy(A).to(A , dtype=torch.floataa) else: _UpperCAmelCase = torch.from_numpy(A).to(A) # interpolate timesteps _UpperCAmelCase = self.sigma_to_t(A).to(A , dtype=timesteps.dtype) _UpperCAmelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() _UpperCAmelCase = torch.cat([timesteps[:1], interleaved_timesteps]) _UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase = defaultdict(A) def _lowerCamelCase ( self : Any , A : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = sigma.log() # get distribution _UpperCAmelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range _UpperCAmelCase = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) _UpperCAmelCase = low_idx + 1 _UpperCAmelCase = self.log_sigmas[low_idx] _UpperCAmelCase = self.log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase = (low - log_sigma) / (low - high) _UpperCAmelCase = w.clamp(0 , 1) # transform interpolation to time range _UpperCAmelCase = (1 - w) * low_idx + w * high_idx _UpperCAmelCase = t.view(sigma.shape) return t @property def _lowerCamelCase ( self : int) -> int: """simple docstring""" return self.sample is None def _lowerCamelCase ( self : Union[str, Any] , A : str , A : List[Any] , A : Dict , A : List[Any] = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = self.index_for_timestep(A) # advance index counter by 1 _UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(A) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase = self.sigmas[step_index] _UpperCAmelCase = self.sigmas_interpol[step_index + 1] _UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _UpperCAmelCase = self.sigmas[step_index - 1] _UpperCAmelCase = self.sigmas_interpol[step_index] _UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase = 0 _UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase = sigma_interpol - sigma_hat # store for 2nd order step _UpperCAmelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _UpperCAmelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _UpperCAmelCase = sigma_next - sigma_hat _UpperCAmelCase = self.sample _UpperCAmelCase = None _UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A) def _lowerCamelCase ( self : Dict , A : List[str] , A : str , A : List[Any] , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(A): # mps does not support float64 _UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa) _UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa) else: _UpperCAmelCase = self.timesteps.to(original_samples.device) _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = [self.index_for_timestep(A , A) for t in timesteps] _UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): _UpperCAmelCase = sigma.unsqueeze(-1) _UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : List[str]) -> str: """simple docstring""" return self.config.num_train_timesteps
339
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''data2vec-text''' def __init__( self , A=3_0522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A : List[Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __A : Tuple = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __A : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __A : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __A : Optional[int] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __A : List[str] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __A : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = randrange(len(__UpperCAmelCase ) ), randrange(len(__UpperCAmelCase ) ) lowerCAmelCase : Optional[int] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> Dict: '''simple docstring''' return (generate_random_hand() for _ in range(__UpperCAmelCase )) @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = PokerHand(__UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected', __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected', generate_random_hands() ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Union[str, Any] = [PokerHand(__UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase : Any = poker_hands.copy() shuffle(__UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = chain(sorted(__UpperCAmelCase ) ) for index, hand in enumerate(__UpperCAmelCase ): assert hand == poker_hands[index] def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : str = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) lowerCAmelCase : List[str] = os.path.join(__UpperCAmelCase, 'poker_hands.txt' ) with open(__UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase : Union[str, Any] = line[:14].strip() lowerCAmelCase : Optional[int] = line[15:].strip() lowerCAmelCase : List[Any] = PokerHand(__UpperCAmelCase ), PokerHand(__UpperCAmelCase ) lowerCAmelCase : List[str] = player.compare_with(__UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0